
PHYSICAL REVIEW C 88, 025802 (2013)
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The neutron-matter equation of state constrains the properties of many physical systems over a wide density
range and can be studied systematically using chiral effective field theory (EFT). In chiral EFT, all many-body
forces among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO). We present details and
additional results of the first complete N3LO calculation of the neutron-matter energy, which includes the
subleading three-nucleon as well as the leading four-nucleon forces, and provides theoretical uncertainties. In
addition, we discuss the impact of our results for astrophysics: for the supernova equation of state, the symmetry
energy and its density derivative, and for the structure of neutron stars. Finally, we give a first estimate for the
size of the N3LO many-body contributions to the energy of symmetric nuclear matter, which shows that their
inclusion will be important in nuclear structure calculations.
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I. INTRODUCTION

Chiral effective field theory (EFT) provides a systematic ex-
pansion for nuclear forces including theoretical uncertainties
[1], where the development and applications of three-nucleon
(3N ) forces are a frontier [2]. In this context, neutron matter
constitutes a unique laboratory for chiral EFT, because all
many-body forces are predicted to N3LO [3]. This offers
the possibility to provide reliable constraints based on chiral
EFT interactions for neutron-rich matter in astrophysics, for
the equation of state, the symmetry energy and its density
dependence, and for the structure of neutron stars [4,5] but
also allows us to test the chiral EFT power counting and the
hierarchy of many-body forces over a wide density range. In
addition, the prediction of many-body forces makes neutron-
rich nuclei very exciting to test chiral EFT interactions against
experiments at rare isotope beam facilities [6–21].

Neutron matter has been studied in chiral EFT using lattice
simulations [22] and based on in-medium chiral perturbation
theory [23,24]. In addition, neutron matter has been calculated
using renormalization-group-evolved chiral EFT interactions
[4], where the renormalization group (RG) evolution improves
the convergence of the many-body expansion around the
Hartree-Fock energy [25,26] and in a chiral Fermi liquid
approach [27]. These studies demonstrated that 3N forces
are significant at nuclear densities and that the dominant
uncertainty is due to the truncation of 3N forces at the
next-to-next-to-leading-order (N2LO) level [4]. Moreover,
first quantum Monte Carlo calculations with chiral EFT
interactions are providing nonperturbative benchmarks for
neutron matter at nuclear densities [28].
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Motivated by these studies and by the derivation of the
parameter-free N3LO 3N and four-nucleon (4N ) interactions
[29–33], we recently presented the first calculation of the
neutron-matter energy that includes all two-nucleon (NN ),
3N , and 4N forces consistently to N3LO [3]. In this paper, we
discuss details of our complete N3LO calculation and present
additional results as well as applications to astrophysics, for
the equation of state and for the mass-radius relation of
neutron stars. In addition, we give a first estimate for the
size of the N3LO many-body contributions to the energy of
symmetric nuclear matter in the Hartree-Fock approximation.
This presents only a first step towards a complete calculation
of nuclear matter, where contributions from many-body forces
beyond Hartree-Fock are considerably more important than for
neutron matter [34]. Our first results show that the inclusion
of N3LO 3N forces will be important in nuclear structure
calculations.

This paper is organized as follows. In Sec. II we discuss
the chiral EFT interactions included in this work. Details
of the many-body calculation and convergence are given in
Sec. III. Our results for neutron matter are presented in Sec. IV,
including a detailed discussion of the uncertainties. In Sec. V,
we apply our results to the equation of state, in particular to
the symmetry energy and its density dependence, and discuss
the resulting constraints for the structure of neutron stars. We
show first results for the N3LO 3N and 4N contributions in
symmetric nuclear matter at the Hartree-Fock level in Sec. VI.
Finally, we summarize and give an outlook.

II. CHIRAL EFT INTERACTIONS

A. N2LO and N3LO N N forces

The largest interaction contributions to the neutron-matter
energy arise from NN forces. For our past applications
of chiral EFT interactions to nucleonic matter [4,34], the
RG evolution has been used to evolve NN potentials
to low-momentum interactions to improve the many-body
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TABLE I. Spin-independent and spin-dependent two-body con-
tact couplings CS and CT , respectively, for the N3LO NN potentials
of Refs. [36–38].

NN potential CS (fm2) CT (fm2)

EGM 450/500 MeV [36] −4.19 −0.45
EGM 450/700 MeV [36] −4.71 −0.24
EM 500 MeV [37,38] −3.90 0.22

EGM 550/600 MeV [36] −1.24 0.36
EGM 600/600 MeV [36] 3.45 2.07
EGM 600/700 MeV [36] 1.31 1.00
EM 600 MeV [37,38] −3.88 0.28

convergence [25,26]. In this work, we present calculations
based directly on chiral EFT interactions without RG evolution
and study the perturbative convergence following Ref. [3].

We investigate all existing NN potentials at N2LO and at
N3LO of Epelbaum, Glöckle, and Meißner (EGM) [35,36]
with cutoffs �/�̃ = 450/500, 450/700, 550/600, 600/600,
and 600/700 MeV, where � and �̃ denote the cutoff in the
Lippmann-Schwinger equation and in the two-pion-exchange
spectral-function regularization, respectively; as well as the
available N3LO NN potentials of Entem and Machleidt
(EM) [37,38] with cutoffs � = 500 and 600 MeV. The EM
500-MeV potential is most commonly used in nuclear structure
calculations, while the EGM potentials have only been studied
in some many-body calculations [34], although they allow to
explore a wider cutoff range.

The N3LO 3N and 4N forces involve the momentum-
independent NN contact interactions CS + CT σ 1 · σ 2. In
particular, they mainly depend on CT . The CS and CT values
of the different N3LO NN potentials are listed in Table I for
the neutron-proton case (the charge dependence contributes to
higher-order charge-dependent 3N forces). For a perturbative
calculation, we require Wigner symmetry (CT = 0) to be
fulfilled approximately at the interaction level. This is not
the case for the EGM potentials with cutoffs 600/600 and
600/700 MeV, which have large spin-dependent couplings
CT ∼ CS (and even a repulsive spin-independent CS), and
would lead to large CT -dependent 3N forces at N3LO.

B. N2LO 3N forces

Three-nucleon forces enter at N2LO in the chiral EFT
expansion without explicit Deltas [39,40]. Due to the Pauli
principle and the coupling of pions to spin, only the c1 and c3

parts of the long-range two-pion-exchange 3N interactions
contribute at N2LO [4] (see also Ref. [41]). The same ci

couplings also enter NN interactions at N2LO and have been
determined from pion-nucleon or NN scattering. The c1 and
c3 values used in chiral NN potentials are given in Table II.
Note, however, that the range adopted in the NN potentials of
Table II does not reflect the allowed range for the ci couplings,
which are not satisfactorily constrained at present, e.g., with
a range of c3 = −(3.2 – 5.9) GeV−1 from different theoretical
analyses (see Table I in Ref. [2]).

We see from Table II that, while the c1 value is of natural
size, the c3 value is large. This is due to the single-� excitation,

TABLE II. Values of couplings c1 and c3 for the different NN

potentials, as well as from Krebs, Gasparyan, and Epelbaum (KGE,
Ref. [43]), and the range adopted in this work.

c1(GeV−1) c3(GeV−1)

N2LO/N3LO EGM NN [35,36] −0.81 −3.40
N3LO EM NN [37,38] −0.81 −3.20

N2LO KGE [43] −(0.26–0.58) −(2.80–3.14)
“N2LO” KGE (recom.) [43] −(0.37–0.73) −(2.71–3.38)
N3LO KGE [43] −(0.75–1.13) −(4.77–5.51)

N2LO this work −(0.37–0.81) −(2.71–3.40)
N3LO this work −(0.75–1.13) −(4.77–5.51)

which enhances c3 ∼ 1/(m� − m) by the �-nucleon mass
difference to a large value (c1 = 0 for a single-� excitation).
In chiral EFT with explicit �’s, the single-� contribution
would in fact be included at one order lower; at next-to-leading
order (NLO) in this case. The large c3 value has two effects.
First, it leads to a slower convergence at the order when the
ci contributions enter. This corresponds to topologies where
� excitations are important. This can already be seen in the
convergence pattern with NN interactions, where the leading
two-pion-exchange NN interaction at NLO receives large
contributions due to the large ci that enter the subleading two-
pion-exchange NN interaction at N2LO [1,42]. Therefore,
for 3N and 4N forces important contributions to the N3LO
interactions studied here can be expected in topologies where
the ci couplings enter at N4LO [43,44]. This convergence
pattern can be improved by including the � explicitly in
chiral EFT. Second, the large c3 coupling in the N2LO 3N
interaction also worsens the perturbative convergence of the
many-body expansion around the Hartree-Fock energy. This is
most important for the large c3 values considered in the N3LO
calculation of this work (see Table II).

In addition, we list in Table II the ci values extracted from
a high-order analysis up to N4LO of Krebs, Gasparyan, and
Epelbaum (KGE, Ref. [43]). The KGE ranges at N2LO and
N3LO are given in Table II, in addition to values recommended
to be used in an N2LO calculation that are tuned to capture
the higher-order result. In this work, we take the KGE
recommended ci range for the N2LO calculation, minimally
enlarged to include the ci values of the NN potentials, and the
KGE N3LO ci range for our complete N3LO calculation. Note
the large c3 value for the latter, which is still in the range of
Table I in Ref. [2]. We thus explore ci values in the many-body
interactions without varying the ci in the NN potential. This
is because changing the ci in the NN potential would also
require an adjustment of other couplings in the fit to NN
data. We expect that some of the changes can be absorbed by
the N3LO NN contact interactions, but it is very important
to develop new N3LO NN potentials that can explore this
sensitivity.

C. N3LO 3N and 4N forces

The many-body forces at N3LO are predicted by couplings
in previous orders of the chiral EFT expansion. Hence, there
are no new parameters for N3LO 3N and 4N interactions [1].
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The subleading N3LO 3N forces have been derived recently
[29–31]. They can be grouped into five topologies, where the
latter two depend on the NN contact couplings CT and CS

(see the Appendix),

V N3LO
3N = V 2π + V 2π-1π + V ring + V 2π-cont + V 1/m. (1)

Here, V 2π , V 2π-1π , and V ring denote the long-range two-pion
exchange, the two-pion–one-pion exchange, and the pion-
ring 3N interactions, respectively [30]. The terms V 2π-cont

and V 1/m are the short-range two-pion-exchange–contact 3N
interaction and 3N relativistic corrections, respectively [31].
The latter are small [3] and depend also on the constants β̄8

and β̄9, which need to be chosen consistently with the unitary
transformation used for the NN potentials [31]. In addition,
there could be short-range one-pion-exchange–contact 3N
interactions, but they have been shown to vanish at N3LO [31].

According to the chiral power counting, 4N forces enter at
N3LO. They have been derived in Refs. [32,33] and depend
also on the contact coupling CT , but in neutron matter the
CT -dependent parts do not contribute. There are seven 4N
topologies that lead to nonvanishing contributions. In neutron
matter only two three-pion-exchange diagrams (in Ref. [32]
named V a and V e) and the pion-pion-interaction diagram (V f )
contribute [3].

III. MANY-BODY DETAILS

A. Hartree-Fock

We calculate the energy per particle at the Hartree-Fock
level and include contributions beyond Hartree-Fock using
many-body perturbation theory [4,25,34]. The Hamiltonian is
given by H = T + VNN + V3N + V4N , where T is the kinetic
energy and VNN , V3N , and V4N denote the NN , 3N , and
4N interactions, respectively. The Hartree-Fock contributions
are shown diagrammatically in Fig. 1. At this level, the
contribution of the A-nucleon interaction to the energy per
particle is given by

E
(1)
AN

N
= 1

n

1

A!

∑
σ1,...,σA

∫
dk1

(2π )3
· · ·

∫
dkA

(2π )3
f 2

R nk1 · · · nkA

×〈1 . . . A|AA

A∑
i1 �=... �=iA

VAN(i1, . . . , iA)|1 . . . A〉, (2)

with density n and short-hand notation i ≡ kiσi . Here, AA

denotes the A-body antisymmetrizer and nki
= θ (kF − ki) the

Fermi-Dirac distribution at zero temperature. For the many-

FIG. 1. Diagrams contributing to the Hartree-Fock energy. These
include the kinetic energy Ekin and the first-order NN , 3N , and 4N

interaction energies E
(1)
NN , E

(1)
3N , and E

(1)
4N .

body forces, we use a Jacobi-momenta regulator. In terms of
ki , this is given by

fR = e−[(k2
1+...+k2

A−k1·k2−...−kA−1·kA)/(A�2)]nexp
, (3)

where we take nexp = 4 and consider 3N/4N cutoffs � =
2–2.5 fm−1. This cutoff range allows us to probe the sensitivity
to short-range many-body forces within the limits of the em-
ployed power counting. For the evaluation of 3N/4N forces,
we use for the nucleon and pion mass, m = 938.92 MeV and
mπ = 138.04 MeV, for the axial coupling gA = 1.29 and for
the pion decay constant fπ = 92.4 MeV [30–33,40].

As an example, we present details of the derivation of the
Hartree-Fock energy from the N3LO two-pion-exchange 3N
interactions. Their contributions can be grouped into two parts:
one that shifts the ci couplings of the N2LO 3N forces and a
part

V
(4)

2π = g4
A

256πf 6
π

∑
i �=j �=k

(σ i · qi)(σ j · qj )(
q2

i + m2
π

)(
q2

j + m2
π

)
× [

mπ

(
m2

π + 3q2
i + 3q2

j + 4qi · qj

)
+ (

2m2
π + q2

i + q2
j + 2qi · qj

)
× (

3m2
π + 3q2

i + 3q2
j + 4qi · qj

)
A(qk)

]
,

=
∑

i �=j �=k

(σ i · qi)(σ j · qj )F (4)
2π (qi , qj ). (4)

For the isospin part we have used that for neutrons,

〈nnn|τ i · τ j |nnn〉 = 1, (5)

〈nnn|τ i · τ j × τ k|nnn〉 = 0, (6)

and introduced the function F
(4)
2π (qi , qj ), which absorbs all

parts of the interaction except for the spin dependencies.
Furthermore, qi = k′

i − ki and for F
(4)
2π we use q1 + q3 = −q2

due to momentum conservation. Since the particles i, j , k are
all neutrons and we sum over all possible spin states, the six
different terms in the sum lead to identical contributions and
we can write

V
(4)

2π = 6 (σ 1 · q1)(σ 3 · q3) F
(4)
2π (q1, q3). (7)

For the spin trace Trσ 〈123|A3V
(4)

2π |123〉 we use that Pauli
matrices are traceless and the relation σa

i σ b
i = δab + iεabcσ c

i .
Thus, only the parts of the antisymmetrizer that contain
the same-particle Pauli matrices as the potential need to be
considered. In this case, the terms must contain σ 1 and σ 3 but
not σ 2. The antisymmetrizer is given by

A3 = 1 − P12 − P13 − P23 + P12P23 + P13P23, (8)

with Pij = P k
ij

1+σ i ·σ j

2 , where P k
ij exchanges the momenta of

particles i and j . The last two terms can be written as

P12P23 = 1
4P k

12P
k
23(1 + σ 1 · σ 2 + σ 2 · σ 3

+ σ 1 · σ 3 + iσ 1 · σ 3 × σ 2),

P13P23 = 1
4P k

13P
k
13(1 + σ 1 · σ 2 + σ 2 · σ 3

+ σ 1 · σ 3 + iσ 1 · σ 2 × σ 3). (9)
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Thus, the only relevant terms of the antisymmetrizer are(
−P k

13

2
+ P k

12P
k
23

4
+ P k

13P
k
23

4

)
σ 1 · σ 3. (10)

Multiplying this spin part with the potential leads to

Trσ
[
σ 1 · σ 3V

(4)
2π

] = Trσ
[
6 σa

1 σa
3 σb

1 qb
1 σ c

3 qc
3 F

(4)
2π (q1, q3)

]
,

= Trσ
[
6
(
δab + iεabdσ d

1

)(
δac + iεaceσ e

3

)
× qb

1 qc
3 F

(4)
2π (q1, q3)

]
. (11)

All terms containing Pauli matrices vanish when taking the
trace, so

Trσ
[
σ 1 · σ 3V

(4)
2π

] = 8 · 6 q1 · q3 F
(4)
2π (q1, q3). (12)

Thus, we obtain

TrσA3V
(4)

2π = 8 · 6

(
−P k

13

2
+ P k

12P
k
23

4
+ P k

13P
k
23

4

)
× q1 · q3 F

(4)
2π (q1, q3). (13)

Putting everything together yields for the spin-summed anti-
symmetrized matrix element〈
V

(4)
2π

〉 = 1

3!
Trσ 〈123|A3V

(4)
2π |123〉

= 8〈123|
(

−P k
13

2
+ P k

12P
k
23

4
+ P k

13P
k
23

4

)
× q1 · q3 F

(4)
2π (q1, q3)|123〉,

= −4 k31 · k13 F
(4)
2π (k31, k13) + 2 k21 · k13 F

(4)
2π (k21, k13)

+ 2 k31 · k23 F
(4)
2π (k31, k23),

= 4
[
k2

13 F
(4)
2π (−k13, k13) − k12 · k13 F

(4)
2π (−k12, k13)

]
,

(14)

where kij = ki − kj , and we have relabeled the momentum
indices in the last step, because the momentum integrals are
equal for the three neutrons and the regulator is symmetric
under exchange of the momenta.

Analogously, we obtain the expressions for the other N3LO
3N - and 4N -interaction matrix elements at the Hartree-Fock
level. They are given in Appendix A. The analytic derivations
have been checked independently and by using an automated
Mathematica routine for the spin traces.

B. Beyond Hartree-Fock

For nucleonic matter based on chiral EFT interactions,
contributions beyond the Hartree-Fock level are important
[4,25,34]. The dominant contribution to the energy is due to
NN -NN correlations [E(2)

1 ]. In addition, there are NN -3N

correlations [E(2)
2 and E

(2)
3 ], 3N -3N correlations [E(2)

4 and
E

(2)
5 ], where the E

(2)
i follow the notation of Fig. 2, as well

as NN -4N , 3N -4N , and 4N -4N correlations. Based on the
results of Refs. [3,4], we expect the residual 3N -3N contribu-
tion E

(2)
5 and all contributions including 4N interactions to be

small.
The second-order contribution to the energy due to NN in-

teractions and including 3N interactions as density-dependent

FIG. 2. Second-order contributions to the energy due to NN -
NN correlations, E

(2)
1 , and NN -3N and 3N -3N correlations, E

(2)
2/3

and E
(2)
4 , where the 3N forces enter as density-dependent two-body

interactions, as well as the residual 3N -3N contribution E
(2)
5 not

considered here.

two-body interactions is given by

4∑
i=1

E
(2)
i = 1

4

[
4∏

i=1

∑
σi

∫
d3ki

(2π )3

]
|〈12|V (2)

as |34〉|2

× nk1nk2 (1 − nk3 )(1 − nk4 )

εk1 + εk2 − εk3 − εk4

× (2π )3δ(k1 + k2 − k3 − k4), (15)

where V (2)
as = (1 − P12)VNN + V 3N is the antisymmetrized

two-body interaction, which includes NN interactions and
density-dependent two-body interactions from N2LO 3N
forces [4]. The latter are obtained by summing the third particle
over the occupied states in the Fermi sea,

V 3N =
∑
σ3

∫
d3k3

(2π )3
nk3A3V

N2LO
3N

∣∣∣∣∣
nnn

. (16)

At third order, we include particle-particle diagrams as in
Ref. [34]. Their size provides a test of the convergence of
the many-body calculation. We divide the third-order particle-
particle contributions into classes E

(3)
i , which are based on

the E
(2)
i of Fig. 2 by adding one additional ladder and vertex

with antisymmetrized effective two-body interactions V (2)
as =

(1 − P12)VNN + V 3N to the different diagrams E
(2)
i .

C. Convergence

To study the perturbative convergence of the different
NN potentials, we calculate the Hartree-Fock as well as
the second- and third-order energies with both free and
Hartree-Fock single-particle energies. First, we consider NN
interactions only and then study the changes when including
also N2LO 3N forces. The results are shown in Figs. 3 and 4,
respectively. The bands at each order range from using a free
to a Hartree-Fock single-particle spectrum. In addition, we
give in Table III the maximal difference between the Hartree-
Fock-spectrum results at second order and those with a free
or Hartee-Fock spectrum at third order for nuclear saturation
density n0 = 0.17 fm−3 (corresponding to a Fermi momentum
kF = 1.7 fm−1). We take this energy difference as a measure
of convergence for the potentials, as it includes both the un-
certainty due to different single-particle energies as well as the
uncertainty in the convergence of the many-body calculation.
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FIG. 3. (Color online) Energy per particle as a function of density for the different N3LO NN potentials of Refs. [35–38]. The dashed lines
are Hartree-Fock results only. The filled and shaded bands are second- and third-order energies, respectively, where at each order the band
ranges from using a free to a Hartree-Fock spectrum.

At the NN level in Fig. 3, the N3LO EGM potentials with
cutoffs 450/500, 450/700, 550/600, and 600/600 MeV and
the N3LO EM 500 MeV potential exhibit only small energy
changes from second to third order. The larger-cutoff potentials
(N3LO EGM 600/700 MeV and N3LO EM 600 MeV),
however, show large changes from second to third order, as
well as a large band for the range of single-particle energies
(especially for the EM 600 MeV potential). This demonstrates
that these potentials are nonperturbative; see also Table III.

The convergence pattern is similar when the leading N2LO
3N forces are included. We show the results at this N3LO
NN and N2LO 3N level in Fig. 4 for a 3N cutoff � =
2.0 fm−1 and a particular choice of c1 = −0.75 GeV−1 and
c3 = −4.77 GeV−1, although the general picture is unchanged
for other coupling values.

We find almost no change in the convergence pattern of
the N3LO EGM 450/500 and 450/700 MeV potentials; see
Table III. This indicates that these potentials are perturbative
for neutron matter. For the N3LO EGM 450/500 MeV
potential, this is expected already from the small Weinberg
eigenvalues in Ref. [26], which are a necessary condition for
the perturbative convergence. The perturbative convergence
is a result of effective-range effects [45], which weaken NN
interactions at higher momenta, combined with weaker tensor
forces among neutrons, and with limited phase space at finite
density due to Pauli blocking [25]. For the EM 500 MeV
potential the inclusion of the N2LO 3N forces decreases the
uncertainty estimate from the different single-particle energies

but increases the difference between second and third order.
This can be seen comparing Figs. 3 and 4 and is reflected in
the uncertainty estimate given in Table III. Since this potential
is most commonly used in nuclear structure calculations, we
have decided to keep it in our complete N3LO calculation,
in addition to the lower cutoff N3LO EGM 450/500 and
450/700 MeV potentials.

The N3LO EGM 550/600 MeV potential is not used in
the following calculations because its uncertainty estimate
(see Table III) increases by a factor of 3 when the N2LO
3N forces are included. This leads to a worse convergence
pattern compared to the low-cutoff EGM potentials. For the
N3LO EGM 600/700 MeV and EM 600 MeV potentials we
find the situation unchanged when including 3N forces and,
thus, do not use these potentials for the following calculations.
Even though the N3LO EGM 600/600 MeV potential exhibits
a good convergence pattern, we will not use this interaction
because it breaks Wigner symmetry at the interaction level (see
the discussion of Table I). Finally, we note that our findings
for the EM 500 MeV potential are consistent with Ref. [46]
(see Fig. 6 therein), where the authors studied this potential at
third order employing a Hartree-Fock spectrum.

IV. RESULTS AND DISCUSSION

Next, we present results using the EGM potentials with
cutoffs 450/500 and 450/700 MeV and the EM 500 MeV
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FIG. 4. (Color online) Energy per particle as a function of density for the different N3LO NN potentials of Refs. [35–38] and including
the leading N2LO 3N forces. The dashed lines are Hartree-Fock results only. The filled and shaded bands are second- and third-order energies,
respectively, where at each order the band ranges from using a free to a Hartree-Fock spectrum. All calculations are performed for a 3N cutoff
� = 2.0 fm−1 and low-energy couplings c1 = 0.75 GeV−1 and c3 = 4.77 GeV−1.

potential. We discuss the individual contributions first and
then show the complete N3LO results.

TABLE III. Maximal energy difference between the second-
and third-order contributions using a Hartree-Fock spectrum for the
second-order and a free or Hartree-Fock spectrum for the third-order
calculation at saturation density. Results are given for the different
N3LO NN potentials at the NN -only level and including the
leading N2LO 3N forces with � = 2.0 fm−1, c1 = −0.75 GeV−1,
and c3 = −4.77 GeV−1. The first three potentials exhibit a good
convergence pattern with both NN -only and including N2LO 3N

forces and are, therefore, included in our complete N3LO calculation.
Note that the N3LO EGM 600/600 and 600/700 potentials will not
be considered in our complete N3LO calculation, because they have
large CT couplings (see the discussion of Table I).

N3LO NN potential
∣∣∣�E

(2/3)
NN−only

∣∣∣ ∣∣∣�E
(2/3)
NN/3N

∣∣∣
EGM 450/500 MeV 0.8 MeV 0.6 MeV
EGM 450/700 MeV 0.4 MeV 0.4 MeV
EM 500 MeV 1.1 MeV 1.7 MeV

EGM 550/600 MeV 1.0 MeV 3.1 MeV
EGM 600/600 MeV 0.2 MeV 1.5 MeV
EGM 600/700 MeV 11.4 MeV 16.1 MeV
EM 600 MeV 7.7 MeV 9.1 MeV

A. N3LO N N and N2LO 3N forces

The N3LO NN and N2LO 3N forces have been evaluated at
the Hartree-Fock level and including second- and third-order
contributions. Beyond Hartree Fock, N2LO 3N forces are
taken into account as density-dependent two-body interactions
[4]. The kinetic energy, Hartree-Fock, and individual higher-
order interaction contributions for the N3LO NN and N2LO
3N parts are given in Table IV for different values of � and the
ci couplings. Vanishing ci in the 3N forces correspond to NN
forces only. Table IV shows that the dominant higher-order
contributions are due to the second-order NN -NN part E

(2)
1 .

The second-order NN -3N parts E
(2)
2 + E

(2)
3 are of the order of

1 MeV and only larger for the large 3N cutoff. All higher-order
contributions with 3N forces are systematically smaller. We
emphasize that the N2LO 3N contributions beyond Hartree
Fock are larger than in Ref. [4], and therefore also the
many-body calculation converges more slowly, because the
N2LO 3N forces are stronger due to the large N3LO values of
the ci couplings.

The NN -only energies per particle are 14.7, 12.1, and
12.9 MeV at saturation density for the EGM 450/500 MeV,
EGM 450/700 MeV, and EM 500 MeV N3LO potentials,
respectively. Inclusion of 3N forces at N2LO adds another
7 ± 1.5 MeV per particle at saturation density (using the larger
N3LO ci values, see Table II).
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TABLE IV. Contributions from different N3LO NN potentials and the leading N2LO 3N forces to the neutron-matter energy per particle
in MeV at nuclear saturation density. A Hartree-Fock spectrum for the single-particle energies has been used. The 3N force is for different �

in fm−1 and for different c1 and c3 in GeV−1.

NN potential c1/c3 (3N ) � E
(0)
kin E

(1)
NN E

(1)
3N E

(2)
1 E

(2)
2 + E

(2)
3 E

(2)
4 E

(3)
1 E

(3)
2 + E

(3)
3 E

(3)
4

EGM 450/500 MeV 0/0 – 35.93 −13.51 0 −7.88 0 0 0.11 0 0
−0.75/−4.77 2.0 35.93 −13.51 7.95 −8.37 −0.92 −0.22 0.14 0.45 0.03

2.5 35.93 −13.51 9.06 −7.94 −3.41 −0.95 0.35 0.32 0.15
−1.13/ − 5.51 2.0 35.93 −13.51 9.37 −8.47 −1.08 −0.31 0.14 0.55 0.04

2.5 35.93 −13.51 10.67 −7.97 −3.98 −1.31 0.39 0.81 0.22

EGM 450/700 MeV 0/0 – 35.93 −19.39 0 −4.49 0 0 0.08 0 0
−0.75/ − 4.77 2.0 35.93 −19.39 7.95 −4.77 −0.63 −0.22 0.09 0.25 0.02

2.5 35.93 −19.39 9.06 −4.52 −2.45 −0.96 0.19 0.40 0.13
−1.13/ − 5.51 2.0 35.93 −19.39 9.37 −4.83 −0.74 −0.31 0.10 0.31 0.03

2.5 35.93 −19.39 10.67 −4.54 −2.87 −1.32 0.21 0.50 0.19

EM 500 MeV 0/0 – 35.93 −17.49 0 −6.71 0 0 1.13 0 0
−0.75/ − 4.77 2.0 35.93 −17.49 7.95 −7.13 −0.52 −0.19 1.26 0.39 0.02

2.5 35.93 −17.49 9.06 −6.84 −2.27 −0.83 1.21 0.96 0.14
−1.13/ − 5.51 2.0 35.93 −17.49 9.37 −7.21 −0.61 −0.27 1.29 0.47 0.03

2.5 35.93 −17.49 10.67 −6.87 −2.67 −1.14 1.23 1.17 0.20

B. N3LO 3N and 4N forces

The N3LO many-body forces have been evaluated in the
Hartree-Fock approximation. We have not calculated higher-
order contributions because of their involved structure. The
Hartree-Fock approximation is expected to be reliable based on
the findings of Ref. [4]. In addition, higher-order contributions
with N3LO many-body forces are not enhanced by large ci

couplings, and the N3LO many-body forces are smaller than
at N2LO, leading to smaller higher-order corrections.

We show the individual contributions of the 3N and
4N forces in Fig. 5. The bands correspond to the cutoff
variation � = 2–2.5 fm−1. In the shorter-range two-pion-
exchange–contact and the relativistic-corrections 3N forces,
three different bands are shown. These correspond to the
different NN contacts, CT and CS , determined consistently
for the different N3LO EM/EGM potentials.

The two-pion-exchange 3N forces at N3LO yield an energy
per particle of −1.5 MeV at saturation density, which is
∼1/3 of the 3N contributions at N2LO and sets the natural
scale. The two-pion–one-pion-exchange and the pion-ring 3N
forces lead to relatively large contributions of −3.5 MeV and
+3.3 MeV per particle at n0, respectively. The contributions
of the two-pion-exchange–contact 3N forces range between
−2.8 MeV and +1.3 MeV per particle at n0, depending
on the NN potential. In the topologies with relatively large
expectation values, the large ci couplings will enter in many-
body forces at N4LO [43]. This may reflect important �
contributions shifted to N4LO, as discussed above. Finally,
the relativistic corrections contribute −(0.1–0.3) MeV to the
energy per particle at n0 and are small compared with the other
topologies.

As shown in Fig. 6 (second panel) the sum of the N3LO 3N
contributions yields an energy of −(3–5) MeV per particle
at saturation density for the EGM potentials and a small
contribution of −0.5 MeV for the EM potential. This shows

that the N3LO 3N contribution can be significant, compared
to the N2LO 3N energy of 7 ± 1.5 MeV per particle (note
that the first panel of Fig. 6 only gives this contribution
at the Hartree-Fock level). The relatively large N3LO 3N
contributions are compensated by the larger N3LO ci values,
entering the 3N force at N2LO. This can be seen in Fig. 6 where
the total 3N contribution at N3LO (third panel) is compared at
the Hartree-Fock level to the 3N contribution at N2LO (fourth
panel), which uses the ci values recommended for an N2LO
calculation (see Table II). For the EGM potentials the total 3N
contribution changes by less than 1 MeV going from N2LO
to N3LO. Because the N3LO 3N contribution is small for
the EM potential, this results in a difference of about 3 MeV
when going from N2LO to N3LO for the EM case, due to the
modified ci couplings at N3LO.

Only three N3LO 4N topologies give nonvanishing contri-
butions to neutron matter. We show their results in Fig. 5. The
two three-pion-exchange diagrams V a and V e are attractive
with energies of −0.16 MeV and −0.25 MeV per particle
at saturation density. The pion-pion interaction 4N forces
(V f ) are repulsive with 0.22 MeV per particle at n0. The
latter two diagrams almost cancel each other, such that
the total contribution of the leading 4N forces is about
−0.18 MeV per particle at n0. However, also for the 4N forces,
additional larger contributions from � excitations may arise at
N4LO [44].

At the Hartree-Fock level, the 3N/4N contributions change
by less than 5% if the cutoff is taken to infinity (i.e., fR = 1).
However, since we also include N2LO 3N forces beyond
Hartree Fock, a consistent regulator is required. Finally, we
compare our 4N results with those of Refs. [44,47], which
considered only the 4N interactions V e and V f and found
their sum to be about −11 keV per particle at n0. This
is in agreement with our results if we take fR = 1 as in
Refs. [44,47].

025802-7
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FIG. 5. (Color online) Energy per particle as a function of density for all individual N3LO 3N - and 4N -force contributions to neutron
matter at the Hartree-Fock level. All bands are obtained by varying the 3N/4N cutoffs � = 2–2.5 fm−1. For the two-pion-exchange–contact
and the relativistic-corrections 3N forces, the different bands correspond to the different NN contacts, CT and CS , determined consistently for
the N3LO EM/EGM potentials. The inset diagram illustrates the 3N/4N force topology of the particular contributions.

C. Complete calculation at N3LO

The complete N3LO result for neutron matter is shown in
Fig. 7, which includes all many-body interactions to N3LO [3].

For all shown potentials the uncertainties in the ci couplings
dominate the width of the bands (compare to the bands in the
upper row of Fig. 4).
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FIG. 6. (Color online) Contributions from 3N forces in the Hartree-Fock approximation at N2LO plus N3LO (first three panels) in
comparison with the 3N contribution in a N2LO calculation (fourth panel). The first panel shows the N2LO 3N contribution in the N3LO
calculation, using the N3LO values of the ci couplings, and the second panel gives the N3LO 3N contribution. The third panel shows the total
3N contribution at N3LO (the sum of the first two panels). This is compared in the fourth panel to the 3N contribution at N2LO, using the ci

values recommended for an N2LO calculation (see Table II). For the EGM potentials the total 3N contribution at N3LO differs by less than
1 MeV compared to the N2LO results. However, for the EM potential, the result changes by almost 3 MeV. All bands include the ci range from
Table II and the 3N cutoff variation.
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FIG. 7. (Color online) Neutron-matter energy per particle as a
function of density including NN , 3N , and 4N forces to N3LO. The
three overlapping bands are labeled by the different NN potentials
and include uncertainty estimates due to the many-body calculation,
the low-energy ci constants, and by varying the 3N/4N cutoffs (see
text for details). For comparison, we show the results for the RG-
evolved NN EM 500 MeV potential including only N2LO 3N forces
from Ref. [4].

At saturation density, we obtain for the energy per particle

E

N
(n0) = 14.1 − 21.0 MeV. (17)

This range is based on different NN potentials, a variation of
the couplings c1 = −(0.75–1.13) GeV−1 and c3 = −(4.77–
5.51) GeV−1, and on the 3N /4N -cutoff variation � = 2–
2.5 fm−1. In addition, the uncertainty in the many-body
calculation is included, as discussed above.

As shown in Fig. 7, our results are consistent with previous
calculations based on RG-evolved NN interactions at N3LO
and 3N interactions at N2LO [4]. These calculations adopted
a conservative ci range but are based on the EM 500 MeV NN
potential only, which results in a narrower band compared
to the N3LO band. In Ref. [3], we compared our results to
calculations based on lattice EFT [22] and quantum Monte
Carlo at low densities [48], as well as to variational methods
[49] and auxiliary field diffusion Monte Carlo [50] based on
phenomenological NN and 3N potentials and found that they
are also consistent with the N3LO band. However, the latter
calculations do not provide theoretical uncertainties.

In Fig. 8 we compare the convergence from N2LO to
N3LO in the same calculational setup. For this comparison,
we consider only the EGM potentials with cutoffs 450/500
and 450/700 MeV, since no EM N2LO potential is available.
This leads to an N3LO energy range of 14.1–18.4 MeV per
particle at n0. For the N2LO band in Fig. 8, we have estimated
the theoretical uncertainties in the same way and found an
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FIG. 8. (Color online) Neutron-matter energy per particle as a
function of density at N2LO (upper blue band that extends to the
dashed line) and N3LO (lower red band). The bands are based on
the EGM NN potentials and include uncertainty estimates as in
Fig. 7.

energy of 15.5–21.4 MeV per particle at n0. The two bands
overlap but the range of the band is reduced only by a factor
of 2/3, which is larger than the 1/3 expected from the EFT
power counting. We attribute this to � effects (as discussed
above). This can be improved by including the � in chiral EFT
explicitly or by going to N4LO [43].

Finally, it is important to construct NN potentials at N2LO
and N3LO covering the range of the ci values. At N3LO,
we expect that the differences in the ci can be absorbed
partly by Q4 contact interactions in the fits to NN scattering.
In addition, the many-body-calculation uncertainties can be
reduced further by including the N3LO many-body forces
beyond the Hartree-Fock level.

V. APPLICATIONS

A. Symmetry energy and its density derivative

The symmetry energy Sv and its density derivative L pro-
vide important input for astrophysics [51]. To calculate these,
we need to extend the neutron-matter energy to asymmetric
matter. For the energy per particle ε, we follow Ref. [52] and
take an expression that includes kinetic energy plus interaction
energy that is quadratic in the neutron excess 1 − 2x, where x
is the proton fraction,

ε(n̄, x) = T0
[

3
5

[
x

5
3 + (1 − x)

5
3
]
(2n̄)

2
3 − [(2α − 4αL)x(1 − x)

+αL]n̄ + [(2η − 4ηL)x(1 − x) + ηL]n̄
4
3
]
, (18)
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TABLE V. Ranges for the symmetry energy Sv and its density
derivative L at nuclear saturation density.

Range

Symmetry energy Sv(n0) 28.9–34.9 MeV
Density derivative L(n0) 43.0–66.6 MeV

where n̄ = n/n0 and T0 = (3π2n0/2)2/3/(2m) = 36.84 MeV
is the Fermi energy of symmetric nuclear matter at saturation
density. The parameters α = 5.87 and η = 3.81 are deter-
mined through fits to the empirical saturation point of nuclear
matter and αL and ηL through fits to the neutron-matter results
of Fig. 7 (for details on this strategy, see Ref. [52]). Equation
(18) provides very good fits to the N3LO energy band.

We can then calculate the symmetry energy,

Sv(n) = 1

8

∂2ε(n̄, x)

∂x2

∣∣∣∣
n̄=1,x=1/2

, (19)

and its density derivative,

L(n) = 3

8

∂3ε(n̄, x)

∂n̄∂x2

∣∣∣∣
n̄=1,x=1/2

. (20)

The L parameter basically determines the pressure of neutron
matter. In addition, because the expression (18) is fit to
the empirical saturation point (with small uncertainties), the
symmetry energy and its density derivative at n0 and their
theoretical uncertainties are essentially determined by the
neutron-matter results.

The predicted ranges for Sv and L at saturation density are
given in Table V. In Ref. [3], we have shown that Sv and L are
also correlated and overlap with the results for RG-evolved
NN interactions with N2LO 3N forces [51,52], but, due to
the additional density dependencies from N3LO many-body
forces, this correlation is not as tight. The Sv and L ranges
are also in very good agreement with experimental constraints
from nuclear masses [53] and from the dipole polarizability of
208Pb [54] (see also Refs. [3,51]).

B. Constraints for supernova equations of state
and neutron stars

The neutron-matter results also provide constraints for the
nuclear equation of state. Here we focus on comparisons to
equations of state for core-collapse supernova simulations.
In Fig. 9, we compare the N3LO neutron-matter band (red
band) to the Lattimer-Swesty (LS) equation of state [55],
which is most commonly used in simulations, and to different
relativistic mean-field-theory equations of state based on the
density functionals DD2 [56], FSU2.1 [57], NL3 [58], SFHo,
SFHx [59], and TM1 [60]. At low densities only the DD2,
FSU2.1, and SFHx equations of state are consistent with the
N3LO neutron-matter band. The other supernova equations of
state underestimate the energy for densities below ∼ 0.5n0

and even at higher density in the LS cases. This density range
covers the outer regions of the (proto-) neutron star, where
also protons, nuclei, and electrons are relevant. Nevertheless,
the deficiencies in the nuclear interactions of these equations
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FIG. 9. (Color online) Comparison of the neutron-matter energy
at N3LO of Fig. 7 (red band) with equations of state for core-collapse
supernova simulations provided by Lattimer-Swesty (LS [55] with
different incompressibilities, 180, 220, and 375 MeV), G. Shen
(FSU2.1, NL3 [61]), Hempel (TM1, SFHo, SFHx [62]), and Typel
(DD2 [56]).

of state will also affect the chemical potentials and the
neutrino response. Around saturation density, the LS and SFHo
equations of state become consistent with the N3LO band.
We also find that the NL3 and TM1 equations of state have
a too-strong density dependence, which leads to unnaturally
large Sv and L values. In addition, Fig. 9 exhibits a strange
density dependence of SFHx.

Next, we use the N3LO neutron-matter results to provide
constraints for the structure of neutron stars. We follow
Ref. [52] for incorporating β equilibrium and for the ex-
tension to high densities using piecewise polytropes that are
constrained by causality and by the requirement to support
a 1.97 ± 0.04 M� neutron star [63], the heaviest precisely
measured neutron star to date. The resulting constraints on the
neutron star mass-radius diagram are shown in Fig. 10 by the
red band. This band represents an envelope of a large number
of individual equations of state reflecting the uncertainties in
the N3LO neutron-matter calculation and in the polytropic
extensions to high densities [52]. Figure 10 confirms the
predicted radius range of Ref. [52] of 9.7–13.9 km for a 1.4 M�
neutron star. The largest supported neutron star mass is found
to be 3.1 M�, with a corresponding radius of about 14 km. We
also find very good agreement with the mass-radius constraints
from the neutron-matter calculations based on RG-evolved
NN interactions with N2LO 3N forces [52], which are shown
by the thick dashed blue lines in Fig. 10.

In addition, we show in Fig. 10 the mass-radius re-
lations obtained from equations of state for core-collapse
supernova simulations [55,57–60,64,65]. The inconsistency
in Fig. 9 of many of the equations of state with the N3LO
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FIG. 10. (Color online) Constraints on the mass-radius diagram
of neutron stars based on our neutron-matter results at N3LO
following Ref. [52] for the extension to neutron-star matter and to
high densities (red band), in comparison to the constraints from
calculations based on RG-evolved NN interactions (thick dashed
blue lines) [52]. We also show the mass-radius relations obtained
from the equations of state for core-collapse supernova simulations
shown in Fig. 9 [55,57–60,64,65]. The legend for the thin lines is as
described in the caption to Fig. 9.

neutron-matter band at low densities results in a large spread
of very low mass/large radius neutron stars, where the red
band is considerably narrower in Fig. 10 (note that the
red band includes a standard crust equation of state below
0.5 n0 [52]). For typical neutron stars, our calculations rule
out the NL3 and TM1 equations of state, which produce
too-large radii. Finally, we emphasize that these constraints
not only are important for neutron star structure and for the
supernova equation of state but also provide nuclear physics
constraints for the gravitational wave signal in neutron star
mergers [66,67].

VI. FIRST ESTIMATE FOR SYMMETRIC NUCLEAR
MATTER

We present first results for the N3LO many-body forces in
symmetric nuclear matter in the Hartree-Fock approximation.
However, we emphasize that these results should be considered
as a preview and to show their importance, because it is crucial
to include contributions beyond the Hartree-Fock level [34].
Such calculations can also be facilitated by a similarity RG
evolution of NN and 3N forces [68,69] in order to improve
the convergence of the many-body calculation.

The energy per particle of symmetric matter is evaluated
as in Sec. III A summing also over both isospin states [see
Eq. (B1)]. In Appendix B, the expressions for the N3LO 3N -

and 4N -interaction matrix elements are given in detail. Our
results for the individual contributions from N3LO many-body
forces are shown in Fig. 11. Compared to the neutron-matter
results, the individual contributions are larger in magnitude in
symmetric matter, requiring calculations beyond the Hartree-
Fock level. However, the bands from cutoff variation are
narrower, because the Fermi momentum corresponding to
saturation density is lower in symmetric matter.

For the two-pion-exchange N3LO 3N forces the energy is
small, with 0.24 MeV per particle at n0 due to cancellations
among the individual parts in symmetric matter. The other
3N topologies are large and attractive: the two-pion–one-
pion-exchange and the pion-ring 3N interactions give energies
of −6.5 and −3.6 MeV per particle at n0, respectively. The
contribution of the two-pion-exchange–contact 3N interaction
ranges from −7.0 MeV to +3.4 MeV, depending on the NN
potential. As expected from our neutron-matter results, the
large 3N contributions in these topologies can be attributed
to the physics from � excitations, which will lead to large
ci contributions at N4LO in these topologies (or at N3LO in
�-full chiral EFT). As in neutron matter, the contributions
from relativistic-corrections 3N forces are small with −(0.24–
0.39) MeV per particle at n0.

Since nuclear saturation is a result of cancellation effects
of large energy contributions [34], the increased strengths of
the ci couplings at N3LO compared to N2LO is expected to
play an important role for predictions of symmetric matter.
Furthermore, in contrast to neutron matter, we find that the
total N3LO 3N contribution at the Hartree-Fock level depends
more strongly on the NN potentials used: For the EM 500 MeV
potential, we find −7 MeV per particle at n0, whereas for the
EGM potentials, we find −(15–17) MeV. To understand this
better, improved NN potential fits (following Ref. [70]) and
also those for different ci couplings will be important. These
N3LO energies should be compared with a total N2LO 3N
energy at the Hartree-Fock level of the order of 15 MeV per
particle at n0, using the large N3LO ci values (see Table II and
accordingly chosen c4 = 3.34–3.71 GeV−1 [43]) and typical
cD , cE values [25]. All these findings show that including
N3LO 3N contributions beyond the Hartree-Fock level will be
crucial.

Figure 11 also shows our results for the individual N3LO
4N -force contributions in symmetric matter. The long-range
three-pion-exchange 4N interactions V a and V e are attractive
with energies −0.32 MeV and −0.39 MeV per particle at
n0, respectively; while the V c interaction is repulsive with
0.21 MeV per particle at n0. The pion-pion-interaction 4N
force V f also gives a repulsive contribution of 0.33 MeV
per particle at n0. The shorter-range parts V k , V l , and V n

contain one or two spin-dependent NN contact interactions
and depend on CT . The two midrange topologies involving
only one NN contact (V k and V l) almost cancel against each
other (−0.11 to +0.05 MeV per particle at n0, depending on
the NN potential, and −0.05 to +0.10 MeV, respectively).
The shortest-range topology with two NN contacts (V n)
contributes even less (−0.06 to −0.01 MeV per particle at n0).
In total, the leading 4N forces give an attractive contribution
of −(0.18–0.23) MeV per particle at n0, with a strong density
dependence ∼n3.
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FIG. 11. (Color online) Energy per particle versus density for all individual N3LO 3N - and 4N -force contributions to symmetric nuclear
matter at the Hartree-Fock level. All bands are obtained by varying the 3N/4N cutoff � = 2–2.5 fm−1. For the two-pion-exchange–contact,
the relativistic-corrections 3N forces, and the short-range 4N forces, the different bands correspond to the different NN contacts, CT and
CS , determined consistently for the N3LO EM/EGM potentials. The inset diagram illustrates the 3N/4N force topology of the particular
contribution.

As a check, we can compare our results to the studies of
the V e and V f 4N forces of Refs. [44,47], which obtained
a contribution to the energy per particle of −53 keV at n0.
This is in agreement with our result for the sum of these
two topologies: −(56 ± 2) keV, where the small difference is
due to fR = 1 in Refs. [44,47]. So far only the leading 4N
forces have been derived completely. Recently, Kaiser studied
� contributions to 4N forces [44], which enter at N4LO in

�-less chiral EFT. Similarly to the N3LO versus N2LO 3N
forces, these contributions are enhanced by the large ci values,
and Kaiser found for these partial N4LO 4N contributions a
larger energy of ∼2 MeV per particle at saturation density.

Finally, we compare our results for symmetric matter with
first calculations of the 4N contributions to the 4He ground-
state energy. These were studied in Ref. [71] perturbatively
based on the same N3LO 4N forces. We agree with the sign
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of the 4N contributions for all topologies and obtain a similar
total energy correction when taking a density ∼n0/3. Also, the
estimate of Ref. [72] for the V e 4N contribution to the 4He
ground-state energy gave −18 keV per particle, which is of
the same order as our results at ∼n0/3.

VII. SUMMARY AND OUTLOOK

We have presented details and additional results of the first
complete N3LO calculation of the neutron-matter energy based
on chiral EFT NN , 3N , and 4N interactions [3]. Our results
for the energy per particle at saturation density give a range
of 14.1–21 MeV, which includes uncertainties from different
NN potentials, from the c1 and c3 couplings in 3N forces
(these dominate), from varying the cutoff in many-body forces,
and from the uncertainties in the perturbative many-body
expansion around Hartree Fock. For more systematic studies,
it will be important to develop NN potentials that explore the
different ci couplings.

We have found large contributions to the energy from N3LO
3N forces in topologies where � excitations are important.
Therefore, an improved EFT convergence is expected in
chiral EFT with explicit � degrees of freedom. In contrast,
contributions from the leading 4N forces are found to be small
(see also Refs. [44,47]). We have presented a first estimate for
the N3LO many-body contributions to the energy of symmetric
nuclear matter, where also large N3LO 3N forces and small
leading 4N forces are found. Our results for symmetric matter
show that the inclusion of N3LO 3N forces will be important
in nuclear structure calculations and that it is crucial to go
beyond the Hartree-Fock approximation.

Recently, first quantum Monte Carlo calculations with
chiral EFT interactions are providing nonperturbative bench-
marks for neutron matter and validate the perturbative expan-
sion for chiral NN potentials with low cutoffs [28]. Extending
these calculations to 3N forces and N3LO will be important.
In addition, the many-body uncertainties can be reduced in
the future by a similarity RG evolution of NN and 3N forces
[68,69], which improves the many-body convergence and will
also enable studies with the chiral NN interactions, which
were found to be nonperturbative in the present calculations.

In addition, we have discussed the impact of our results for
astrophysics: The predicted ranges for the symmetry energy
Sv and its density derivative L are Sv = 28.9–34.9 MeV
and L = 43.0–66.6 MeV, which are consistent with recent
experimental constraints [51,53,54]. Many of the equations
of state for core-collapse supernova simulations were found
to be inconsistent with the N3LO neutron-matter band. By
extending our neutron-matter results to neutron-star matter
and to high densities, we confirm the predicted radius range of
9.7–13.9 km for a 1.4 M� neutron star [52] and find a maximal
neutron star mass of 3.1 M�.
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APPENDIX A: N3LO NEUTRON-MATTER MATRIX ELEMENTS

In this appendix we present the 3N and 4N matrix elements defined as

〈VAN〉 = 1

A!

∑
σ1,...,σA

〈1 · · · A|AA

∑
i1 �=...�=iA

VAN(i1, . . . , iA)|1 · · · A〉, (A1)

entering the neutron-matter Hartree-Fock calculation [see Eq. (2)] of the N3LO many-body forces.
We use the short-hand notation for the momentum transfer kij = ki − kj , k(ij )(kl) = kij + kkl , and Pij = ki+kj

2 and pion
propagators Kij = k2

ij + m2
π and K(ij )(kl) = k2

(ij )(kl) + m2
π .

1. Two-pion-exchange 3N

〈
V 2π

3N

〉 = g2
A

f 4
π

(
−2δc1m

2
π

[
k12 · k23

K12K23
+ k2

12

K2
12

]
+ δc3

[
(k12 · k23)2

K12K23
− k4

12

K2
12

])
+ k2

13 F
(4)
2π,1(−k13, k13) − k12 · k13 F

(4)
2π,1(−k12, k13),

(A2)

with shifts in the low-energy couplings δc1 = −0.13 GeV−1 and δc3 = 0.89 GeV−1 (see Ref. [30]) and the function

F
(4)
2π,1(q1, q2) = 3g4

A

32πf 6
π

(
q2

1 + m2
π

)(
q2

2 + m2
π

) [
mπ

(
m2

π + 3q2
1 + 3q2

2 + 4q1 · q2
)

+ (
2m2

π + q2
1 + q2

2 + 2q1 · q2
)(

3m2
π + 3q2

1 + 3q2
2 + 4q1 · q2

)
A(|q1 + q2|)

]
, (A3)

where A(q) = 1/(2q) arctan[q/(2mπ )] denotes the loop function [30].
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2. Two-pion–one-pion-exchange 3N

〈
V 2π1π

3N

〉 = 4

[
F1(k12)

(k12 · k13)2

K13
− F2(k12)

k12 · k13

K13
− F3(0)

k2
23

K23
+ F3(k12)

k2
13

K13
− F7(0)

k2
23

K23

+F4(k12)
(k12 · k13)2

K13
+ F5(k12)

k2
13

K13
− F6(k12)

k12 · k13

K13
+ F7(k12)

k2
13

K13

]
, (A4)

with structure functions F1(q) to F7(q) defined in Eqs. (2.17)– (2.20) of Ref. [30].

3. Pion-ring 3N〈
V

ring
3N

〉 = 4
[−3 R1(k12, 0) + 3 R1(k12, k23) − k2

12 R2(k12, 0) + k2
12 R2(k12, k23) + k12 · k23 R3(k12, k23)

+ k12 · k23 R4(k12, k23) + k2
23 R5(k12, k23) + 2R6(0, 0) − R6(k12, 0) − R6(0, k12) − R6(−k12, k12)

+R6(k12, k23) − k2
12 R7(−k12, k12) + k2

12 R7(k12, k23) + k2
12 R8(−k12, k12) + k12 · k23 R8(k12, k23)

+ k2
12 R9(−k12, k12) + k12 · k23 R9(k12, k23) − 3R10(−k12, k12) + 3R10(k12, k23) + 2S1(0, 0)

− S1(k12, 0) − S1(0, k12) − S1(−k12, k12) + S1(k12, k23) − k2
12S2(−k12, k12) + k2

12S2(k12, k23)

+ k2
12S3(−k12, k12) + k12 · k23S3(k12, k23) + k2

12S4(−k12, k12) + k12 · k23S4(k12, k23)

− k2
12S5(−k12, k12) + k2

23S5(k12, k23) − 3S6(−k12, k12) + 3S6(k12, k23)
]
, (A5)

where the structure functions Ri and Si are defined in Eqs. (A2) and (A7) of Ref. [30].

4. Two-pion-exchange–contact 3N〈
V 2π-cont

3N

〉 = − g2
A

2πf 4
π

CT

(
g2

A

[
3mπ

4
+ m3

π

4m2
π + k2

12

− 2
(
2m2

π + k2
12

)
A(k12)

]
−

[
mπ

2
− (

2m2
π + k2

12

)
A(k12)

])
. (A6)

5. Relativistic-corrections 3N〈
V

1/m
3N

〉 = 2
[
k2

12F
1
1/m(k12, k12) + k12 · k23F

1
1/m(k12, k23) − (k12 × k23)2F 2

1/m(−k12, k13, P12, P23)

+ k2
12F

3
1/m(k12, k12) + k12 · k23F

3
1/m(k12, k23) − (k12 × k13) · (k12 × P23)F 4

1/m(k12, k13)

− (k12 × k13) · (k12 × P13)F 5
1/m(k12, k13) + k2

12F
6
1/m(k12, k23) − k2

12F
7
1/m(k12,−k12)

+ k2
12F

7
1/m(k12, k23) − k2

12F
8
1/m(k12, P12, P23) − k2

12F
9
1/m(k12) + k2

12F
10
1/m(k12) + k2

12F
11
1/m(k12)

]
, (A7)

with

F 1
1/m(q1, q2) = − g4

A

16mf 4
π

(1 − 2β̄8)(q1 · q2)2(
q2

1 + m2
π

)2(
q2

2 + m2
π

) , (A8)

F 2
1/m(q1, q2, q3, q4) = g4

A

8mf 4
π

(1 − 2β̄8)q1 · q4 + (1 + 2β̄8)q1 · q3(
q2

1 + m2
π

)2(
q2

2 + m2
π

) , (A9)

F 3
1/m(q1, q2) = − g4

A

16mf 4
π

(2β̄9 − 1)q2
1(

q2
1 + m2

π

)(
q2

2 + m2
π

) = −F 4
1/m(q1, q2)

q2
1

2
= −F 5

1/m(q1 , q2)
q2

1 (2β̄9 − 1)

2(2β̄9 + 1)
, (A10)

F 6
1/m(q1, q2) = g2

A

4mf 2
π

CS

(1 − 2β̄8)q1 · q2(
q2

1 + m2
π

)2 = F 7
1/m(q1, q2)

CS

CT

, (A11)

F 8
1/m(q1, q2, q3) = g2

A

mf 2
π

CT

(1 − 2β̄8)q1 · q3 + (1 + 2β̄8)q1 · q2(
q2

1 + m2
π

)2 , (A12)

F 9
1/m(q) = g2

A

8mf 2
π

CS

2β̄9 − 1

q2 + m2
π

= F 10
1/m(q)

CS

CT

= F 11
1/m(q)

CS

2CT

. (A13)

025802-14



NEUTRON MATTER FROM CHIRAL EFFECTIVE FIELD . . . PHYSICAL REVIEW C 88, 025802 (2013)

6. Three-pion-exchange and pion-interaction 4N

〈
V a

4N

〉 = − g6
A

8f 6
π

(
[(k1 × k2) · k34 + (k3 × k4) · k12]2

[
1

K14K
2
(14)(23)K24

+ 1

K12K
2
14K34

− 1

K12K
2
13K14

]

+ k2
14(k14 × k(14)(23))2

K2
14K

2
(14)(23)

− k14 · k24(k(14)(23) × k14) · (k(14)(23) × k24)

K14K
2
(14)(23)K24

+ k12 · k34(k14 × k12) · (k14 × k34)

K12K
2
14K34

− k12 · k14(k13 × k12) · (k13 × k14)

K12K
2
13K14

)
, (A14)

〈
V e

4N

〉 = g4
A

16f 6
π

[
− 2

k2
24

K13K
2
24

k13 · (k13 + k24) − k13 · k24

K13K23K24
k23 · (k13 + k24) + 2

k13 · k34

K13K24K34
k24 · k14

+ 2
k23 · k24

K13K23K24
k13 · (k13 + k24) + 2

k23 · k14

K14K23K34
k34 · k13 + 2

k12 · k24

K12K24K34
k34 · k23

]
, (A15)

〈
V

f
4N

〉 = g4
A

32f 6
π

[(
m2

π + 2K(12)(34)
) k2

12k
2
34

K2
12K

2
34

− (K(14)(32) + 2K13)
k12 · k34 k14 · k23

K12K14K23K34

− 2(K14 + K(34)(21) + K23)
k12 · k24 k13 · k34

K12K13K24K34

]
. (A16)

APPENDIX B: N3LO SYMMETRIC NUCLEAR-MATTER MATRIX ELEMENTS

We now turn to the 3N and 4N matrix elements defined as

〈VAN〉 = 1

A!

∑
τ1,...,τA

∑
σ1,...,σA

〈1 · · · A|AA

∑
i1 �=...�=iA

VAN(i1, . . . , iA) |1 · · · A〉 , (B1)

entering the symmetric nuclear-matter Hartree-Fock calculation of the N3LO many-body forces.

1. Two-pion-exchange 3N

〈
V 2π

3N

〉 = 6
g2

A

f 2
π

(
−2

δc1m
2
π

f 2
π

[
k12 · k23

K12K23
+ 2

k2
12

K2
12

]
+ δc3

f 2
π

[
(k12 · k23)2

K12K23
− 2

k4
12

K2
12

]
− δc4

f 2
π

(k12 × k23)2

K12K23

)
+ 6

[
2k2

13F
(4)
2π,1(−k13, k13) − k12 · k13F

(4)
2π,1(−k12, k13)

] − (k12 × k13)2F
(4)
2π,2(−k12, k13), (B2)

with shifts in the low-energy couplings δc1, δc3 = −δc4, the function F
(4)
2π,1 is as given in Appendix A, and

F
(4)
2π,2(q1, q2) = − 9g4

A

8πf 6
π

(
q2

1 + m2
π

)(
q2

2 + m2
π

) [
mπ + (

4m2
π + q2

1 + q2
2 + 2q1 · q2

)
A(|q1 + q2|)

]
. (B3)

2. Two-pion–one-pion-exchange 3N

〈
V 2π1π

3N

〉 = 24

[
F1(k12)

(k12 · k13)2

K13
− F2(k12)

k12 · k13

K13
+ F3(k12)

k2
13

K13
+ F4(k12)

(k12 · k13)2

K13

+F5(k12)
k2

13

K13
− F6(k12)

k12 · k13

K13
− 2F7(0)

k2
23

K23
+ F7(k12)

k2
13

K13
+ 4F8(k12)

k12 · k13

K13

]
, (B4)

with structure functions F1(q) to F8(q) defined in Eqs. (2.17)– (2.20) of Ref. [30].
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3. Pion-ring 3N〈
V

ring
3N

〉 = 8
[
9R1(−k12, k13) + 3k2

12 R2(−k12, k13) − 3k12 · k13 R3(−k12, k13) − 3k12 · k13 R4(−k12, k13)

+ 3k2
13 R5(−k12, k13) − 6R6(−k13, k13) + 3R6(−k12, k13) − 2k2

13 R7(−k13, k13) + k2
12 R7(−k12, k13)

+ 2k2
13 R8(−k13, k13) − k12 · k13 R8(−k12, k13) + 2k2

13 R9(−k13, k13) − k12 · k13 R9(−k12, k13)

− 6R10(−k13, k13) + 3R10(−k12, k13) − 6S1(−k12, 0) + 3S1(−k12, k13) + 3k2
12S2(−k12, k13)

− 3k12 · k13S3(−k12, k13) − 3k12 · k13S4(−k12, k13) + 3k2
13S5(−k12, k13) + 9S6(−k12, k13)

]
, (B5)

with structure functions Ri and Si defined in Eqs. (A2) and (A7) of Ref. [30].

4. Two-pion-exchange–contact 3N

〈
V 2π-cont

3N

〉 = 3g2
A

πf 4
π

CT

(
g2

A

[
3mπ − m3

π

3m2
π + K12

+ (
4m2

π − 3k2
12

)
A(k12)

]
− [

mπ + (
2m2

π + k2
12

)
A(k12)

])
. (B6)

5. Relativistic-corrections 3N

〈
V

1/m
3N

〉 = 12
[
2k2

13F
1
1/m(−k13, k13) − k12 · k13F

1
1/m(−k12, k13) − (k12 × k13)2F 2

1/m(−k12, k13, P12, P23)

− (k12 × k13) · (k12 × P23)F 3
1/m(−k12, k13) − (k12 × P13) · (k12 × k13)F 4

1/m(−k12, k13)

− k12 · k13F
5
1/m(−k12, k13, P12, P23, P13) + (k12 × k13)2F 6

1/m(−k12, k13) − k12 · P13F
7
1/m(−k12, k13)

+ k2
12F

8
1/m(−k12, k13) + k2

12F
9
1/m(−k12, k13) + k2

12F
10
1/m(−k12, P12, P23) − k12 · k13F

11
1/m(k12)

− k12 · k13F
12
1/m(k12) − k12 · P23F

13
1/m(k12) − k12 · P12F

14
1/m(k12)

]
, (B7)

with

F 1
1/m(q1, q2) = − g4

A

16mf 4
π

1(
q2

1 + m2
π

)(
q2

2 + m2
π

) [
1(

q2
1 + m2

π

) (1 − 2β̄8)(q1 · q2)2 + (2β̄9 − 1)q2
1

]
, (B8)

F 2
1/m(q1, q2, q3, q4) = g2

A

8mf 4
π

1(
q2

1 + m2
π

)(
q2

2 + m2
π

) {
g2

A(
q2

1 + m2
π

) [(1 − 2β̄8)q1 · q4 + (1 + 2β̄8)q1 · q3]

}
, (B9)

F 3
1/m(q1, q2) = − g4

A

8mf 4
π

2β̄9 − 1(
q2

1 + m2
π

)(
q2

2 + m2
π

) = −F 4
1/m(q1, q2)

2β̄9 − 1

2β̄9 + 1
, (B10)

F 5
1/m(q1, q2, q3, q4, q5) = g2

A

4mf 4
π

1(
q2

1 + m2
π

)(
q2

2 + m2
π

){
− g2

A(
q2

1 + m2
π

)q1 · q2[(1 − 2β̄8)q1 · q4 + (1 + 2β̄8)q1 · q3]

+ q2 · (q5 − q4) + g2
A(2β̄9 − 1)q1 · q4

}
, (B11)

F 6
1/m(q1, q2) = − g2

A

8mf 4
π

1(
q2

1 + m2
π

)(
q2

2 + m2
π

) [
g2

A

q2
1 + m2

π

(1 − 2β̄8) q1 · q2 + 1

]
, (B12)

F 7
1/m(q1, q2) = − g4

A

4mf 4
π

(2β̄9 + 1) q1 · q2(
q2

1 + m2
π

)(
q2

2 + m2
π

) , (B13)

F 8
1/m(q1, q2) = g2

A

4mf 2
π

CS

(1 − 2β̄8) q1 · q2(
q2

1 + m2
π

)2 = F 9
1/m(q1, q2)

CS

CT

, (B14)

F 10
1/m(q1, q2, q3) = g2

A

mf 2
π

1(
q2

1 + m2
π

)2 CT

[
(1 − 2β̄8) q1 · q3 + (1 + 2β̄8) q1 · q2

]
, (B15)

F 11
1/m(q) = g2

A

4mf 2
π

2β̄9 − 1

q2 + m2
π

CS = F 12
1/m(q)

CS

CT

= F 13
1/m(q)

CS

4CT

= −F 14
1/m(q)

CS(2β̄9 − 1)

4CT (2β̄9 + 1)
. (B16)
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6. Three-pion-exchange and pion-interaction 4N

〈
V a

4N

〉 = −3g6
A

4f 6
π

{
4

[
k2

14(k14 · k(14)(23))2

K2
14K

2
(14)(23)

+ k12 · k34 k12 · k14 k34 · k14

K12K
2
14K34

− k12 · k14 k12 · k13 k14 · k13

K12K
2
13K14

]

+ 2

[
(k14 × k42) · (k31 × k42) k14 · k(14)(23)

K14K
2
(14)(23)K24

− (k12 × k43) · (k31 × k43) k12 · k14

K12K
2
14K34

+ (k12 × k41) · (k34 × k41) k12 · k13

K12K
2
13K14

]

− 2

[
(k14 × k42) · (k14 × k23) k42 · k(14)(23)

K14K
2
(14)(23)K24

− (k12 × k43) · (k12 × k24) k43 · k14

K12K
2
14K34

+ (k12 × k41) · (k12 × k23) k41 · k13

K12K
2
13K14

]

+ [(k1 × k2) · k34 + (k3 × k4) · k12]2

[
1

K14K
2
(14)(23)K24

+ 1

K12K
2
14K34

− 1

K12K
2
13K14

]

+ 2
k2

14(k14 × k(14)(23))2

K2
14K

2
(14)(23)

− k14 · k24(k(14)(23) × k14) · (k(14)(23) × k24)

K14K
2
(14)(23)K24

+ k12 · k34(k14 × k12) · (k14 × k34)

K12K
2
14K34

− k12 · k14(k13 × k12) · (k13 × k14)

K12K
2
13K14

}
, (B17)

〈
V c

4N

〉 = 3g4
A

2f 6
π

{
2

[
k2

14 k14 · k(14)(23)

K2
14K(14)(23)

+ k12 · k34 k34 · k14

K12K14K34
− k12 · k14 k14 · k13

K12K13K14

]

+
[

(k14 × k42) · (k31 × k42)

K14K(14)(23)K24
− (k12 × k43) · (k31 × k43)

K12K14K34
+ (k12 × k41) · (k34 × k41)

K12K13K14

]}
, (B18)

〈
V e

4N

〉 = 3g4
A

8f 6
π

[
− 4

k2
24

K13K
2
24

k13 · (k13 + k24) + k13 · k24

K13K23K24
k23 · (k13 + k24) + 6

k13 · k34

K13K24K34
k24 · k14

− 2
k23 · k24

K13K23K24
k13 · (k13 + k24) + 6

k23 · k14

K14K23K34
k34 · k13 + 6

k12 · k24

K12K24K34
k34 · k23

]
, (B19)

〈
V

f
4N

〉 = 3g4
A

16f 6
π

[(
6m2

π + 4K(12)(34)
) k2

12k
2
34

K2
12K

2
34

+ (K(14)(32) − 6K13)
k12 · k34 k14 · k23

K12K14K23K34

− (6K14 − 2K(34)(21) + 6K23)
k12 · k24 k13 · k34

K12K13K24K34

]
. (B20)

7. Two-pion-exchange–contact 4N

〈
V k

4N

〉 = −CT

12g4
A

f 4
π

[
k2

13k
2
24 − (k13 · k24)2

K13K
2
(13)(24)

− 2
(k13 · k(13)(24))2

K13K
2
(13)(24)

]
, (B21)

〈
V l

4N

〉 = −CT

12g2
A

f 4
π

k13 · k(13)(24)

K13K(13)(24)
, (B22)

〈
V n

4N

〉 = −C2
T

12g2
A

f 4
π

k2
(13)(24)

K2
(13)(24)

. (B23)
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