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Nuclear “pasta” structures in low-density nuclear matter and properties of the neutron-star crust
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In the neutron-star crust, nonuniform structure of nuclear matter—called the “pasta” structure—is expected.
From recent studies of giant flares in magnetars, these structures might be related to some observables and
physical quantities of the neutron-star crust. To investigate the above quantities, we numerically explore the pasta
structure with a fully three-dimensional geometry and study the properties of low-density nuclear matter, based
on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures
for fixed proton number fraction and two of them for cold catalyzed matter. We also discuss the crystalline
configuration of “pasta.”
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I. INTRODUCTION

A neutron star has a radius of about 10 km and a mass of
about 1.4 times the solar mass. It is considered to consist of
four parts [1,2]. The region around 0.3 km from the surface
is called the “outer crust,” where Fe nuclei are expected
to form a Coulomb lattice. The region around 0.3–1 km is
called the “inner crust” with a density of about 0.3–0.5ρ0.
There are neutron-rich nuclei in the lattice and dripped
neutrons in a superfluid state. Two central regions with higher
densities are called the “outer core” and the “inner core,”
in which proton superconductivity, neutron superfluidity [3],
meson condensations [4–7], hyperon mixtures [8–11], or
quark matter [12,13] are speculated to exist. The transition
of matter composition with a change of density inside a
neutron stars raises a question: Does it change smoothly or
suddenly? A sudden change of matter property is generally
accompanied by a first-order phase transition, which leads
to the appearance of a mixed phase. Ravenhall et al. [14]
suggested the existence of nonuniform structures of nuclear
matter, i.e., a structured mixed phase. They suggested five
types of geometrical structures: droplets, rods, slabs, tubes,
and bubbles.1 Due to their geometrical shapes that depend
on the density, they are often referred to as “nuclear pasta”
(e.g., spaghetti, lasagna, etc.) [14,19]. Many studies have
suggested the existence of these pasta structures in low-density
nuclear matter, relevant to the crust region of neutron stars and
the collapsing stage of supernovae. The existence of pasta
structures in the crust of neutron stars may not influence the
bulk property and structure of neutron stars so much. However,
it should be important for the mechanism of glitch, the cooling
process of neutron stars, and the thermal and mechanical
properties of supernova matter [20].

1Note that the emergence of an inhomogeneous structure is a general
feature accompanying a noncongruent first-order phase transition
[15,16], and there have been other known examples including
hadron-quark deconfinement or meson condensation [17,18].

Recently, in the x-ray afterglow of giant flares quasiperiodic
oscillations (QPOs) have been observed in some soft-γ -ray
repeaters [21,22]. These flares are energetic γ -ray bursts from
strongly magnetized neutron stars: magnetars. As one com-
prehensible understanding of the QPOs they may be attributed
to the shear oscillations of neutron-star crust. Based on this
interpretation, detailed information on neutron-star crust can
be extracted from the QPOs [23], where the frequencies of
shear oscillations depend on shear moduli of the Coulomb
lattice of nuclei. Ogata et al. have calculated shear moduli
using molecular dynamics simulations [24]. However, in this
calculation, some important effects are missing; these include
charge screening, finite-size effects of nuclei, and superfluidity
of dripped neutrons [25]. In realistic situations, these elements
should be taken into account in the elaborate calculation of
shear moduli. Pasta structures should also be considered. Thus
the energy change against a small deformation of the lattice
can be discussed using shear moduli. On the other hand, if
the energy change against a large deformation is known, the
breaking strain of neutron-star crust can be obtained. Then, this
breaking strain could determine the possible size of mountains
on the neutron-star crust, which may radiate gravitational
waves strongly under rapid rotation [26]. These waves may
be detected by large-scale interferometers and could limit the
spin frequencies of accreting stars. Furthermore, the breaking
strain may be important for the “star quake” model of giant
flares in magnetars [27].

The species and the sizes of the pasta structure are
determined for given average baryon-number densities by
minimizing the total energy density, which consists of the
bulk, the surface, and the Coulomb energy densities. From the
thermodynamical point of view, nuclear matter at subsaturation
density can be represented by a dilute gas phase and a dense
liquid phase in chemical equilibrium which determines particle
densities in both phases. Once the averaged density is given,
the volume fraction of gas or liquid phase is determined. Since
the shape and size of the structure are independent of the bulk
energy density due to the nuclear saturation property, they are
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determined by the balance between the Coulomb and surface
energy densities [28].

In many studies of nuclear pasta, the geometrical sym-
metry of the structure has been assumed by employing the
Wigner-Seitz (WS) approximation [14,19]. In this approxima-
tion, one can find all the physical quantities from those in
a single WS cell. Furthermore, the calculation is reduced to
a one-dimensional form owing to the geometrical symmetry,
which drastically saves the computational cost. On the other
hand, by virtue of the recent development in computational
science, it becomes possible to calculate without any assump-
tion about the geometry of nonuniform structures [29,30]. In
these studies, one imposes a periodic boundary condition in a
small cubic cell, which includes only one period of structures.
Although these studies yielded essentially the same results, i.e.
typical pasta structures, it is hard to extract further information
such as crystalline configuration of “pasta” and mechanical
properties.

For detailed studies of the properties of the neutron-star
crust, it is desired to perform three-dimensional calculations in
a periodic cubic cell with sufficiently large sizes. Accordingly,
we have developed a numerical code to calculate the density
distribution of particles in a three-dimensional coordinate
space and the relevant physical quantities, e.g., energy density
or pressure of matter, by using a relativistic mean-field (RMF)
model under the Thomas-Fermi approximation [31]. We have
explored ground states of low-density nuclear matter with a
fixed proton number fraction Yp and observed a series of
typical pasta structures appearing as the ground states. We
have also observed crystalline configurations of droplets, rods,
tubes, and bubbles. One of our findings is the appearance of
a face-centered cubic (fcc) lattice of droplets in the ground
state. However, the system was limited to the cases with fixed
proton number fraction and detailed discussion is still needed
about its appearance.

In this article, first we explore the pasta structures and
properties of low-density charge-neutral nuclear matter with
a fixed proton number fraction, following the line of our
previous study in Ref. [31] but in more detail: We present
more refined results obtained by using a fine grid width of
0.3 fm, instead of 0.8 fm. We also extend the region of
the data points into the lower density region. Second, as a
new research target, we explore catalyzed matter relevant to
the neutron-star crust, where a significant difference between
results with and without the WS approximation can be seen.
It is possible to extend our framework to finite temperatures
as in the case of proto-neutron star matter [32,33], but, in
this article, we concentrate on the cold neutron-star crust for
simplicity.

In Sec. II, we present the model and describe our numerical
procedure. In Sec. III, we first demonstrate some results
from our three-dimensional calculation for low-density nuclear
matter with fixed proton number fraction Yp = 0.5, 0.3, and
0.1 that may be related to supernova matter and newly born hot
proto-neutron star crust. Then, in the second part of Sec. III,
we investigate the pasta structures at β equilibrium, as they
occur in cold neutron stars, and the crystalline configuration
of nuclear pasta. Finally, Sec. IV is devoted to a summary and
concluding remarks.

II. MODEL AND METHOD

Several many-body techniques have been used for studying
the pasta structures in the literature, including the compressible
liquid-drop model (CLDM) [14,19,34–36], the Thomas-Fermi
model [29,33,37–39], the Hartree-Fock (HF) approximation
employing effective NN interactions [30,40,41], and quantum
molecular dynamics (QMD) [42–44]. In the studies using the
CLDM and the Thomas-Fermi model, the WS approximation
was always used and only typical pasta structures were used.
In QMD calculations, one does not assume any specific
nonuniform structure of nuclear matter, though a uniform
background of electrons is assumed. Some of the Thomas-
Fermi calculations and the HF calculations used a periodic
boundary condition but no geometrical symmetry was assumed
for the structure. However, the size of the periodic unit cell
was not large enough for quantitative discussion. In this paper,
to describe the interaction among nucleons, we employ an
RMF model under the Thomas-Fermi approximation [39].
The model treats the mean fields of sigma, omega, and rho
mesons represented by σ , ωμ, and Rμ, respectively, together
with nucleons ψ , electrons ψe, and the electromagnetic field
Aμ, by a Lagrangian L introduced in a Lorentz-invariant form
as follows:

L = ψ̄

[
iγ μ∂μ − m∗

N − gωNγ μωμ − gρNγ μτ ·Rμ

− e
1 + τ3

2
γ μAμ

]
ψ + 1

2
(∂μσ )2 − 1

2
m2

σ σ 2 − U (σ )

− 1

4
ωμνω

μν + 1

2
m2

ωωμωμ − 1

4
Rμν Rμν + 1

2
m2

ρ Rμ Rμ

− 1

4
FμνF

μν + ψ̄e[iγ μ∂μ − me + eγ μAμ]ψe, (1)

where U (σ ) = 1
3bmN (gσNσ )3 − 1

4c(gσNσ )4 is a nonlinear
term for the scalar field, m∗

N = mN − gσNσ represents the
effective mass of the nucleon, ωμν = ∂μων − ∂νωμ, Rμν =
∂μ Rν − ∂ν Rμ − gρN (Rμ×Rν), Fμν = ∂μAν − ∂νAμ, and gab

represent the coupling constant between a and b. The
thermodynamic potential � is then given by � = E −∑

i=n,p,e μi

∫
d3rρi(r) in terms of the total energy E, number

densities ρi(r) and chemical potentials μi . Variation of � with
respect to each field gives the field equation.

The set of coupled field equations for the mean fields and
the Coulomb potential Aμ = (VCoul, 0) renders

−∇2σ (r) + m2
σ σ (r) = gσN

[
ρs

p(r) + ρs
n(r)

] − dU

dσ
, (2)

−∇2ω0(r) + m2
ωω0(r) = gωN [ρp(r) + ρn(r)], (3)

−∇2R0(r) + m2
ρR0(r) = gρN [ρp(r) − ρn(r)], (4)

∇2VCoul(r) = 4πe2[ρp(r) − ρe(r)], (5)

where ρs
i (r) = 〈ψ̄i(r)ψi(r)〉, i = p, n, is the nucleon scalar

density and R0 is the third component of the isovector field
Rμ. Field equations for fermions simply yield the standard
relations between the densities ρi and chemical potentials μi
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TABLE I. Parameter set used in the RMF model.

gσN gωN gρN
b c mσ (MeV) mω (MeV) mρ (MeV)

6.3935 8.7207 4.2696 0.008659 −0.002421 400 783 769

within the Thomas-Fermi approximation,

μn =
√

kF,n(r)2 + m∗
N (r)2 + gωNω0(r) − gρNR0(r), (6)

μp =
√

kF,p(r)2 + m∗
N (r)2 + gωNω0(r)

+ gρNR0(r) − VCoul(r), (7)

ρe(r) = (μe − VCoul(r))3/3π2, (8)

where the local Fermi momentum kF,i(r) is simply related
to the density, k3

F,i(r)/(3π2) = ρi(r). Finally, baryon-number
conservation and charge neutrality are imposed besides these
equations. We use the same set of parameters as in Ref. [39]
listed in Table I, in order to compare the equation of state
(EOS) and structural changes of the pasta structure with
and without the WS approximation. With these parameters,
we can reproduce the properties of uniform nuclear matter
shown in Table II. The first and second quantities, ρ0 and
ε0, are the saturation density of symmetric nuclear matter
(≈ 0.16 fm−3) and its energy per nucleon, respectively. The
third and forth quantities, K and S0, are the incompressibility
and symmetry energy at ρ0, respectively. The last one, L,
is the slope parameter of symmetry energy at ρ0. By using
these parameters the binding energy per nucleon around the
saturation density is expressed as

E

A
= ε0 + K(ρ − ρ0)2

18ρ2
0

+
[
S0 + L(ρ − ρ0)

3ρ0

]
(1 − 2Yp)2.

(9)

To numerically simulate the nonuniform structure of infinite
matter, we use a cubic cell with a periodic boundary condition.
If the cell size is small and includes only one or two units of
the structure, the geometrical shape should be affected by the
boundary condition and the appearance of some structures is
implicitly suppressed. Therefore, the cell size should be so
large as to include several units of the pasta structure. We
divide the cell into three-dimensional grids. The desirable grid
width should be so small as to describe the detailed density
distribution, particularly at the nuclear surface. Due to this
requirement, we set the grid width to 0.3 fm at the largest. This
grid width is small enough to give an energy difference within
2 keV from that with 0.1 fm. Given the average baryon-number
density ρB , the initial density distributions of fermions are
randomly prepared on each grid point. Then proper density
distributions and the meson mean fields are searched for
until the chemical potentials are independent of the position.

TABLE II. EOS of uniform nuclear matter.

ρ0 (fm−3) ε0 (MeV) K (MeV) S0 (MeV) L (MeV)

0.153 −16.4 240 33.4 84

More detailed numerical procedures and treatment with a local
chemical potential will be discussed in the Appendix.

III. RESULTS

A. Fixed proton number fraction

First, we present here some results for fixed proton number
fraction Yp with Yp = 0.5 (symmetric nuclear matter), 0.3, and
0.1, which are roughly relevant to supernovae and neutron-star
crust. Shown in Fig. 1 are the proton density distributions in
cold symmetric matter. We can see that the typical pasta phases
with rods, slabs, tubes, and bubbles, in addition to spherical
nuclei (droplets), are reproduced by our calculation in which
no assumption on the structures was used. Furthermore,
these cells include several units and we can specify these
lattice structures. The crystalline configuration of droplets
and bubbles is fcc; rods and tubes exhibit a honeycomb
configuration.

No exotic mixtures appear as ground states at any density.
In a droplet, we have seen that the proton density is highest
near the surface due to Coulomb repulsion, while the neutron
density distribution is flat inside the droplet. Note that baryon
density outside the droplets is zero for Yp = 0.3 and 0.5.
Electron density is spread over all space but slightly localized

FIG. 1. (Color online) Proton density distributions in the ground
states of symmetric matter (Yp = 0.5). Typical pasta phases are
observed: (a) Spherical droplets with an fcc crystalline configuration
at baryon density ρB = 0.01 fm−3, of 98 fm each side. (b) Cylindrical
rods with a honeycomb crystalline configuration at 0.024 fm−3,
of 76 fm each side. (c) Slabs at 0.05 fm−3, of 95 fm each side.
(d) Cylindrical tubes with a honeycomb crystalline configuration at
0.08 fm−3, of 79 fm each side. (e) Spherical bubbles with an fcc
crystalline configuration at 0.09 fm−3, of 97 fm each side.
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FIG. 2. (Color online) (a) Proton density distribution in the rod
phase (ρB = 0.03 fm−3 for Yp = 0.5) on the sliced plane. (b) The
density distribution along a line (v) (vertical) and (h) (horizontal) in
the upper figure. Red (solid) lines indicate protons, green (dashed)
lines neutrons, blue (dot-dashed) lines electrons, and pink (dotted)
lines the Coulomb potential.

around the droplets, which brings about the charge-screening
effect.

We can see the density distribution of fermions for Yp = 0.5
and ρB = 0.03 fm−3 in Fig. 2 and find the unique features of
the three-dimensional calculation. Here, in the upper panel,
we show the proton density distribution on a sliced plane and
depict the two kinds of density profiles of protons, neutrons,
and electrons and the Coulomb potential in the lower panel.
One is along a vertical line (v) which passes through the rods;
another is along a horizontal one (h). From this figure, the
advantage of the three-dimensional calculation can be seen.
The proton, neutron, and electron density distributions are
almost the same for both the cases of (v) and (h). However, a
slight difference appears in the Coulomb potential. We have
set the maximum value of the Coulomb potential to be zero
for convenience. In the case of the rod phase, that point
corresponds to the centroid of the triangular lattice. These
points are included not on the path (v) but on the path (h).
Considering the importance of the distinct relation between
the Coulomb and surface energies for the pasta structure, we
should take into account this anisotropy in a proper way.

In Fig. 3 we show the energy, total pressure, and baryon
partial pressure as functions of density. Baryon partial pressure
is given by subtracting the electron contribution from the total
pressure. Note that the energy E/A − mN includes the kinetic
energy of electrons, which makes the total pressure positive.
This density dependence is qualitatively the same as the one
with the WS approximation. The appearance of nonuniform
structures will make nuclear matter more stable: the energy per
baryon gets lower up to about 15 MeV/A compared to uniform

matter and the pressure per baryon gets higher up to about
0.5 MeV/A.

We have obtained almost the same EOS as that given by the
WS approximation, in which the same RMF model is applied.
However, one of the differences between our results and those
with the WS approximation appears in the existence region
of each pasta structure; the density region of the rod is wider
and the tube narrower in our calculation. Since the energy
differences between different structures are quite small, the
crystalline configuration might affect the appearance of each
pasta structure.

We get the same result for the crystalline structure of
droplets as discussed in Ref. [31]. In the medium-density
region, an fcc lattice is more favored than a body-centered
cubic (bcc) lattice. In the QMD calculations [43] that precede
the present calculation without geometrical structures being
assumed, droplets form a bcc lattice. This difference might
come from the treatment of electrons or the charge-screening
effect since a uniform electron distribution has been assumed
in the QMD calculation. To see the effects of the electron
distribution on the crystalline configuration, let us compare
two cases within our framework: one is the full calculation
and the other is the case for which uniformly distributed
electrons are assumed. In the latter calculation, the Coulomb
potential VCoul in Eq. (8) is replaced by a constant V0 = 0
and ρe = (μe − V0)3/3π2. However, in the case of uniformly
distributed electrons, gauge invariance is partially violated,
since we replace VCoul by V0 in the equation for the electron
chemical potential but retain VCoul in the equation for the
proton chemical potential and thus in the expression for the
proton number density. In this case, the droplets have a smaller
size compared with that in the full calculation in throughout
the density region of the droplet phase. This means that the
Coulomb repulsion among protons is slightly weaker in the
full calculation due to the screening by electrons. One can see
this difference in Table III. Here, Rd and Rlatt are defined as
follows:

V

Nd

= 4π

3
R3

latt, (10)

Rd = Rlatt

(
〈ρp〉2〈
ρ2

p

〉
)1/3

, (11)

where V denotes the cell volume, Nd the number of droplets in
the cell, and the brackets 〈. . .〉 mean the average over the cell
volume. In our previous study using the WS approximation
[39], a similar discussion was presented. We argued that the
charge-screening effect is not so remarkable due to the large
Debye screening length. Indeed, the crystalline configuration
does not change in our present calculation. Thus, it is
confirmed that charge screening by electrons does not affect
the crystalline configuration significantly. This difference in
crystalline configuration between the QMD calculation and
the present calculation remains to be elucidated as a future
problem.

We obtain the typical pasta structure as a ground state for
any proton number fraction above 0.1. Also in the cases of
Yp = 0.3 and 0.1, the fcc lattice of droplets is energetically
more favorable than the bcc one. In Fig. 4 we depict the density
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FIG. 3. (Color online) From the left, energy [(a), (d), and (g)], pressure [(b), (e), and (h)], and baryon partial pressure [(c), (f), and (i)] of
Yp = 0.5 [(a), (b), and (c)], 0.3 [(d), (e), and (f)], and 0.1 [(g), (h), and (i)] in this order from the upper panel. Red lines (with pluses) indicate
droplets, green (with crosses) rods, blue (with stars) slabs, magenta (with open squares) tubes, cyan (with full squares) bubbles, and black
uniform, respectively. The transition density from bcc droplet to fcc droplet exists around 0.010 fm−3 for Yp = 0.5, 0.007 fm−3 for Yp = 0.3,
and 0.010 fm−3 for Yp = 0.1, respectively. All the transition densities among different crystalline configurations, including the ones indicated
in the figure, have numerical ambiguity of 0.002 fm−3.

profiles of protons, neutrons, electrons and the Coulomb
potential for Yp = 0.3 and 0.1 with baryon number density
0.03 fm−3 along a line which passes through the rods in the
same way as in Fig. 2. While for Yp = 0.3 there appear vacant
regions of neutrons, the neutron density is finite at any point
for Yp = 0.1: the space is filled with dripped neutrons. Even
in the case of Yp = 0.1, we can see that the proton density is
highest around the surface due to Coulomb repulsion.

B. Catalyzed matter

Cold catalyzed matter requires β equilibrium instead of
the fixed proton number fraction: μn = μp + μe. Shown in

Fig. 5 are the proton density distributions in the ground states
for cold catalyzed nuclear matter. We have obtained the bcc
lattice of droplets, fcc lattice of droplets, and honeycomb
lattice of rods, depending on density. In Fig. 6, the density
profiles of fermions in the bcc and fcc lattices of droplets and
the Coulomb potential are depicted along a line which passes
through the droplets for ρB ≈ 0.01 fm−3 and ρB ≈ 0.03 fm−3.
The effect of Coulomb repulsion can be seen where the proton
density is highest near the surface, while the neutron density
distribution is flat inside the droplet. We have observed only
those three structures (a), (b), and (c) in Fig. 5. This result is
consistent with the previous study of the relation between the
density region of the pasta structure and the slope parameter L
in Eq. (10) [45]. The larger the value of L is given, the narrower

TABLE III. The radii of droplets obtained from the full calculation and with uniformly distributed
electrons.

ρB (fm−3) 0.004 0.01 0.016 0.022

Rd (full calculation) (fm) 6.09 6.67 7.23 7.79
Rd (uniform electron distribution) (fm) 5.91 6.40 7.01 7.64
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 (a) 

FIG. 4. (Color online) Density distributions of protons, neutrons,
and electrons and the Coulomb potential of rods in ρB = 0.03 fm−3

[(a) Yp = 0.3; (b) Yp = 0.1]. Red (solid) lines indicate protons, green
(dashed) lines neutrons, blue (dot-dashed) lines electrons, and pink
(dotted) lines the Coulomb potential.

the pasta region is. In our calculation, L is about 80 MeV, which
is close to the critical value ≈90 MeV in the CLDM, where the
pasta structures do not appear. In the previous calculation using
the WS approximation, only the droplet structure appeared
as a ground state [39]. However, in our three-dimensional
calculation using the same RMF framework, the rod structure
also appears.

We show the density dependence of the total energy, the
Coulomb energy, and the proton number fraction in Fig. 7. To
see the difference between droplets in the bcc and fcc lattices,
we plot the density dependence of the size of the droplet, the
lattice constant, the volume fraction, the proton number in
each droplet, and the proton number fraction in Fig. 8. Here,
the meanings of Rd and Rlatt are the same as in Eqs. (10) and
(11).

FIG. 5. (Color online) Proton density distributions for (a) droplets
(bcc) at ρB = 0.01 fm−3, of 194 fm each side, (b) droplets (fcc) at
ρB = 0.03 fm−3, of 162 fm each side, and (c) rods (honeycomb) at
ρB = 0.056 fm−3, of 144 fm each side.
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FIG. 6. (Color online) Density distributions of protons, neutrons,
and electrons and the Coulomb potential in the fcc and bcc lattices [(a)
ρB = 0.01 fm−3; (b) ρB = 0.03 fm−3]. In each panel (a) and (b), the
upper figure shows the case of bcc and the lower the case of fcc. Red
(solid) lines indicate the proton, green (dashed) lines neutron, and
blue (dot-dashed) lines electron (multiplied by a factor of 50) density
distributions; the pink (dotted) lines show the Coulomb potential and
black dashed lines are the lattice constant.

The density dependence of the ground-state energy is shown
in the left panel of Fig. 7. We can see that the ground-state
configuration changes depending on density. In the lower
density region, droplets with the bcc lattice appear. Around
ρB ≈ 0.01 fm−3, the lattice structure changes from bcc to fcc.
A remarkable change occurs around ρB ≈ 0.052 fm−3: from
the fcc lattice of droplets to the honeycomb lattice of rods. It
is hard to see the total energy difference between the bcc and
fcc lattices of droplets. That of the proton number fraction at
ρB < 0.01 fm−3 is also hard to distinguish in the right panel of
Fig. 7. However, there are significant differences in the proton
number fraction at ρB > 0.01 fm−3 and the Coulomb energy,
as shown in the middle panel of Fig. 7.

As in the case of fixed proton number fraction, there
emerges an fcc lattice of droplets near the transition density
from the droplet phase to another in our calculation, while it
has been regarded in the previous studies that a bcc lattice
appear [34]. Almost the same radii and density distributions
of droplets, proton number fraction, and proton number
in nuclei are obtained for both crystalline configurations
(see the right panel of Fig. 8 at ρB < 0.01 fm−3). The
difference between the bcc and fcc lattices may be seen
only in the Coulomb energy: the Coulomb energy of the
fcc lattice is a little higher than that of the bcc lattice.
However, near the transition density from droplet to rod, the
radius of droplets and the proton number fraction are different
between the bcc and fcc lattices even if their baryon-number
densities are the same (see Fig. 8 at ρB ≈ 0.02 fm−3):
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droplets, green (gray) lines bcc droplets, and blue (short dashed) lines rods, respectively. Dotted lines are for the case of a single phase.

the size of the droplet and the proton number fraction in the fcc
lattice are 7.54 fm and 0.016, respectively, while those in the
bcc lattice are 7.01 fm and 0.014. Because the size of droplets
and the proton number fraction are different, the Coulomb
energy alone is no longer the criterion of the ground state. We
should also take into account the size of droplets and the proton
number fraction in order to obtain the ground state. Roughly
speaking, the larger the radius of droplets is, the smaller the
surface energy is. While the Coulomb energy of the fcc lattice
is larger than that of the bcc lattice in all the regions of the
droplet phase, the total energy of the fcc lattice is less than that
of the bcc lattice by the gain of surface energy.

Because we cannot take into account shell effects [46], the
proton number continuously decreases with increase of baryon
number density. To compare the density dependence of the

proton number within the same interaction for baryons, our
model might be similar to type B in Ref. [45]. In our model,
the slope parameter of symmetry energy L is a little larger
than that in Ref. [45], so that the proton number converges to
about 35 in the low-density limit, while it converges to about
40 in Ref. [45]. This result is consistent with the relationship
between L and the proton number in the droplet.

The maximum size of the droplet can be estimated by the
Bohr-Wheeler condition as E

(0)
Coul > 2Esurf [47]. The “virial”

theorem for the pasta structure reads Esurf = 2ECoul, where
E

(0)
Coul is the Coulomb energy of an isolated nucleus and

the Coulomb energy of a nucleus in matter is ECoul ≈
E

(0)
Coul(1 − 3u1/3/2). From these equations, the appearance of

nonspherical nuclei in nuclear matter has been expected for
a volume fraction u > 0.125. However, in our calculation,
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the structural change from droplet to rod occurs around
u ≈ 0.1 (see the value at ρB ≈ 0.05 fm−3 in Fig. 8). This
means that considering the nonuniformity of the electrons
is worthwhile for “pasta” structures, because the relation
between the Coulomb energy of a cell and that of a nucleus
has been derived by using a uniform background of electrons
and uniform baryon density inside a nucleus. The effect
of the screening by charged particles, which is properly
included in our calculation, may be one of the origins of
this difference. To reach a final conclusion on this issue, we
should perform another calculation with uniformly distributed
electrons and confirm the effects of electron nonuniformity.
Also the difference in the droplet surface may give another
reason: the CLDM treated droplets with a sharp surface, while
our droplets have a diffuse surface. The same discussion may
apply to the QMD calculation for the case of fixed proton
number fraction.

At low density, where the volume fraction of droplets is less
than 1%, we can regard nuclei as point particles even if there is
a broad distribution of neutrons. However, near the transition
density from droplet to rod, the volume fraction amounts to
about 10% and the distance between the nuclei is very small,
which is one reason for the shape transition. In this region, the
approximation for each droplet as a point particle is not valid.

IV. SUMMARY AND CONCLUDING REMARKS

We have numerically explored nonuniform structures and
discussed the properties of low-density nuclear matter with
charge neutrality and cold catalyzed matter, using the RMF
model under the Thomas-Fermi approximation. Without any
assumption about the geometric structure, we have carried out
fully three-dimensional calculations in large cubic cells with
a periodic boundary condition.

First, we explored low-density nuclear matter with fixed
proton number fractions of Yp = 0.5, 0.3, and 0.1, which may
be relevant to supernova explosions and newly born proto-
neutron stars. With an increase of density, which ranges from
well below to around the normal nuclear density, we have
observed the typical pasta structures as a ground state for each
density and proton number fraction. The appearance of the
pasta structures lowers the energy, while the energy differences
between various geometrical structures are very small. We
improved the EOS by adopting the precise grid width and
exploring to lower density. In our previous study, we applied
the grid width up to 0.8 fm. As mentioned before, large meshes
affect the density regions of each pasta structure and the EOS.
By calculating at about twice the resolution, we got almost the
same results but a smoother EOS.

Second, we extended our calculations to cold catalyzed
matter which corresponds to the neutron-star crust. In this
case, with an increase of density, which ranges from well
below to half of the normal nuclear density, we have observed
that the ground state of matter shows two types of pasta
structures: droplets and rods. For the crystalline configuration
of droplets, near the transition density to rods, the fcc lattice is
more favorable than the bcc lattice, which is different from the
results of previous studies. We have discussed some reasons

for the difference, but more elaborate studies are needed to
clarify it.

We found that the ground state of low-density nuclear
matter changes its crystalline configuration from a bcc to
an fcc lattice near half the normal nuclear density within
the RMF model. This conclusion arises from including the
smooth surface of nuclei and a self-consistent calculation of
the Coulomb interaction. There are, however, several other
forms of lattice structures (e.g., hexagonal closest packing and
tetrahedral). The hexagonal lattice has the same filling factor
as the fcc one. There are many possibilities, but there is no
specific interpretation for the crystalline configuration in the
ground state.

In application to the neutron-star crust, it is interesting and
might be important to investigate the shear modulus. Using
the density distribution obtained by our three-dimensional
calculation for cold catalyzed matter (droplets and rods), we
can estimate the shear modulus, in which charge-screening
and finite-size effects are properly taken into account. More
interestingly, one may directly calculate the breaking strain by
considering the large deformation of the lattice. These issues
will be discussed in a separate paper.

For newly born neutron stars, as in supernova explosions,
finite-temperature and neutrino-trapping effects become im-
portant, as do the dynamics of the first-order phase transition
with formation of the structures. It would be also interesting
to extend our framework to include these effects.
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APPENDIX: CHEMICAL POTENTIAL

In general, particles tend to move from a higher chemical
potential to a lower one. A simple example is a system of
dilute molecules diffusing in a homogeneous environment. In
this system, the molecules tend to move from areas with high
concentration to low concentration, until the concentration is
the same everywhere. Invoking this idea of chemical potential,
we introduce a local chemical potential as a criterion of
convergence to search the ground state.

In this Appendix, we first verify the relation between the
ground state and uniform distribution of the local chemical
potential. Then, the numerical procedures concerning the local
chemical potential are explained.

We start by defining a local chemical potential as

μ(r) = dε(r)

dρ(r)
, (A1)

where ρ(r) and ε(r) denote the density and energy density,
respectively. Let us consider an exchange of material between
two small-volume components �V at r1 and r2 conserving the
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total amount of material as

�ρ(r1)�V = −�ρ(r2)�V (A2)

≡ �ρ�V. (A3)

Then, the change of total energy is described as

�E = [�ε(r1) + �ε(r2)]�V (A4)

=
(

dε(r1)

dρ(r1)
�ρ(r1) + dε(r2)

dρ(r2)
�ρ(r2)

)
�V (A5)

= [μ(r1)�ρ(r1) + μ(r2)�ρ(r2)]�V (A6)

= [μ(r1) − μ(r2)]�ρ�V. (A7)

If the system is in its ground state, the energy should be
stationary against any small density change �ρ,

�E

�ρ�V
= 0, (A8)

which reads

μ(r1) = μ(r2). (A9)

From the above discussion, it is clear that uniform local
chemical potential reflects that the system is in its ground
state.

Next, we show the numerical procedure to get the ground
state with the local chemical potential and avoid metastable
states. Giving the average baryon-number density ρB , initial
density distributions of fermions are randomly prepared on
each grid point. Then proper density distributions and the
meson mean fields are searched for. We introduce the local
chemical potentials μa(r) (a = p, n, e) to obtain the density
distributions of baryons and electrons. The equilibrium state
is eventually determined so that the chemical potentials are
independent of the position. An exception is the region with
no particle density, where the chemical potential of that particle
can be higher [see Fig. 9(a) for more explanation]. Note that
if the local density is zero, Eq. (A5) does not apply and
there is no contradiction between this explanation and the
present paragraph. We repeat the following procedures to attain
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FIG. 9. (Color online) (a) Schematic figure of density distribution
and the chemical potential with a constant mass subtracted. In the
region with zero density, where the kinetic energy is zero, the chemical
potential μ(r) is identical to the potential U (r), while the chemical
potential in the region with finite particle density is constant. (b)
Schematic figure of nonuniform matter with an isolated matter region,
where the chemical potential is different from that of the global
one. By using the procedure to adjust densities between only the
neighboring grids, such unphysical regions of isolated matter may
appear.

uniformity of the chemical potentials. A chemical potential
μi(r) of a baryon i = p, n on a grid point r is compared
with those on the six neighboring grids r′ = r + dr, (dr =
±dx,±dy,±dz). If the chemical potential at the point under
consideration is larger than that of another μi(r) > μi(r′),
some part of the density will be transferred to the other
grid point. This adjustment of the density distribution is
simultaneously done on all the grid points. In addition to
the above process, we adjust the particle densities between
distant grid points chosen randomly in order to eliminate
regions with different μi which can happen to isolated
matter regions as in Fig. 9(b). The meson mean fields and
the Coulomb potential are obtained by solving Eqs. (2)–(5)
using the baryon density distributions ρi(r) (i = p, n) and
the charge density distribution ρp(r) − ρe(r). The electron
density ρe(r) is directly calculated from the Coulomb potential
VCoul(r) and the electron chemical potential μe as ρe(r) =
(μe − VCoul)3/(3π2). Global charge neutrality is then achieved
by adjusting μe. The above processes are repeated many times
until we get convergence.
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