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An exactly solvable model for a description of the two-neutrino double-β decay transition of the Fermi type
is considered. By using perturbation theory an explicit dependence of the two-neutrino double-β decay matrix
element on the like-nucleon pairing, particle-particle, and particle-hole proton-neutron interactions is found by
assuming a weak violation of isospin symmetry of the Hamiltonian expressed with generators of the SO(5)
group. It is found that there is a dominance of double-β decay transition through a single state of the intermediate
nucleus. Then, an energy-weighted sum rule connecting �Z = 2 nuclei is presented and discussed. It is suggested
that this sum rule can be exploited to study the residual interactions of the nuclear Hamiltonian.
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I. INTRODUCTION

The two-neutrino double-β decay (2νββ decay), which
involves the emission of two electrons and two antineutrinos
[1–5],

(A,Z) → (A,Z + 2) + 2e− + 2ν̃e, (1)

has attracted the attention of both experimentalists and theo-
reticians for a long period and remains of major importance
for nuclear physics.

It is a second-order process in the weak interaction allowed
in the standard model. The 2νββ decay can be observed
because even-even nuclei with an even number of protons
and neutrons are more stable than odd-odd nuclei with broken
pairs [1,2]. Thus, the single β-decay transition from the (A,Z)
nucleus to a neighboring odd-odd nucleus is energetically
forbidden.

Till now, the 2νββ decay has been detected for 11 different
nuclei for transition to the ground state and in two cases also
to transition to the 0+ excited state of the daughter nucleus [6].
This rare process is one of the major sources of background
in running and planned experiments aimed at the search for a
signal of the more fundamental neutrinoless double-β decay,
which occurs if the neutrino is a massive Majorana particle.

The inverse half-life of the 2νββ decay is free of unknown
parameters of particle physics and can be factorized to a good
approximation as [1,2]

(
T 2ν

1/2

)−1 = G2νg4
A

∣∣∣∣∣M2ν
GT −

(
gV

gA

)2

M2ν
F

∣∣∣∣∣
2

, (2)

where G2ν is the lepton phase-space factor and gA (gV ) is
the axial-vector (vector) coupling constant. The 2νββ decay is
governed by the double Gamow-Teller (GT) and double Fermi
(F) matrix elements, which are given by [1–4]

M2ν
F,GT =

∑
n

〈f ‖OF,GT‖J+
n 〉〈J+

n ‖OF,GT‖i〉
En − (Ei + Ef )/2

(3)

with

OF =
A∑

k=1

τ+
k , OGT =

A∑
k=1

τ+
k σk, (4)

where |i〉 (|f 〉) are 0+ ground states of the initial (final)
even-even nuclei with energy Ei (Ef ), and |1+

n 〉 (|0+
n 〉) are

the J+ = 1+ (0+) states in the intermediate odd-odd nucleus
with energies En.

Many attempts have been made in the literature to calculate
the 2νββ-decay nuclear matrix elements (NMEs) for nuclei
of experimental interest [1–4,7–9]. Recent results obtained
within the nuclear shell model are in good agreement with the
measured 2νββ-decay half-lives [10]. However, this agree-
ment is achieved by consideration of significant quenching by
a factor q = 0.4–0.7 of the Gamow-Teller operator, which is
obtained by a normalization of the total theoretical β− strength
in the experimental energy window to the measured one.

The quasiparticle random-phase approximation (QRPA)
has been found to be successful in revealing the suppression
mechanism for the 2νββ-decay NMEs [11–13]. However, the
predictive power of the QRPA is questionable because of the
extreme sensitivity of calculated 2νββ-decay matrix elements
in the physically acceptable region on the particle-particle
strength of the nuclear Hamiltonian. In Ref. [13] it was shown
that if this strength is determined from a QRPA calculation of
single β+ decays a reasonable agreement with the measured
2νβ decay is achieved.

The quenching behavior of the 2νββ-decay matrix elements
is a puzzle and has attracted the attention of many theoreticians.
Recently, it was shown that M2ν

F depends strongly on the
isovector part of the particle-particle neutron-proton inter-
action, unlike M2ν

GT, which depends strongly on its isoscalar
part [14]. The underlying symmetries responsible for these
suppressions are assumed to be isospin SU(2) and spin-isospin
SU(4) symmetries in the cases of double Fermi and double
Gamow-Teller NMEs, respectively [15].
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The goal of this paper is to discuss the suppression mech-
anism of the double Fermi matrix element close to the point
of restoration of isospin symmetry of the nuclear Hamiltonian
in the context of residual nucleon-nucleon interaction. For
the sake of simplicity we consider a schematic Hamiltonian,
describing the gross properties of the β-decay processes in the
simplest case of monopole Fermi transitions within the SO(5)
model [16–21]. In order to find the explicit dependence of
M2ν

F on different parts of the nuclear Hamiltonian perturbation
theory is exploited. We note that, even nowadays, the SO(5)
model remains a useful tool for understanding different nuclear
physics phenomena [22–24].

II. SCHEMATIC HAMILTONIAN WITHIN
THE SO(5) MODEL

In the model, protons and neutrons occupy only a single
j shell. The Hamiltonian includes a single-particle term,
proton-proton and neutron-neutron pairing, and a charge-
dependent two-body interaction with both particle-hole and
particle-particle channels as follows:

H = epNp + enNn − GpS†
pSp − GnS

†
nSn

+ 2χβ−β+ − 2κP −P +, (5)

where

Ni =
∑
m

a
†
m,ti am,ti , β− =

∑
m

a
†
m,− 1

2
a

m, 1
2
,

(6)
S
†
i = 1

2

∑
m

a
†
m,ti ã

†
m,ti , P − =

∑
m

a
†
m,− 1

2
ã
†
m, 1

2
,

with i = p, n and tn,p = ±1/2. a
†
mt (amt ) is the creation

(annihilation) operator of the single-particle state |jm, t〉 for
protons and neutrons (t = tp, tn) and ã

†
mt = (−1)j−ma

†
−mt .

We rewrite the Hamiltonian (5) with the help of the
operators

A†(Tz) = 1√
2

[a† ⊗ a†]1
Tz

, N = Np + Nn,

(7)
Tz = Nn − Np

2
, T − = −

√
2	

∑
m

a
†
m,− 1

2
a

m, 1
2
.

Here, A†(Tz) is the nucleon pair creation operator with angular
momentum J = 0, isospin T = 1, and its projection on the
z axis Tz (Tz = 0,±1). N , Tz, and T − are the particle-
number operator, the isospin projection, and the isospin
lowering operators, respectively. The identity T 2 = (T −T + +
T +T −)/2 +, T 2

z holds. 	 = j + 1/2 denotes the semidegen-
eracy of the considered single level. The operators (7) with
their Hermitian conjugates represent ten generators of the
SO(5) group [25]. We assume that the system is in seniority s =
0. Then, [A

†
Ã]0

0 expressed with the SO(5) Casimir operator
[25] is given by

[A
†
Ã]0

0 = 1

2
√

3	
[(2	 + 3 − N/2)N/2 − T (T + 1)]. (8)

For the Hamiltonian (5) we get

H =
[
en + ep − 1

3

(
3 + 2	 − N

2

) (
Gp + Gn

2
+ 2κ

)]
N

2
+ [en − ep − 2χ (Tz + 1)]Tz

+
[

2χ + 1

3

(
Gp + Gn

2
+ 2κ

)]
T (T + 1)

+ 	√
2

(
Gp − Gn

2

)
[A

†
Ã]1

0 +
√

2

3
	

(
4κ − Gp + Gn

2

)

× [A
†
Ã]2

0. (9)

As a consequence of the presence of the isovector and
isoquadrupole terms in the Hamiltonian (9) isospin is not
conserved in general. This is due to differences between proton
and neutron pairing strengths and an arbitrary strength of the
proton-neutron isovector pairing component. However, parti-
cle number and isospin projection remain as good quantum
numbers.

The kth eigenstates of the Hamiltonian (9) with quantum
numbers N and Tz can be expressed in terms of a basis labeled
by a chain of irreducible representations of the SO(5) group
(see the Appendix), namely,

|k; NTz〉 =
∑
T

c
(k)
NT Tz

|NT Tz〉. (10)

A diagonalization of H requires calculation of matrix elements
〈N, T , TZ|H |N, T , TZ〉 and 〈N, T ± 2, TZ|H |N, T , TZ〉.
(The corresponding reduced matrix elements are given in
the Appendix.) For Gp = Gn and (Gp + Gn)/2 = 4κ the
Hamiltonian (9) is diagonal in the basis of states |N, T , Tz〉.

III. DOUBLE FERMI MATRIX ELEMENT WITHIN
PERTURBATION THEORY

We shall assume a small violation of the isospin symmetry
due to the isotensor term of the nuclear Hamiltonian (9). For the
numerical example we consider a large value of j to simulate
the realistic situation corresponding to medium- and heavy-
mass nuclei. The parameters chosen are given by

	 = 10, N = 20, 1 � Tz � 5,

ep = 0.3 MeV, en = 0.1 MeV, G = 0.165 MeV,

Gp = Gn = G, χ = 0.044 MeV, 0.7 � 4κ/G � 1.3.

(11)

For 4κ/G = 1 isospin symmetry is restored. In Fig. 1 we
present 0+ states with energy ET Tz

of different isotopes. This
level scheme illustrates the situation for the 2νββ decay of
48Ca. The isospin is known to be, to a very good approximation,
a valid quantum number in nuclei. The ground states of 48Ca
and 48Ti can be identified with T = 4 Tz = 4 and T = 2 Tz = 2,
respectively; i.e., they are assigned into different isospin
multiplets. As the total isospin projection lowering operator
T − is not changing the isospin the double Fermi matrix
element M2ν

F is nonzero only to the extent that the Coulomb
interaction mixes the high-lying T = 4 Tz = 2 analog of the
48Ca ground state into the T = 2 Tz = 2 ground state of 48Ti.
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We shall study the double Fermi matrix element using
perturbation theory within the discussed model close to a
point of restoration of the isospin symmetry (4κ/G = 1). The
isoscalar and isotensor terms of the Hamiltonian (9) represent
the unperturbated and perturbated terms, respectively. We

denote perturbated states and their energies with a superscript
prime symbol (|T ′Tz〉, E′

T Tz
) unlike the states with a definite

isospin (|T Tz〉, ET Tz
). Up to second order in parameter

(4κ − G) we find

E′
44 = 14en + 6ep − 110

3
(G + 2κ) −

√
2

3
	(G − 4κ)〈44|[A†

Ã]2
0|44〉 − 2

3
	2(G − 4κ)2 〈64|[A†

Ã]2
0|44〉2

44χ + 22
3 (G + 2κ)

, (12)

E′
43 = 13en + 7ep + 16χ − 110

3
(G + 2κ) −

√
2

3
	(G − 4κ)〈43|[A†

Ã]2
0|43〉 − 2

3
	2(G − 4κ)2 〈63|[A†

Ã]2
0|43〉2

44χ + 22
3 (G + 2κ)

, (13)

E′
22 = 12en + 8ep − 124

3
(G + 2κ) −

√
2

3
	(G − 4κ)〈22|[A†

Ã]2
0|22〉 − 2

3
	2(G − 4κ)2 〈42|[A†

Ã]2
0|22〉2

28χ + 14
3 (G + 2κ)

, (14)

E′
42 = 12en + 8ep + 28χ − 110

3
(G + 2κ) −

√
2

3
	(G − 4κ)〈42|[A†

Ã]2
0|42〉 + 2

3
	2(G − 4κ)2 〈42|[A†

Ã]2
0|22〉2

28χ + 14
3 (G + 2κ)

− 2

3
	2(G − 4κ)2 〈62|[A†

Ã]2
0|42〉2

44χ + 22
3 (G + 2κ)

. (15)

[The particular matrix elements of SO(5) operators connecting states with a definite isospin and its projection are presented in
the Appendix.]

For the transition |4′4〉 → |2′2〉 the double Fermi matrix element can be written as

M2ν
F =

10∑
T =4,6,8,10

〈2′2|T −|T ′3〉〈T ′3|T −|4′4〉
E′

T 3 − (E′
44 + E′

22)/2
. (16)

It contains a sum over the states of the intermediate nucleus |T ′3〉. However, up to second order of perturbation theory there
is only a single contribution through the intermediate state |4′3〉. Thus, we have

M2ν
F 	 〈2′2|T −|4′3〉〈4′3|T −|4′4〉

E′
33 − (E′

44 + E′
22)/2

. (17)

The involved β-transition amplitudes are given by

〈4′3|T −|4′4〉 = 〈43|T −|44〉
(

1 − 1

3

	2(4κ − G)2[
44χ + 22

3 (G + 2κ)
]2

[∣∣〈44|[A†
Ã]2

0|64〉∣∣2 + ∣∣〈43|[A†
Ã]2

0|63〉∣∣2])

+〈63|T −|64〉2

3

	2(4κ − G)2[
44χ + 22

3 (G + 2κ)
]2 〈64|[A†

Ã]2
0|44〉〈63|[A†

Ã]2
0|43〉 (18)

and

〈2′2|T −|4′3〉 = 〈42|T −|43〉
[√

2

3
	(G − 4κ)

〈42|[A†
Ã]2

0|22〉[
28χ + 14

3 (G + 2κ)
]

+ 2

3

	2(G − 4κ)2

[28χ + 14
3 (G + 2κ)]2

(〈42|[A†
Ã]2

0|42〉〈42|[A†
Ã]2

0|22〉 − 〈22|[A†
Ã]2

0|22〉〈42|[A†
Ã]2

0|22〉)
]

. (19)

If isospin symmetry is restored (4κ = G) we end up with 〈2′2|T −|4′3〉 = 〈22|T −|43〉 = 0. For the energy denominator in (17),
with the help of Eqs. (12), (13), and (14) we get

E′
43 − (E′

44 + E′
22)/2 = 16χ + 7

3
(G + 2κ) +

√
1

6
	(4κ − G)

[
2〈43|[A†

Ã]2
0|43〉 − 〈44|[A†

Ã]2
0|44〉 − 〈22|[A†

Ã]2
0|22〉]

+ 1

3
	2(4κ − G)2

[
〈64|[A†

Ã]2
0|44〉2

44χ + 22
3 (G + 2κ)

+ 〈42|[A†
Ã]2

0|22〉2

28χ + 14
3 (G + 2κ)

− 2
〈63|[A†

Ã]2
0|43〉2

44χ + 22
3 (G + 2κ)

]
. (20)
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FIG. 1. Energy of the 0+ states of different isotopes for j = 19/2
[and the set of parameters (11) with 4κ/G = 1] in MeV vs Z. States
are labeled by (T , Tz).

We note that neither the energy denominator E′
43 − (E′

44 +
E′

22)/2 nor the whole double Fermi matrix element M2ν
F

depend explicitly on the mean-field parameters ep and en.
If we restrict our consideration to first-order perturbation

theory, for the transition |4′4〉 → |2′2〉 the double Fermi matrix
element can be written as

M2ν
F 	 〈42|T −|43〉〈43|T −|44〉

16χ + 7
3 (G + 2κ)

×
√

2

3
	(G − 4κ)

〈42|[A†
Ã]2

0|22〉
[28χ + 14

3 (G + 2κ)]
. (21)

In Fig. 2 M2ν
F is plotted as a function of the ratio 4κ/G.

We see that results obtained with second-order perturbation
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M
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perturbation theory (1st order)
pertubation theory (2nd order) 

FIG. 2. (Color online) Matrix element M2ν
F for the double-Fermi

two-neutrino double-β decay mode as a function of the ratio 4κ/G

for the set of parameters (11). Exact results are indicated with a solid
line. The results obtained within the perturbation theory up to the
first and second order in isotensor contribution to the Hamiltonian
are shown with dash-dotted and and dashed lines, respectively. The
restoration of isospin symmetry is achieved for 4κ/G = 1.

theory agree well with exact results within a large range of this
parameter. We note also that close to a point of restoration of
isospin symmetry (4κ/G = 1) first-order perturbation theory
seems to be sufficient, in particular for M2ν

F � 0.3.

IV. ENERGY-WEIGHTED SUM RULE OF �Z = 2 NUCLEI

We suggest that a quantity relevant for the 2νββ decay
might be the energy-weighted double Fermi (or Gamow-
Teller) sum rule associated with �Z = 2 nuclei:

Sew
F,GT(i, f )

=
∑

n

(
En − Ei + Ef

2

)
〈f |OF,GT|n〉〈n|OF,GT|i〉

= 1
2 〈f |[OF,GT, [H,OF,GT]]|i〉. (22)

Here, |i〉 and |f 〉 are assumed to be a ground state of the
initial nuclei and a ground state or an excited state of the
final nuclei participating in double-β decay. If there is a
dominance of contribution of a single or few states of the
intermediate nucleus the left-hand side of Eq. (22) might be
determined phenomenologically. Then, by a calculation of
the right-hand side of Eq. (22) within a nuclear model the
strengths of the residual interaction of the Hamiltonian can be
properly adjusted. We note that as the double commutator
connects states with �Z = 2 the explicit dependence on
the single-particle part of nuclear Hamiltonian is eliminated,
unlike in the case of energy-weighted sum rules related to a
single nuclear ground state. We note that the energy-weighted
double Gamow-Teller sum rule associated with the 2νββ decay
was discussed within the proton-neutron QRPA in [26,27].

We analyze the above sum rule for Fermi transitions and
the Hamiltonian (9) with Gp = Gn within the SO(5) model.
By rewriting the Hamiltonian as

H = (ep + en)N/2 + (ep − en)Tz + 2χT −T +

− 2G	(A
†
(−1)A(−1) + A

†
(1)A(1))

− 4κ	A
†
(0)A(0) (23)

and exploiting the commutation relations of the SO(5) group
(A1) we find

Sew
F (i, f ) = 1

2 〈f |[T −, [H, T −]]|i〉
= 2	(G − 4κ)〈i|[A†

Ã]2
2|f 〉 + 2χ〈f |T −T −|i〉.

(24)

Let us look at two cases.
(i) For the case |i〉 = |4′4〉, |f 〉 = |2′2〉, we have

Sew
F (4′4, 2′2)

=
∑
T ′

(
E′

T 3 − E′
44 + E′

22

2

)
〈2′2|T −|T ′3〉〈T ′3|T −|4′4〉

= 2	(G − 4κ)〈4′4|[A†
Ã]2

2|2′2〉 + 2χ〈2′2|T −T −|4′4〉.
(25)
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If first-order perturbation theory is applied to any of two
expressions for the energy-weighted sum rule in (25) we find

Sew
F (4′4, 2′2) 	

(
16χ + 7

3
(G + 2κ)

)

×
√

2

3
	(G − 4κ)

〈42|[A†
Ã]2

0|22〉
[28χ + 14

3 (G + 2κ)]

×〈42|T −|43〉〈43|T −|44〉. (26)

By comparing this expression with Eqs. (18), (19), and (20)
we see that only the lowest intermediate state |4′3〉 contributes
to the sum rule within the considered approximation. We
find again a combination of energies of involved states to
be a function of pairing and particle-particle and particle-hole
interactions: E′

43 − (E′
44 + E′

22)/2 	 16χ + 7
3 (G + 2κ).

(ii) For the case |i〉 = |4′4〉, |f 〉 = |4′2〉, the energy-
weighted sum rule is given by

Sew
F (4′4, 4′2)

=
∑
T ′

(
E′

T 3 − E′
44 + E′

42

2

)
〈4′2|T −|T ′3〉〈T ′3|T −|4′4〉

= 2	(G − 4κ)〈4′4|[A†
Ã]2

2|4′2〉 + 2χ〈4′2|T −T −|4′4〉.
(27)

Within first-order perturbation theory we find

Sew
F (4′4, 4′2) 	 (

2χ +
√

1/6	(4κ − G)
[
2 〈43| [A

†
Ã]2

0 |43〉
− 〈44| [A

†
Ã]2

0 |44〉 − 〈42| [A
†
Ã]2

0 |42〉 ])
× 〈42| T − |43〉 〈43| T − |44〉 . (28)

We note that the dominant contribution to Sew
F (4′4, 4′2) comes

from the transition through the single intermediate state |43′〉
again. For a combination of energies of involved states we
have

E′
43 − (E′

44 + E′
42)/2

= 2χ +
√

1/6	(4κ − G)
(
2〈43|[A†

Ã]2
0|43〉

−〈44|[A†
Ã]2

0|44〉 − 〈42|[A†
Ã]2

0|42〉). (29)

Thus, the energy-weighted sum rule Sew
F (4′4, 4′2) implies

another useful relation between energies of states and nucleon-
nucleon interactions.

In Fig. 3 two different energy-weighted sum rules associ-
ated with final states |2′2〉 and |4′2〉 are plotted as a function
of the ratio 4κ/G for the considered set of parameters (11).
They exhibit different dependence on 4κ/G. This is because
the final state |4′2〉 belongs (whereas |2′2〉 does not belong) to
the same isospin multiplet as the initial nucleus. We see a very
good agreement between the exact results and results obtained
within first-order perturbation theory, which allows only the
lowest intermediate state |4′3〉 to contribute to a sum rule.
A better agreement would be achieved if the corresponding
combination of energies of states are evaluated up to second-
order perturbation theory. We note that a contribution from the
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FIG. 3. (Color online) The energy-weighted sum rule
Sew

F,GT(i, f ) (22) for two sets of states (i = 4′4, f = 2′2 and
i = 4′4, f = 4′2) as a function of the ratio 4κ/G for the set of
parameters (11). The exact results are compared with those obtained
within first-order perturbation theory.

second lowest intermediate state to the sum rules Sew
F (4′4, 2′2)

and Sew
F (4′4, 4′2) appears only in third-order perturbation

theory.

V. CONCLUSIONS

An exactly solvable model for the description of the 2νββ-
decay processes of the Fermi type was used to discuss the
dependence of the double-β decay matrix element M2ν

F on
different components of the residual interaction, namely, like-
nucleon pairing and particle-particle and particle-hole proton-
neutron interactions. We note that the model is equivalent
to a complete shell-model treatment in a single j shell for
the adopted Hamiltonian. In addition, it reproduces the main
features of the results obtained in realistic calculations.

Good isospin forbids 2νββ decay. One needs an isotensor
force to mix �T = 2. Naturally, the Coulomb interaction
contains such an isotensor force. In our case we break isospin
symmetry by hand. The only isospin violation comes from the
difference of the proton-proton (Gp) and the neutron-neutron
(Gn) pairing force compared to the proton-neutron isospin
=1 pairing force (κ). By taking advantage of perturbation
theory up to second order in the isotensor contribution to
the Hamiltonian a dominance of a contribution through a
single state of the intermediate nucleus to M2ν

F and an
explicit dependence of M2ν

F on different types of nucleon-
nucleon interactions were found. The mean-field part of the
Hamiltonian does not enter explicitly in this decomposition
of the double Fermi matrix element and is related only to the
calculation of unperturbated states of the Hamiltonian.

Further, the importance of the energy-weighted sum rule
associated with �Z = 2 nuclei for fitting different components
of the residual interaction of the Hamiltonian was pointed out.
It goes without saying that further studies, in particular those
in which realistic nuclear Hamiltonian and Gamow-Teller
transitions are considered, are of great interest.
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APPENDIX: THE SO(5) ALGEBRA
AND MATRIX ELEMENTS

Following [25] we introduce operators of the SO(5) group,
which are expressed with operators (7) as follows:

H1 = N/2 − 	, H2 = TZ,

E11 = √
	A†(1), E−1−1 = √

	A(1),

E1−1 = −√
	A†(−1), E−11 = −√

	A(−1),

E10 = √
	A†(0), E−10 = √

	A(0),

E01 = 1
2

√
2T +, E0−1 = 1

2

√
2T −.

Their commutation relations are [25]

[H1,H2] = 0, [H1, Eab] = aEab, [H2, Eab] = bEab,

[Eab,E−a−b] = aH1 + bH2

and

[Eab,Ea′b′ ] = ±Ea+a′b+b′ , (A1)

if a + a′ = 0,±1 and b + b′ = 0,±1. Otherwise,
[Eab,Ea′b′ ] = 0.

For the present task, states with seniority s = 0 are
considered. Thus, it is sufficient to define them with quantum
numbers N , T , and Tz. They are constructed with the help of
the isospin lowering operator T − on the state |N, T , Tz = T 〉,
which is given by [25]

|NT T 〉 = N (a, b)Oa
+Ob

00 |N = 4	, T = Tz = 0〉 ,

with

O+ = E−11, O00 = 2E−11E−1−1 + E−10E−10. (A2)

O+ reduces the number of particles by two units and increases
the isospin by one unit and O00 reduces the number of particles
by four units. a and b are integers:

a = T , b = 	 − T

2
− N

4
. (A3)

From a construction of the states it follows that a difference in
isospin of two states with fixed N, Tz is an even number.

The reduced matrix elements are calculated with the help
of the Wigner-Eckart theorem in the convention as follows:

〈T ′T ′
z |T p

q |T Tz〉 = C
T ′T ′

z

T Tzpq〈T ′||T p||T 〉. (A4)

Particular Clebsh-Gordan coefficients of interest are given
by [28]

C
T Tz

T Tz20 = 3T 2
z − T (T + 1)√

(2T − 1)T (T + 1)(2T + 3)
, C

T +2Tz

T Tz20 =
√

3(T + Tz + 1)(T + Tz + 2)(T − Tz + 1)(T − Tz + 2)

(2T + 1)(2T + 2)(2T + 3)(T + 2)
.

We present relevant reduced matrix elements, which agree with those of [20] up to few corrections:

〈T + 2||[A†
Ã]2||T 〉 = − 1

2	

√
(T + 2)(T + N/2 + 3)(2	 − T − N/2)(T + 1)(N/2 − T )(2	 + T − N/2 + 3)

(2T + 3)(2T + 5)
, (A5)

〈T ||[A†
Ã]2||T 〉 = 1√

6CT T
T T 20

[〈NT T |A†
(1)A(1)|NT T 〉 + 〈NT T |A†

(−1)A(−1)|NT T 〉 − 2〈NT T |A†
(0)A(0)|NT T 〉],

〈T ||[A†
Ã]1||T 〉 = 1√

2CT T
T T 10

[〈NT T |A†
(−1)A(−1)|NT T 〉 − 〈NT T |A†

(1)A(1)|NT T 〉],

〈NT T |A†
(1)A(1)|NT T 〉 = 1

	

[
−	 + T + N/2 + (2	 − T − N/2)(T + N/2 + 3)(T + 1)

2(2T + 3)

]
,

〈NT T |A†
(−1)A(−1)|NT T 〉 = 1

	

[
(2	 + T − N/2 + 3)(−T + N/2)(T + 1)

2(2T + 3)

]
, (A6)

〈NT T |A†
(0)A(0)|NT T 〉 = 1

	

[
−	 + N/2 + (2	 − T − N/2)(T + N/2 + 3)	

(2	 + T − N/2 + 1)(−T + N/2 + 2)

× 〈N + 4T T |A†
(0)A(0)|N + 4T T 〉

]
. (A7)
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The matrix element on the right-hand side of Eq. (A7) can
be calculated recurrently by keeping in mind that for Nmax =
4	 − 2T we have

〈NmaxT T |A†
(0)A(0)|NmaxT T 〉 = 1 − T/	. (A8)

For isospin raising (lowering) operators the Condon-Shortley
convention is assumed:

T ±|N, T , Tz〉 =
√

(T ± Tz + 1)(T ∓ Tz)|N, T , Tz ± 1〉.
(A9)
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