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Surface tension of magnetized quark matter
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The surface tension of quark matter plays a crucial role for the possibility of quark matter nucleation during
the formation of compact stellar objects and also for the existence of a mixed phase within hybrid stars. However,
despite its importance, this quantity does not have a well-established numerical value. Some early estimates have
predicted that, at zero temperature, the value falls within the wide range γ0 ≈ 10–300 MeV/fm2 but, very recently,
different model applications have reduced these numerical values to fall within the range γ0 ≈ 5–30 MeV/fm2,
which would favor the phase conversion process as well as the appearance of a mixed phase in hybrid stars. In
magnetars one should also account for the presence of very high magnetic fields which may reach up to about
eB ≈ 3–30 m2

π (B ≈ 1019–1020 G) at the core of the star so it may also be important to analyze how the presence
of a magnetic field affects the surface tension. With this aim we here consider magnetized two-flavor quark matter,
described by the Nambu–Jona-Lasinio model. We show that although the surface tension oscillates around its
B = 0 value, when 0 < eB � 10m2

π , it only reaches values which are still relatively small. For eB ≈ 5.5m2
π the

B = 0 surface tension value drops by about 30% while for eB � 10m2
π it quickly raises with the field intensity

so the phase conversion and the presence of a mixed phase should be suppressed if extremely high fields are
present. We also investigate how thermal effects influence the surface tension for magnetized quark matter.
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I. INTRODUCTION

The understanding of compact stars requires the study
of strongly interacting matter at low temperatures and high
chemical potentials. However, this portion of the QCD phase
diagram cannot be addressed by current lattice-QCD methods
so studies of this phase region must rely on less fundamental
models. Most investigations suggest that there is a first-order
chiral phase transition which, for T ≈ 0, sets in at baryon
densities several times that of the nuclear saturation density,
ρ0 ≈ 0.17 fm−3. The expected phase transition will have
significant implications for the possible existence of quark
stars and the possibilities depend on the dynamics of the
phase conversion as well as on the time scales involved [1–5].
When the phase diagram of bulk matter exhibits a first-order
phase transition, the two phases, associated with a high and
a low density value (ρH and ρL), may coexist in mutual
thermodynamic equilibrium and, consequently, when brought
into physical contact a mechanically stable interface will
develop between them. The associated surface tension γT

depends on the temperature T ; it has its largest magnitude
at T = 0 approaching zero as T is increased to the critical
end point temperature, Tc, where the first-order transition line
terminates. The surface tension plays a key role in the phase
conversion process and it is related to various characteristic
quantities such as the nucleation rate, the critical bubble radius,
and the favored scale of the blobs generated by the spinodal
instabilities [6,7]. For our present purposes, it is important
to note that a small surface tension would facilitate various
structures in compact stars, including the presence of mixed
phases in a hybrid star [8]. Apart from that, a low surface
tension leads to other interesting physical phenomena, such
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as a crust on quark stars [9] and a new type of star called a
strangelet dwarf [10].

Early investigations related to the presence of strange quark
matter within compact stellar objects have soon recognized the
important role played by the surface tension in the development
of Fermion-gas models [11,12]. Using the MIT bag model
Berger has shown that this quantity is of central importance
in order to determine the eventual presence of strange quark
matter in the early universe [13] (see also Refs. [14,15] for
other early work related to the evaluation of the surface tension
within strange matter).

Unfortunately, despite its central importance, the surface
tension of quark matter is still rather poorly known. At
vanishing temperatures, some early estimates fall within a wide
range, typically γ0 ≈ 10–50 MeV/fm2 [12] and values of γ0 ≈
30 MeV/fm2 have been considered for studying the effect
of quark matter nucleation on the evolution of proto-neutron
stars [16]. In Ref. [17], where the effects from charge screening
and structured mixed phases have been taken into account, the
authors set 20 MeV/fm2 as a minimal value and then offer
an estimate of γ0 ≈ 35–50 MeV/fm2. A higher value, γ0 ≈
300 MeV/fm2, is obtained if one performs a naive dimensional
analysis of the minimal interface between a color-flavor locked
(CFL) phase and nuclear matter [18].

More recently, the surface tension for two-flavor quark
matter was evaluated, in Ref. [19], within the the quark meson
model (QM), in the framework of the thin-wall approximation
for bubble nucleation. The predicted values cover the 5- to
15-MeV/fm2 range, depending on the inclusion of vacuum
and/or thermal corrections. In principle, this range makes
nucleation of quark matter possible during the early post-
bounce stage of core-collapse supernovae and it is, thus, a
rather important result.

The Nambu–Jona-Lasinio model (NJL) with two and three
flavors was subsequently considered in the evaluation of
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γT [20] via a geometrical approach introduced by Randrup in
Ref. [6]. This method makes it possible to express the surface
tension for any subcritical temperature in terms of the free
energy density for uniform matter in the unstable density range.
In practice, the procedure is rather simple to implement and it
provides an estimate for the surface tension that is consistent
with the equation of state (EOS) implied by the adopted model,
with its specific approximations and parametrizations. The
results obtained in Ref. [20] predict that, at zero temperature,
γ0 ≈ 7–30 MeV/fm2 depending on the chosen parameters.

Very recently, the Polyakov quark meson model (PQM)
with three flavors has been considered [21] in the context of
the thin-wall approximation extending the work of Ref. [19]
with confinement and strangeness. Depending on the adopted
parametrization, the numerical results obtained in Ref. [21]
are within the γ0 ≈ 13–28 MeV/fm2 range. The authors have
confirmed that the inclusion of the strange sector, which was
originally done in Refs. [12,15] and also recently in Ref. [20],
does not change appreciably the dynamics of the transition at
low temperatures and high chemical potentials as neither does
the inclusion of the Polyakov loop. Regarding the possibility of
phase conversion taking place, within compact stellar objects,
it is important to remark that all these three recent evaluations
[19–21] predict values for the surface tension which are low
enough so, in principle, the phase conversion phenomenon
which refers to the spontaneous nucleation of droplets of quark
matter could take place [4]. The fundamental role played
by the surface tension in the nucleation process for strange
and nonstrange matter, which should also depend on other
quantities such as the critical pressure for the nuclear/quark
transition, has been discussed in Ref. [4]. At the same time,
the low value estimates of Refs. [19–21] favor the appearance
of a mixed phase within a hybrid star.

One should also recall that very high magnetic fields can
be present in magnetars reaching up to eB ≈ 3–30m2

π (B ≈
1019–1020G), or higher, at the core of the star [22]. In many
applications this type of compact stellar objects are modeled
as a hybrid star which has a core of quark matter surrounded
by hadronic matter [23]. At the same time, it is important to
note that the CFL-nuclear mixed phase disappears when the
surface tension rises above 40 MeV/fm2 [18]. Therefore, if
the surface tension between the two phases is small enough, as
predicted by Refs. [19–21], the transition occurs via a mixed
phase (Gibbs construction). On the other hand, if γT has a high
value it occurs at a sharp interface (Maxwell construction) [24].
The question of how the surface tension, along with other
important physical quantities, is affected by the presence of
high magnetic fields has been addressed by Chakrabarty [25]
in one of the seminal works related to the investigation of
magnetized quark matter. This analysis, which has been carried
out in the framework of the conventional MIT bag model
with three flavors, predicts that the surface tension of a quark
matter bubble diverges for strong magnetic fields when only
the lowest Landau level is populated [25,26]. In Ref. [27],
which considers magnetized strangelets, it is discussed how
this divergence arises when one extends Berger’s result for
surface corrections [13] so as to account for magnetic fields.

The value of the surface tension in the presence of
high magnetic fields may be an important ingredient for

investigations related to quark and hybrid stars. However, this
type of evaluation does not seem to have been carried out
before within a model which displays dynamical symmetry
breaking. We intend to perform such a calculation here by
extending the work of Ref. [20] so as to account for the
presence of high magnetic fields within the NJL model. In
this way, our present application adds to the existing literature
by furnishing numerical results for the surface tension between
the two phases related with chiral symmetry breaking, apart
from illustrating how Randrup’s approach [6] can be easily
generalized to the case where magnetic fields are present.

The coexistence region associated with the (chiral) first-
order transition of strongly interacting magnetized matter has
been recently investigated in Ref. [28] which predicts, as one of
its main results, that the value of ρH oscillates around the B =
0 value for 0 < eB � 6m2

π and then grows for higher values.
Taking into account that γT depends on the difference between
ρH and ρL [6,7], one may then expect to find a similar behavior
here. Indeed, as we will demonstrate, when a magnetic field
is present the surface tension value oscillates very mildly for
0 < eB � 4m2

π before decreasing in a significant way between
4m2

π � eB � 8m2
π . Then, after reaching a minimum at eB ≈

5.5m2
π , it starts to increase, reaching the B = 0 value at eB ≈

9m2
π , which allows us to conclude that the existence of a mixed

phase remains possible within this range of magnetic fields. For
eB values higher than ≈10m2

π this quantity increases rapidly
with the magnetic field disfavoring the presence of a mixed
phase within hybrid stars. We also show how the temperature
affects γT (B) by decreasing its value towards zero, which is
achieved at T = Tc, as already emphasized.

The paper is organized as follows. In the next section we
review the method for extracting the surface tension from the
equation of state (EOS). In Sec. III we present the EOS for
the magnetized two-flavor NJL. Then, in Sec. IV, we present
our numerical results. The conclusions and final remarks are
presented in Sec. V.

II. THE GEOMETRIC APPROACH TO THE SURFACE
TENSION EVALUATION

To make this work self-contained let us review, in this sec-
tion, the geometric approach to the surface tension evaluation
which was originally proposed in Ref. [6]. We first assume
that the material at hand, strongly interacting matter, may
appear in two different phases under the same thermodynamic
conditions of temperature T , chemical potential μ, and
pressure P . These two coexisting phases have different values
of other relevant quantities, such as the energy density E ,
the net quark number density ρ, and the entropy density s.
Under such circumstances, the two phases will develop a
mechanically stable interface if placed in physical contact.
An interface tension, γT , is then associated to this interface.

The two-phase feature appears for all temperatures below
the critical value, Tc. Thus, for any subcritical temperature,
T < Tc, hadronic matter at the density ρL(T ) has the same
chemical potential and pressure as quark matter at the (larger)
density ρH (T ). As T is increased from zero to Tc, the
coexistence phase points (ρL, T ) and (ρH , T ) trace out the
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lower and higher branches of the phase coexistence boundary,
respectively, gradually approaching each other and, finally,
coinciding for T = Tc. Any (ρ, T ) phase point outside of this
boundary corresponds to thermodynamically stable uniform
matter, whereas uniform matter prepared with a density and
temperature corresponding to a phase point inside the phase co-
existence boundary is thermodynamically unstable and prefers
to separate into two coexisting thermodynamically stable
phases separated by a mechanically stable interface. Because
such a two-phase configuration is in global thermodynamic
equilibrium, the local values of T , μ, and P remain unchanged
as one moves from the interior of one phase through the
interface region and into the interior of the partner phase, as the
local density ρ increases steadily from the lower coexistence
value ρL to the corresponding higher coexistence value ρH .

It is convenient to work in the canonical framework where
the control parameters are temperature and density. The basic
thermodynamic function is, thus, fT (ρ), the free energy
density as a function of the (net) quark number density ρ for
the specified temperature T . The chemical potential then can
be recovered as μT (ρ) = ∂ρfT (ρ), and the entropy density as
sT (ρ) = −∂T fT (ρ), so the energy density is ET (ρ) = fT (ρ) −
T ∂T fT (ρ), while the pressure is PT (ρ) = ρ∂ρfT (ρ) − fT (ρ).

For single-phase systems fT (ρ) is convex, i.e., its second
derivative ∂2

ρfT (ρ) is positive, while the appearance of a
concavity in fT (ρ) signals the occurrence of phase coexistence
at that temperature. This is easily understood because when
fT (ρ) has a local concave anomaly, then there exist a
pair of densities, ρL and ρH , for which the tangents to
fT (ρ) are common. Therefore fT (ρ) has the same slope at
those two densities, so the corresponding chemical poten-
tials are equal, μT (ρL) = ∂ρfT (ρL) = ∂ρfT (ρH ) = μT (ρH ).
Furthermore, because a linear extrapolation of fT (ρ) leads
from one of the touching points to the other, the two
pressures are also equal, PT (ρL) = ρL∂ρfT (ρL) − fT (ρL) =
ρH ∂ρfT (ρH ) − fT (ρH ) = PT (ρH ). Therefore, uniform mat-
ter at the density ρL has the same temperature, chemical
potential, and pressure as uniform matter at the density ρH .
The common tangent between the two coexistence points
corresponds to the familiar Maxwell construction and shall
here be denoted as f M

T (ρ). Obviously, fT (ρ) and f M
T (ρ)

coincide at the two coexistence densities and, furthermore,
fT (ρ) exceeds f M

T (ρ) for intermediate densities. Therefore,
we have �fT (ρ) ≡ fT (ρ) − f M

T (ρ) � 0.
For a given (subcritical) temperature T , we now consider

a configuration in which the two coexisting bulk phases
are placed in physical contact along a planar interface. The
associated equilibrium profile density is denoted by ρT (z)
where z denotes the location in the direction normal to the
interface. In the diffuse interface region, the corresponding
local free energy density, fT (z), differs from what it would be
for the corresponding Maxwell system, i.e., a mathematical
mix of the two coexisting bulk phases with the mixing ratio
adjusted to yield an average density equal to the local value
ρ(z). This local deficit amounts to

δfT (z) = fT (z) − fi − fT (ρH ) − fT (ρL)

ρH − ρL
[ρT (z) − ρi],

(2.1)

where ρi is either one of the two coexistence densities. The
function δfT (z) is smooth and it tends quickly to zero away
from the interface where ρT (z) rapidly approaches ρi and fT (z)
rapidly approaches fT (ρi). The interface tension γT is the total
deficit in free energy per unit area of planar interface,

γT =
∫ +∞

−∞
δfT (z) dz. (2.2)

As discussed in Ref. [6], when a gradient term used to take
account of finite-range effects, the tension associated with the
interface between the two phases can be expressed without
explicit knowledge about the profile functions but exclusively
in terms of the equation of state for uniform (albeit unstable)
matter,

γT = a

∫ ρH (T )

ρL(T )
[2Eg�fT (ρ)]1/2 dρ

ρg
, (2.3)

where ρg is a characteristic value of the density and Eg is a
characteristic value of the energy density, while the parameter
a is an effective interaction range related to the strength of the
gradient term, C = a2Eg/(ρg)2. We choose the characteristic
phase point to be in the middle of the coexistence region,
ρg = ρc and Eg = [E0(ρc) + Ec]/2, where E0(ρc) is energy
density at (ρc, T = 0), while Ec is energy density at the critical
point (ρc, Tc). The length a is a somewhat adjustable parameter
governing the width of the interface region and the magnitude
of the tension [6]. In Ref. [20] this parameter was set to a ≈
1/mσ ≈ 0.33 fm, which also is approximately the value found
in an application of the Thomas-Fermi approximation to the
NJL model [29]. Therefore, we shall adopt the value a =
0.33 fm throughout the present work. With these parameters
fixed (see Ref. [20]), the interface tension can be calculated
once the free energy density fT (ρ) is known for uniform matter
in the unstable phase region, ρL(T ) � ρ � ρH (T ).

III. THE EOS FOR THE MAGNETIZED TWO FLAVOR NJL
QUARK MODEL

The NJL model is described by a Lagrangian density for
fermionic fields given by [30]

LNJL = ψ̄(i∂/ − m)ψ + G[(ψ̄ψ)2 − (ψ̄γ5 �τψ)2], (3.1)

where ψ (a sum over flavors and color degrees of freedom
is implicit) represents a flavor iso-doublet (u and d types of
quarks) Nc-plet quark fields, while �τ are isospin Pauli matrices.
The Lagrangian density (3.1) is invariant under (global)
U(2)f × SU(Nc) and, when m = 0, the theory is also invariant
under chiral SU(2)L × SU(2)R . Within the NJL model a sharp
cutoff (�) is generally used as an ultraviolet regulator and
since the model is nonrenormalizable, one has to fix � to a
value related to the physical spectrum under investigation. This
strategy turns the 3 + 1 NJL model into an effective model,
where � is treated as a parameter. The phenomenological
values of quantities such as the pion mass (mπ ), the pion
decay constant (fπ ), and the quark condensate (〈ψ̄ψ〉) then
are used to fix G, �, and m. Here, we choose the set
� = 590 MeV and G�2 = 2.435 with m = 6 MeV in order to
reproduce fπ = 92.6 MeV, mπ = 140.2 MeV, and 〈ψ̄ψ〉1/3 =
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−241.5 MeV [31]. In the MFA the NJL thermodynamic
potential can be written as follows [32,33] (see Ref. [34] for
results beyond MFA):

�NJL = (M − m)2

4G
+ i

2
tr

∫
d4p

(2π )4
ln[−p2 + M2], (3.2)

where M is the constituent quarks mass. In order to study
the effect of a magnetic field in the chiral transition at finite
temperature and chemical potential a dimensional reduction is
induced via the following replacements in Eq. (3.2) [35]:

p0 → i(ων − iμ),

p2 → p2
z + (2n + 1 − s)|qf |B,

with s = ±1, n = 0, 1, 2 . . . ,∫ +∞

−∞

d4p

(2π )4
→ i

T |qf |B
2π

∞∑
ν=−∞

∞∑
n=0

∫ +∞

−∞

dpz

2π
,

where ων = (2ν + 1)πT , where ν = 0,±1,±2 . . . represents
the Matsubara frequencies for fermions, n represents the
Landau levels, and |qf | is the absolute value of the quark
electric charge (|qu| = 2e/3, |qd | = e/3 with e = 1/

√
137

representing the electron charge).1 Note also that here we
have taken the chemical equilibrium condition by setting
μu = μd = μ. Then, following Ref. [33], we can write the
thermodynamic potential as

�NJL = (M − m)2

4G
+ �NJL

vac + �NJL
mag + �NJL

med, (3.3)

where

�NJL
vac = −2NcNf

∫
d3p

(2π )3
(p2 + M2)1/2. (3.4)

This divergent integral is regularized by a sharp cutoff, �,
yielding

�NJL
vac = NcNf

8π2

{
M4 ln

[
(� + ε�)

M

]
− ε� �

[
�2 + ε2

�

]}
,

(3.5)

where we have defined ε� = √
�2 + M2. The magnetic and

the in-medium terms are, respectively, given by

�NJL
mag = − Nc

2π2

d∑
f =u

(|qf |B)2

{
ζ (1,0)(−1, xf )

− 1

2

[
x2

f − xf

]
ln(xf ) + x2

f

4

}
(3.6)

and

�NJL
med = −Nc

2π

d∑
f =u

∞∑
k=0

αk|qf |B

×
∫ +∞

−∞

dpz

2π
{T ln[1 + e−[Ep, k (B)+μ]/T ]

+ T ln[1 + e−[Ep, k (B)−μ]/T ]}. (3.7)

In the last equation we have replaced the label n by k
in the Landau levels in order to account for the degeneracy
factor αk = 2 − δ0k . Also, in Eq (3.6) we have used xf =
M2/(2|qf |B) and ζ (1,0)(−1, xf ) = dζ (z, xf )/dz|z=−1 with
ζ (z, xf ) representing the Riemann-Hurwitz function (the
details of the manipulations leading to the equations above
can be found in the appendix of Ref. [33]). Finally, in Eq. (3.7)
we have Ep, k(B) = √

p2
z + 2k|qf |B + M2, where M is the

effective self-consistent quark mass

M = m + NcNf MG

π2

{
�

√
�2 + M2 − M2

2
ln

[
(� + √

�2 + M2)2

M2

]}

+ NcMG

π2

d∑
f =u

|qf |B
{

ln[�(xf )] − 1

2
ln(2π ) + xf − 1

2
(2xf − 1) ln(xf )

}

− NcMG

2π2

d∑
f =u

∞∑
k=0

αk|qf |B
∫ ∞

−∞

dpz

Ep,k(B)

{
1

e[Ep,k(B)+μ]/T + 1
+ 1

e[Ep,k (B)−μ]/T + 1

}
. (3.8)

Note that, in principle, one should have two coupled gap
equations for the two distinct flavors: Mu = mu − 2G(〈ūu〉 +
〈d̄d〉) and Md = md − 2G(〈d̄d〉 + 〈ūu〉), where 〈ūu〉 and 〈d̄d〉
represent the quark condensates which differ, due to the
different electric charges. However, in the two-flavor case, the
different condensates contribute to Mu and Md in a symmetric
way and since mu = md = m one has Mu = Md = M .

1We use Gaussian natural units where 1 MeV2 = 1.44 × 1013 G,
which sets m2

π/e 
 3 × 1018G.

The minimum value of the grand potential represents
minus the equilibrium pressure, �min(T ,μ) = −P , so the
net quark number density is given by ρ = (∂P/∂μ)T . The
entropy density given by s = (∂P/∂T )μ, while the energy
density, E , can then be obtained by means of the standard
thermodynamic relation P = T s − E + μρ. The knowledge
of all these quantities allow us to determine the free energy
density, f ≡ E − T s = μρ − P , as well as the numerical
inputs ρH , ρL, ρg , and εg , which are needed in the evaluation
of the surface tension. As already emphasized, the numerical
value for the length scale a is chosen to be 1/mσ 
 0.33 fm
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FIG. 1. (Color online) Phase coexistence boundaries in the T -
ρB plane (ρB appears in units of the nuclear matter density, ρ0 =
0.17 fm−3). The solid symbols indicate the location of the critical
point for each value of B which occur at (Tc = 81.1 MeV, μc =
324.7 MeV) for B = 0 (Tc = 84.9 MeV, μc = 314.4 MeV) for eB =
6m2

π and (Tc = 115.8 MeV, μc = 279 MeV) for eB = 15m2
π . Taken

from Ref. [28].

(which is about the value found in a Thomas-Fermi application
to the NJL model [29]).

IV. NUMERICAL RESULTS

Let us start the numerical evaluations by obtaining the phase
diagram in the T -ρB plane in order to determine the values of
essential quantities such as Tc, μc, ρH , and ρL which allow
for the evaluation of the inputs ρg and Eg for each value
of B. As is well known, for a given subcritical temperature
in the T -ρB plane one observes that the associated density
region is bounded by the two coexistence densities ρL and
ρH , for which the chemical potential μ has the same value,
as does the pressure P . As the density ρ is increased through
the lower mechanically metastable (nucleation) region, μ and
P rise steadily until the lower spinodal boundary has been
reached. Then, as ρ moves through the mechanically unstable
(spinodal) region, both μ and P decrease until the higher

spinodal boundary is reached. They then increase again as
ρ moves through the higher mechanically metastable (bubble-
formation) region, until they finally regain their original values
at ρ = ρH . Figure 1 displays the coexistence region, in the
T -ρB plane, for B = 0, eB = 6m2

π , and eB = 15m2
π . Noting

that ρH oscillates around the B = 0 value and recalling that γT

depends on the difference between ρL and ρH , see Eq. (2.3),
one can then expect that the surface tension value at eB = 6m2

π

will be smaller than at B = 0, at least for small temperatures.
On the contrary, for eB = 15m2

π , one may expect γT to
assume values much larger than those obtained in the B = 0
case. These expectations will be explicitly confirmed by our
evaluation of γT .

A. The zero-temperature case

In order to illustrate how the method works and also to
understand the type of oscillation displayed by Fig. 1 it is
convenient to concentrate in the T = 0 limit since, in this case,
the momentum integrals appearing in the thermodynamical
potential can be performed producing equations which are
easy to be analyzed from an analytical point of view. Apart
from that, this limit is very often considered in evaluations of
the EOS for cold stars and it will be our starting point here.
Then, in the next subsection, we will analyze how the surface
tension is influenced by thermal effects. At T = 0 (and also
at any other subcritical temperature) the grand potential can
present multiple extrema representing stable, metastable, and
spinodally unstable matter in the neighborhood of the phase
coexistence chemical potential and, as emphasized in Ref. [20],
the extraction of the surface tension by the geometric approach
requires the consideration of all these extrema. In our case it
is then important to know all the gap equation solutions as
displayed in Fig. 2 which shows the effective quark mass, at
T = 0, for B = 0, eB = 6m2

π , and eB = 15m2
π . This effective

mass is then used to determine the pressure from where all the
other thermodynamic quantities, including the density, can
be derived. In this figure, the continuous lines represent the
stable solutions only and determine the Maxwell line which
links the high effective mass value (MH ) to its low value

B 0
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FIG. 2. (Color online) The effective quark mass, at T = 0, as a function of μ for B = 0 (left panel), eB = 6m2
π (center panel), and eB =

15m2
π (right panel). The continuous lines indicate the gap equation stable solutions and the dashed lines the unstable and metastable ones.
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FIG. 3. (Color online) The NJL model effective quark mass
(squares) at the lowest value occurring at the transition, ML, and
the highest coexisting baryon density (dots), ρH

B (in units of ρ0), as
functions of eB/m2

π at T = 0. The lines are shown just in order to
guide the eye. Taken from Ref. [28].

(ML) at the coexistence chemical potential where the phase
transition occurs. With these two stable solutions and upon
using the Maxwell construction one obtains f M

T . The dashed
lines are obtained by considering the unstable as well as the
metastable gap equation solutions which lie within the spinodal
region. Considering all the gap equation solutions, one then
obtains fT (ρ) to determine the difference �fT (ρ) which is
the crucial ingredient in the surface tension evaluation. But
before carrying out the evaluation let us discuss the origin of
the de Hass–van Alphen oscillations, for ρH , which appear
in Fig. 1 at B �= 0. Note from Fig. 2 that, at the coexistence
chemical potential, the gap equation for eB = 6m2

π , where the
oscillations are more pronounced, presents more solutions than
the case B = 0 or the case eB = 15m2

π . The effective mass
behavior displayed in Fig. 2 then allows us to understand the
ρH oscillations, shown in Fig. 1, by reviewing the discussion
carried out in Ref. [28]. There it is shown that the decrease
in ρH for eB = 6m2

π , at low temperatures, can be understood
in terms of the filling of the Landau levels. With this aim,
we present Fig. 3 which displays the baryonic density and
the effective quark mass as functions of the magnetic field at
T = 0. To analyze the figure, let us recall that, in the limit
T → 0, the baryonic density can be written2 as [33]

ρB(μ,B) = θ
(
k2
F

) d∑
f =u

kf,max∑
k=0

αk

|qf |BNc

6π2
kF , (4.1)

where kF = √
μ2 − 2|qf |kB − M2 and

kf,max = μ2 − M2

2|qf |B , (4.2)

or the nearest integer. Equation (4.1) shows that if k2
F < 0,

then ρB = 0 which is precisely the low density value at
T = 0, which is easy to understand by recalling that the
effective mass is double valued when the first-order transition

2There is a misprint in Eq. (30) of Ref. [33] where it should be ρB

instead of ρ.

occurs presenting a high (MH ) and a low (ML) value with
ML < MH for T < Tc and ML = MH at T = Tc. Now, at
T = 0, MH corresponds to the value effective quark mass
acquires when T = 0 and μ = 0 (the vacuum mass) which
corresponds to MH 
 403 MeV at B = 0, MH 
 416 MeV
at eB = 6m2

π , and MH 
 467 MeV at eB = 15m2
π . On the

other hand, at T = 0 the first-order transition happens when
μ 
 383 MeV for B = 0, μ 
 370 MeV for eB = 6m2

π and
μ 
 339 MeV for eB = 15 m2

π so ρL = 0 even at the lowest
Landau level (LLL), as required by θ (k2

F ) in Eq. (4.1). Then,
to understand the oscillations, let us concentrate on the ρH

branch, which is shown, together with ML (the in-medium
mass), in Fig. 3, where it is clear that both quantities have
an opposite oscillatory behavior. The origin of the oscillations
in these quantities can be traced back to the fact that kmax

(the upper Landau level filled) decreases as the magnetic
field increases. The first and second peaks of the ML curve
correspond to the change from kmax = 1 to kmax = 0 for the up-
and down-quarks, respectively. For very low temperatures the
value of μ at coexistence decreases with B so, generally, kmax

and M must vary and when kmax decreases, M increases [28].
It then follows, from Eq. (4.1), that ρB must decrease. When
kmax = 0 for both quark flavors there are no further changes
in the upper Landau level and the low temperature oscillations
stop at eB � 9.5m2

π . Note that Eq. (2.3) reveals that the integral
defining the surface tension has ρH as its upper limit so,
intuitively, one could expect that, in principle, γT will also
oscillate following a pattern similar to the one shown in Fig. 3
for ρH .

Let us now obtain the surface tension at vanishing tem-
perature by first obtaining the difference �f0(ρ) ≡ f0(ρ) −
f M

0 (ρ). Since fT (ρ) = ρμ(ρ) − PT (ρ) one can start by
evaluating μ(ρ) and P (ρ) for uniform matter within the
thermodynamically unstable region of the phase diagram.
Figures 4 and 5 show the results for μ(ρ) and P (ρ) respectively
and, as before, the continuous lines reflect the stable gap
equation solutions and the dashed lines the unstable and
metastable ones. It is then an easy task to obtain a (positive)
deviation, �f0(ρ), which determines the surface tension.
Figure 6 shows �f0(ρ) for B = 0, eB = 6m2

π , and eB =
15m2

π displaying the expected oscillatory behavior around the
B = 0 case. Figure 7, which constitutes our main result, shows
the surface tension as a function of eB at T = 0, showing
that it oscillates around the B = 0 value for 0 < eB � 4m2

π

before decreasing about 30% for 4m2
π � eB � 8m2

π . Then,
after reaching a minimum at eB ≈ 5.5m2

π , it starts to increase
again, reaching the B = 0 value at eB ≈ 9m2

π . After that, only
the LLL is filled and γ0 continues to grow with B. This behavior
can be roughly explained by recalling that the surface tension,
as given by Eq. (2.3), is proportional to the area determined
by �f0(ρ) as shown in Fig. 6. Since this area depends on
the upper limit (ρH ) of the integral representing γT the pattern
observed in Fig. 7 can be further understood by comparing this
figure with Fig. 3, which shows ρH as a function of eB. As one
can see, both γ0 (in Fig. 7) and ρH (in Fig. 3) approximately
behave in the same way, which is just the opposite behavior of
ML (also shown in Fig. 3). As we have already discussed, for
low values of the magnetic field ML oscillates as consequence
of the filling of Landau levels but the oscillations stop when
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FIG. 4. (Color online) The chemical potential as a function of ρB/ρ0 for B = 0, eB = 6m2
π , and eB = 15m2

π . The continuous lines indicate
the gap equation stable solutions and the dashed lines the unstable and metastable ones.

only the LLL is available for both flavors, which, in our
case, happens at eB � 9.5m2

π . From this value onwards ML

decreases with B while ρH increases, as Eq. (4.1) shows, so γ0

also increases, as observed in Fig. 7. The abrupt decrease of γ0

(and ρH ) at eB ≈ 5.5m2
π , which could also be expected, is a

result of the sudden increase of ML, with the consequent abrupt
decrease of ρH , when kmax for the up-quark changes from
kmax = 1 to kmax = 0. In summary, the surface tension behavior
observed in Fig. 7 could be anticipated from the behavior of
ρH and ML shown in Fig. 3, since these quantities are related
via Eqs. (2.3) and (4.1). Of course, the behaviors of ρH and
γT are very similar but not identical because the latter quantity
also depends on �fT (ρ), Eg , and ρg . Note that other physical
quantities, such as the latent heat, which also depends on the
difference between the high and the low densities, oscillate in
a similar way [28]. We refer the interested reader to Ref. [36],
where the oscillations associated with this type of model have
been discussed in great detail.

Finally, Table I summarizes all our results for γ0, when B =
0, eB = 6m2

π , and eB = 15 m2
π , and also lists the characteristic

values Eg and ρg as well as the location of the critical point
(Tc, μc) and the upper integral limit [see Eq. (2.3)], ρH . For
the present model approximation, ρL = 0 in all cases. The
table also shows that the values of the constituent quark mass,
at T = 0 and μ = 0, grow with B in accordance with the
magnetic catalysis phenomenon.

B. Thermal effects

Let us now investigate how thermal effects influence the
interface tension since this quantity is expected to decrease
with increasing temperature because both the coexistence
densities and the associated free energy densities move closer
together at higher T ; they ultimately coincide at Tc, where,
therefore, the tension vanishes. This general behavior is
confirmed by our calculations, as shown in Fig. 8. The
temperature dependence of the surface tension may be relevant
for the thermal formation of quark droplets in cold hadronic
matter found in “hot” protoneutron stars whose temperatures,
T∗, are of the order 10–20 MeV [4,14,37,38]. The temperature
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FIG. 5. (Color online) The pressure as a function of ρB/ρ0 for B = 0, eB = 6m2
π , and eB = 15m2

π . The continuous lines indicate the gap
equation stable solutions and the dashed lines the unstable and metastable ones. The dotted lines joining the solid dots represent the Maxwell
construction.
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FIG. 6. (Color online) The quantity �f0 as a function of ρB/ρ0

for B = 0, eB = 6m2
π , and eB = 15m2

π .

dependence of the surface tension is also important in the
context of heavy-ion collisions, because it determines the
favored size of the clumping caused by the action of spinodal
instabilities as the expanding matter traverses the unstable
phase-coexistence region [6].

C. Other possible effects

So far, our results for the surface tension were obtained
within a certain model approximation, namely the standard
two-flavor NJL model at the mean-field level. Therefore, one
may wonder how other possibilities, including a different
parametrization, strangeness, vector interactions, corrections
beyond the MFA, and confinement, among others, would
eventually influence our numerical predictions. Let us start
this discussion with the parametrization issue, in which case
it becomes important to recall that, within the NJL model,
a stronger coupling increases the first-order transition line
in the T -μ plane. This fact is reflected by an increase of
the coexistence region in the T -ρB plane. Then, a stronger
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FIG. 7. The surface tension at vanishing temperature, γ0, as a
function of eB (in units of m2

π ). The lines are shown just in order to
guide the eye.

TABLE I. Summary of inputs and results at T = 0 for different
values of eB (in units of m2

π ). The length parameter was taken as a =
0.33 fm. The characteristic energy density Eg is given in MeV/fm3,
and the critical values μc and Tc are given in MeV. The effective
magnetic quark masses M (at μ = 0) are also given in MeV while the
resulting zero-temperature surface tension γ0 is given in MeV/fm2.
In all cases ρL

B = 0 and ρ0 = 0.17/fm3.

eB γ0 M Tc μc ρH
B /ρ0 ρ

g
B/ρ0 Eg

0 30.38 403 81.1 324.7 2.73 2.03 495
6 18.63 416 84.9 314.4 2.2 2.17 476
15 73.68 467 115.8 279.0 3.8 3.17 705

coupling should produce a higher surface tension, which is
indeed the case, as demonstrated in Ref. [20] for B = 0. For ex-
ample, taking � = 631 MeV, G�2 = 2.19, and m = 5.5 MeV
the critical point occurs at Tc = 46 MeV and μc = 332 MeV
while the effective quark mass value is M = 337 MeV
(compare with our values in Table I). With this parametrization,
one obtains γ0 = 7.11 MeV/fm2, which is much smaller
than our value, γ0 = 30.38 MeV/fm2. On the other hand,
the surface tension value is expected to increase by taking a
higher coupling but one should also remember that the effective
quark mass grows with G and, with the set adopted here, we
already have M = 403 MeV, which can be considered high
enough.3 Therefore, as far as the parametrization is concerned,
our predictions could be lowered by adopting coupling values
which predict smaller values for the effective quark mass.

Next, let us point out that the presence of a repulsive
vector channel may play an important role when treating the
NJL at finite densities and, in this case, an interaction of
the form −GV (ψ̄γ μψ)2 is usually added to the Lagrangian
density describing the model [32,39]. Then, regarding the
phase diagram, it has been established that the net effect of
a repulsive vector contribution, parametrized by the coupling
GV , is to add a term −GV ρ2 to the pressure, weakening the
first-order transition [40]. In this case, the first-order transition
line shrinks, forcing the CP to appear at smaller temperatures,
while the first-order transition occurs at higher coexistence
chemical potential values as GV increases. In this case, the
coexistence region decreases (this situation will not be affected
by the presence of a magnetic field [41]) and should produce
an even smaller value for the surface tension.

With respect to the MFA adopted here, we believe that
further improvements will only reduce the surface tension
since evaluations performed with the nonperturbative opti-
mized perturbation theory (OPT), at GV = 0, have shown [34]
that as early as at the first nontrivial order the free energy
receives contributions from two loop terms which are 1/Nc

suppressed. It turns out that these exchange (Fock) type of
terms, which do not contribute at the large-Nc (or MFA) level,
produce a net effect similar to the one observed with the MFA
at GV �= 0. This is due to the fact that the OPT pressure
displays a term of the form −GS/(Nf Nc)ρ2, where GS is

3In most works the coupling is chosen so M is about one-third of
the baryonic mass (≈310 MeV).
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FIG. 8. (Color online) The surface tension, γT , as a function of
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π . The lines

are shown just in order to guide the eye.

the usual scalar coupling so a vector-like contribution can be
generated by quantum corrections, even when GV = 0 at the
Lagrangian (tree) level. The relation between the MFA (at
GV �= 0) and the OPT (at GV = 0) and their consequences for
the first-order phase transition has been recently analyzed in
great detail [42]. Based on this result, one concludes that, in
principle, the inclusion of corrections beyond the mean-field
level may contribute to further decrease the value of γT .

In stellar modeling, the structure of the star depends on
the assumed EOS built with appropriate models while the
true ground state of matter remains a source of speculation.
It has been argued [43] that strange quark matter (SQM)
is the true ground state of all matter and this hypothesis is
known as the Bodmer-Witten conjecture. Hence, the interior
of neutron stars should be composed predominantly of u,
d, and s quarks (plus leptons if one wants to ensure charge
neutrality). The question of how strangeness affects γ0 was
originally addressed in Refs. [12,15] within a Fermion-gas
model and the MIT bag model, respectively. The three-flavor
NJL was considered within Randrup’s approach, yielding the
value γ0 = 20.42 MeV/fm2, which is still within the lower
end of estimated values [20]. Moreover, in their application
to the three-flavor Polyakov quark meson model, the authors
of Ref. [21] have confirmed that the presence of strangeness
should not affect the surface tension in a drastic way. Another
important issue, treated in Ref. [21], concerns confinement
which has been considered by means of the Polyakov loop.
Also, in this case, the main outcome is that the surface tension
value is not too much affected when the quark model is
extended by the Polyakov loop.

Together, all these remarks indicate that our (low end)
estimates for γT are basically stable to the inclusion of more
refinements (such as strangeness and confinement) and can
even be further lowered (e.g., by going beyond the mean-field
level and/or by including a repulsive vector channel).

V. CONCLUSIONS

In this work we have evaluated the surface tension related to
the first-order chiral phase transition for two-flavor magnetized

quark matter by considering the NJL model in the MFA. To
obtain this quantity we have used the prescription presented in
Ref. [6], which is straightforward once the uniform-matter
equation of state is available for the unstable regions of
the phase diagram. The surface tension determined in the
present fashion is entirely consistent with the employed model,
including the approximations and parametrizations adopted. In
practice, one only needs to consider all the solutions to the gap
equation (stable, metastable and unstable) when generating the
corresponding EOS. This method was previously employed
to obtain the surface tension for the NJL in the absence of
magnetic fields yielding γ0 � 30 MeV/fm2, which lies within
the low end of available estimates (γ0 ≈ 10–300 MeV/fm2)
and is in agreement with other recent predictions which
employ effective quark models [19,21]. The importance of
this result concerns, for example, the possibility of a mixed
phase occurring in hybrid stars since the existence of such
a phase is possible when the surface tension has a low
value [23].

Our results have shown that, when a magnetic field is
present, the surface tension value presents a small oscillation
around the B = 0 value for 0 < eB � 4m2

π . It then decreases
for 4m2

π � eB � 8m2
π , reaching a minimum at eB ≈ 5.5m2

π ,
where the value is about 30% smaller than the B = 0 result.
After this point it starts to increase continuously, reaching the
B = 0 value at eB ≈ 9m2

π . This result allows us to conclude
that the existence of a mixed phase remains possible within this
range of magnetic fields and can even be favored at the core of
magnetars if B ∼ 1.8 × 1019G (or, equivalently, eB ∼ 6m2

π ).
At about twice this field intensity the surface tension starts
to increase rapidly with the magnetic field disfavoring the
presence of a mixed phase within hybrid stars. The origin of
this behavior can be traced back to the oscillations present
in the coexistence region, which is a quantity of central
importance in the evaluation of γT . We have also shown how
the temperature affects this quantity by decreasing its value
towards zero, which is achieved at T = Tc, as expected. Other
issues, such as strangeness, the presence of a repulsive vector
interaction, confinement, corrections to the MFA, as well as
different parametrizations, have also been discussed. We have
argued that our surface tension values, which already rank at
the low end of the available wide range of predictions, will
be little affected by strangeness and confinement and will be
even lowered by the presence of a repulsive vector term and/or
by the inclusion of corrections beyond the mean-field level
so a mixed phase within hybrid stars will be further favored
by these improvements. On the other hand, with the adopted
model, the surface tension value could grow if one chooses a
parametrization with a coupling greater than ours, which, in
turn, would lead to very high effective quark masses.
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