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Higher twist in electroproduction: Flavor nonsinglet QCD evolution
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We present results for the one-loop anomalous dimension matrix of flavor nonsinglet twist-4 operators of
lowest spin that contribute to the leading moment of the F2 structure function in deep inelastic electron-nucleon
scattering. We analyze the flavor structure of the anomalous dimension matrix and decompose the leading moment
of F2 into separate flavor channels. In addition to building on previous work with higher-twist operators, these
results can provide a benchmark for future work that generalizes to include the higher moments as well. We
include non-perturbative input from the lattice and phenomenological estimates of the twist-4 matrix elements
and estimate the twist-4 contributions to the leading moment of F2. The results suggest that the overall twist-4
contribution may be suppressed due to either cancellations among the twist-4 terms or inherently small twist-4
matrix elements.
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I. INTRODUCTION

In this paper we report on a computation of the leading
log Q2 evolution of the twist-4 contribution to the flavor
nonsinglet, leading moment of the F2 structure function and
provide phenomenological estimates of the resulting effects.
Our study is motivated broadly by one of the major challenges
for nuclear physics: understanding the dynamics of quarks and
gluons, as determined by the QCD Lagrangian, and explaining
their connection to the hadronic degrees of freedom. The twist
expansion in QCD is a useful tool that is well suited for this
challenge. The property of asymptotic freedom of QCD allows
one to calculate sufficiently inclusive hadronic observables,
at asymptotically high energies, in terms of the perturbative
quark and gluon degrees of freedom. This phenomenon is
often referred to as quark-hadron duality. One of the simplest
examples of this duality is the process e+e− → hadrons which
is described well by the quark-level process e+e− → qq̄ away
from thresholds. Similarly, deep inelastic electron-nucleon
scattering is described by electrons scattering off free quarks
in the asymptotic region.

However at low momentum scales, where the strong cou-
pling αs is large, multiparton correlations become important
and lead to violations of quark-hadron duality. These correla-
tions are embodied in higher twist effects. At sufficiently low
scales, QCD is nonperturbative and the hadronic bound states
of quarks and gluons become the relevant degrees of freedom.
Despite this, there are several examples where low energy
hadronic observables, averaged over appropriate intervals,
exhibit behavior that reveal the underlying connection to the
quark and gluon degrees of freedom. Bloom and Gilman
[1–3] first observed that electron-nucleon scattering in the
resonance region is related to the deep inelastic scaling

*michael.glatzmaier@gmail.com
†mantry147@gmail.com
‡mjrm@physics.wisc.edu

regime. In particular, they observed that even in the region
of low momentum transfer (Q2), dominated by the highly
nonperturbative dynamics of nucleon resonances, the nucleon
structure function F2(x,Q2) exhibits logarithmic scaling in
Q2 when averaged over appropriate intervals in Bjorken-x.
Furthermore, the resonance structures seen in F2(x,Q2) as
a function of the Bjorken-x, slide along the deep inelastic
scaling curve for increasing Q2. This logarithmic scaling in
Q2 of the structure function F2 is described by the DGLAP
evolution of the leading twist parton distribution functions
(PDFs). This manifestation of quark-hadron duality which
relates the resonance region to the deep inelastic scaling
region is known as the Bloom-Gilman (BG) duality. At low
values of Q2, one expects the onset of power law behavior
corresponding to contributions from higher twist terms in
the operator product expansion (OPE). Such behavior would
signal a clear violation of BG duality and give a direct probe
of multiparton correlations in the nucleon.

Detailed studies of the BG duality and its violation
can provide insight into the dynamics of the quark-hadron
transition and have lead to a large experimental effort. Since
the early days of the SLAC-MIT [3] experiment, a wealth
of data (for a comprehensive review see Ref. [4]) on structure
functions has been accumulated over a wide range in x and Q2.
A large fraction of this data [5–11] is on the proton structure
function F

p
2 (x,Q2) which is now the best measured quantity

in deep inelastic electron scattering. Data is also available on
deuterium [12] and heavy nuclear [13] targets in the high-x
and low Q2 region. The data on the structure functions in
the resonance region has been compared to the scaling curves
obtained from global fits [14,15] of the PDFs and DGLAP
evolution. The resonance peak structures seen in the F

p
2 (x,Q2)

structure function are observed on average to oscillate around
the scaling curve. In particular, the average of the structure
function over all values of x, including over all resonance
peaks, exhibits scaling behavior. Furthermore, the average of
F

p
2 (x,Q2) over individual resonance peaks is also observed
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to follow the scaling curve and is known as local BG duality.
Similar scaling behavior is also observed for deuterium and
heavy nuclei targets.

In modern field-theoretic language, quark-hadron duality
can be quantitatively formulated [16,17] in terms of the
operator product expansion (OPE). The Cornwall-Norton
moments of the F2 nucleon structure function,

M
(n)
2 (Q2) =

∫ 1

0
dx xn−2F2(x,Q2), (1)

can be expressed schematically in terms of the OPE as

M
(n)
2 (Q2) =

∑
i

∞∑
τ=2k

(
�2

Q2

) τ−2
2

Ci
nτ (μ,Q2)

〈Oi
nτ

〉
�τ−2

. (2)

Here k runs over all positive integers and the indices n, τ, i
denote the spin, twist, and type of operators, respectively. The
twist is defined τ = d − s, where d, s denote the dimension
and spin of the operator Oi

nτ . The Wilson coefficients Ci
nτ

are perturbatively calculable as an expansion in αs(Q2)
and exhibit logarithmic scaling in Q2/μ2 with μ being an
appropriately chosen input scale. The nonperturbative nucleon
matrix element of the operator Oi

nτ is denoted by 〈Oi
nτ 〉 and

has been scaled to an appropriate power of a typical hadronic
scale � ∼ 1 GeV. The power law behavior in Q2 of the various
terms in the OPE is determined by the twist τ . The leading twist
(τ = 2) nucleon matrix elements are given by the moments of
the standard PDFs. Quark-hadron duality corresponds to the
dominance of the leading twist terms which are determined by
the scattering of electrons from almost free quarks weighted
by the PDFs. Logarithmic corrections to Bjorken-scaling are
determined by the standard DGLAP evolution of the PDFs.
Violations of quark-hadron duality arise from the higher twist
terms in the OPE as power corrections in 1/Q2. These higher
twist terms encode long range multiparton correlations in the
nucleon and are expected to become important at low Q2.

In the language of the OPE, the observed BG duality
corresponds to unexpectedly small contributions from the
higher twist terms to the lowest (n = 2) moment of the F2

structure function at low Q2. The higher moments of the
structure function, weighted more by the large x resonance
region, are expected to be more sensitive to higher twist effects.
A recent analysis by the CLAS collaboration [11] found
that the moments of the F

p
2 (x,Q2) structure function were

dominated by the leading twist terms down to Q2 ∼ 1 GeV2,
implying correspondingly small higher twist effects. For
the lowest moment, after accounting for kinematic power
corrections, the higher twist contributions were less than about
5% of the leading twist moment for Q2 > 1 GeV2. These
results were obtained through a detailed study of the Q2

behavior of the collected data.
The high quality of available data allows for a systematic

study of higher twist correlations, providing a window into
quark-hadron duality violations and nucleon structure. One
limitation for such a program is the lack of precise theoretical
knowledge of the renormalization group (RG) evolution of the
higher twist operators. Given the absence of this theoretical
input, the CLAS collaboration considered the effects of twist-
4 and twist-6 contributions, in addition to the leading twist

effects, using a simple ansatz [18,19] that parameterizes these
contributions to the moments of the structure function as

M
(n)
2 (Q2) = ηn(Q2) + a(4)

n

[
αs(Q2)

αs(μ2)

]γ
(4)
n μ2

Q2

+ a(6)
n

[
αs(Q2)

αs(μ2)

]γ
(6)
n μ4

Q4
, (3)

where ηn(Q2) is the leading twist contribution, a(4)
n and

a(6)
n parametrize the twist-4 and twist-6 nucleon matrix

elements respectively, and γ (4)
n and γ (6)

n are effective anoma-
lous dimensions parametrizing the RG evolution of twist-4
and twist-6 operators respectively. With the parametrization
written in Eq. (3), the CLAS collaboration interpreted the
unexpectedly tiny higher twist contribution to the moment
as being due to a conspiracy of cancellation between twist-4
and an oppositely signed twist-6 contribution. From a rigorous
theoretical perspective, however, the situation is considerably
more complex, as higher twist contributions are determined by
a large number of operators that mix under RG evolution. Both
the contributions from these matrix elements and the details
of their mixing are ignored in Eq. (3). A basis of operators at
twist-4 along with their tree level Wilson coefficients was first
given in Refs. [20,21], in the transverse basis in Ref. [22], and
more recently using the soft-collinear effective theory (SCET)
in Ref. [23]. A conformal basis of higher twist operators was
constructed in Ref. [24] and a one-loop analysis of conformal
higher twist operators is presented in Refs. [24,25].

Higher twist operators in QCD are also of interest for parity
violating deep inelastic scattering (PVDIS). As part of the
12 GeV upgrade at JLab, new experiments [26,27] will
measure the electron polarization asymmetry,

ARL = σR − σL

σR + σL

(4)

in parity violating deep inelastic scattering off a deuteron
target over a wide range of Q2 and x to subpercent level
precision. The impact of the logarithmic running of higher
twist operators is one effect one must account for when
interpreting the asymmetry. Due to the high precision of the
measurements, hadronic uncertainties including higher-twist
effects must be investigated carefully as they can potentially
cloud theoretical interpretations of deviations from standard
model (SM) predictions. The effects of higher twist contribu-
tions to this parity-violating asymmetry were recently studied
in Refs. [28,29]. Based on the argument by Bjorken [30] and
Wolfenstein [31] it was shown [29] that this asymmetry can be
a powerfufl probe of quark-quark correlations in the nucleon.
For a deuterium target, ARL is sensitive to a single four-quark
operator involving up and down-quark fields

Q
μν
ud (x) = 1

2 [ū(x)γ μu(x)d(0)γ νd(0) + (u ↔ d)] (5)

which is a twist-4 operator. As pointed out in [29], combining
high precision data taken over a wide range of x and Q2

from future PVDIS experiments at JLab as well as electron
ion collider (EIC) data, may allow a separation of higher
twist contributions to ARL from the charge symmetry violation
(CSV) effects depending on their relative sizes. In order to do
so however, one must have an accurate determination of the
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(a) (b)

FIG. 1. Renormalization of 4Q operators. The diagrams in (a) are self-renormalization graphs. The graphs in (b) are annihilation graphs.

size of the matrix element of the operator in Eq. (5) as well as
accurate knowledge of its mixing with other twist-4 operators
under the renormalization group.

In light of these experimental developments as well as the
broader goal of eludicating the transition from perturbative
to non-perturbative features of nucleon structure, we have
undertaken the present study. Our goal in this work is to
compute the one-loop anomalous dimension matrix for flavor
nonsinglet twist-4 operators at lowest spin, including all
mixing effects. Our calculations of the anomalous dimension
matrix are an extension of previous works [32–34] where parts
of the one-loop anomalous dimension matrix were computed.
In particular, the graphs of Fig. 1(b) were not included in
previous analyses, and our results for the graphs of Fig. 1(a)
differ from those computed in [32]. We defer the calculation
of the RG evolution of gluonic operators and twist-4 operators
of arbitrary spin for future work. To this end, we have also
listed the isosinglet flavor operators which mix with gluon
operators.

We have combined our perturbative calculations with input
from the lattice [35] and phenomenological estimates [36]
to provide illustrative computations of the evolution of the
isovector, flavor nonsinglet contribution to F2 in a range of
Q2 so as to make contact with the CLAS analysis [11]. We
demonstrate that theoretically one expects a relatively tiny
overall twist-4 contribution to the moment in the resonance
region, having a magnitude that is consistent with the CLAS
analysis. We also show that within twist-4, cancellations or
enhancements can occur between different flavor channels
contributing to the leading moment of F2. Thus, a suppression
of the twist-4 contribution may be due either to cancellations
between different operator contributions or to relatively small
individual matrix elements themselves. Our key results can
be summarized in Eq. (56) and Figs. 7 and 8. These results
demonstrate that probing higher twist effects in the leading
moment of F2 would require a substantial improvement
in experimental precision. In particular, the observation of
any breakdown of cancellations due to Q2 evolution would
likely require a substantial reduction in experimental error.
As a corollary, we also note that a complete QCD analysis

of twist-4 contributions will require new nonperturbative
computations of the twist-4 operator matrix elements, as
the illustrative results given in our study have required
making an ansatz about the values of several of these matrix
elements.

This paper is organized as follows. In Sec. II we review
the standard formalism of the operator product expansion
(OPE) and establish basic notation. In Sec. III, we review
the leading twist basis of operators and list the basis of quark
and gluonic twist-4 operators. In Sec. IV, we present both
the Feynman diagrams and renormalization factors for the
basis of operators introduced in Sec. III, and in Sec. V we
introduce a power counting scheme to ensure the anomalous
dimension has a consistent power in the strong coupling. In
Sec. VI we organize the basis of twist-4 quark operators in
terms of the irreducible representations of the flavor group
SU(3)f . In Sec. VII, we discuss the flavor structure of the
anomalous dimension matrix. In Sec. VIII we list the tree
level Wilson coefficients used to plot the leading moment
of F2. In Sec. IX, we plot the leading log evolution of the
Wilson coefficients, and in Sec. X we estimate values for the
twist-4 reduced matrix elements based on lattice computations
and model independent estimates. Finally in Sec. XI, we
present our results for the leading log evolution of F2(x,Q2).
We discuss these results and comment on future work in
Sec. XII.

II. GENERAL FORMALISM

In this section we review the formalism and relevant
notation for electron-nucleon deep inelastic scattering (DIS).
The differential cross section in the one photon exchange
approximation is given by

d2σ

d	dE′ = α2

Q4

E

E′ LμνW
μν, (6)

where 	 is the laboratory solid angle of the scattered electron,
E′ is the energy of the scattered electron, Lμν is the leptonic
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tensor

Lμν = 2(kμk′
ν + k′

μkν − gμνk · k′). (7)

In Lμν , kμ, and k
′μ denote the initial and final electron

momenta, respectively, and Wμν is the hadronic tensor given
by

Wμν = Im T μν,
(8)

T μν = i

∫
d4x eiq·x〈N |T (Jμ(x)Jν(0))|N〉,

where Jμ is the electromagnetic current of the struck quark
and qμ = kμ − k

′μ with q2 = −Q2. The above form of Wμν

follows from the optical theorem in which the imaginary part of
the forward Compton amplitude is related to the cross section
for fully inclusive scattering off the initial state nucleon (N ).
Lorentz and gauge invariance dictate the following general
form for the hadronic tensor:

Wμν =
(

qμqν

q2
− gμν

)
F1(x,Q2)

+
(

P μ − P · q

q2
qμ

)(
P ν − P · q

q2
qν

)
F2(x,Q2)

ν
,

where P μ is the initial nucleon momentum, ν = P · q and
F1,2 are dimensionless structure functions. The moments of
these structure functions can be written in terms of the OPE as
shown in Eq. (2) for F2.

The structure of the product of electromagnetic currents
given in Eq. (8) at light-like distances is given by Wilson’s
operator product expansion, see Refs. [33,37,38]

J

(
x

2

)
J

(
−x

2

)
=

∞∑
n=0

∑
i,τ

Cn
i,τ (x2)Oiτ, μ1...μn

n (0) xμ1 . . . xμn
,

(9)

where we have suppressed the Lorentz indices on the currents.
The operators appearing on the RHS of Eq. (9) are symmetric
and traceless in indices μ1 . . . μn and thus have a definite twist
(dimension-spin) denoted by τ .

The structure functions Fi are determined by both the
Wilson coefficients and the matrix elements of the operators
in Eq. (9), the Fourier transforms of Cn

i,τ (x2) are related to the
moments of the structure functions, e.g.,∫ 1

0
dx xn−2F1,2(x,Q2) 	

∑
j

Cn
j,τ (Q2)〈N |Oj,τ

n (0)|N〉.

(10)

The dependence on Q2 is controlled by the anomalous
dimension of the operators in Eq. (10). The bare (Oτ i(b)

n ) and
renormalized (Oτ i

n ) operators of Eq. (2) are related by

Oτ i(b)
n = Zij

nτ Oτj
n , (11)

where Z
ij
nτ denote the renormalization constants. They are, in

general, matrices since different operators of a given spin n
mix under renormalization. From the scale invariance of the
bare operators one can derive the RG evolution equations

μ
d

dμ
Oτj

n = −γ ji
n Oτ i

n , γ ji = Z(−1)jk
nτ μ

d

dμ
Zki

nτ , (12)

and from the μ independence of the moments it follows that
the Wilson coefficients satisfy the RG equation

μ
d

dμ
Cj

nτ = γ ji
n Ci

nτ , (13)

which can be solved to give

Ci
nτ (Q2/μ2, g) 	

∑
j

Cj
nτ (1, ḡ(t ′))

× T

[
exp

{
−
∫ t

0
dt ′ γnτ (ḡ(t ′))

}]
ji

. (14)

Where t = 1/2 ln(Q2/μ2), and ḡ(t) is the running coupling
in QCD. In what follows, we will evaluate γ

ij
n and its

eigenvalues for the nonsinglet, twist-4 operators. Our main
phenomenological task will then be an evaluation of Eq. (10)
in the resonance region.

III. OPERATOR BASIS

In this section we review the basis of operators that appear
at twist-2 and twist-4. At twist-2, it is well known that
there are just two towers of operators for a given spin n.
The multiplicatively renormalizable flavor nonsinglet (NS)
operators are

ONS
q;μ1...μn

= in−1S
[
ψ̄f γμ1Dμ2 . . . Dμn

λa

2
ψf

]
− trace terms,

(15)

and the two types of flavor-singlet operators that mix under
renormalization are

OS
q;μ1...μn

= iN−1S
[
ψ̄f γμ1Dμ2 . . . Dμn

ψf

]− trace terms,

OS
G;μ1...μn

= 2iN−2S
[
Fa

μ1α
Dμ2 . . . Dμn−1F

α,a
μn

]− trace terms.

(16)

Here ψf denotes a quark field of flavor f and Fαβ denotes the
gluon field strength tensor and λa is an SU(3)f generator. The
operation S reminds one to symmetrize the Lorentz indices
in brackets. The operators in Eqs. (15) and (16) are thus
completely symmetric and traceless in the indices μ1, . . . , μn

and transform under irreducible representations of the Lorentz
group of spin-n. The anomalous dimension matrix for the
flavor singlet operators takes the schematic form

γ n =
(

an
ff an

fg

an
gf an

gg

)
. (17)

The diagonal entries an
ff and an

gg arise from self-
renormalization graphs for operators OS

q;μ1···μn
and OS

G;μ1···μn
,

respectively. The off-diagonal entries come from graphs that
mix these two operators. The flavor nonsinglet operator ONS

q

undergoes multiplicative renormalization since it cannot mix
into the flavor-singlet operators OS

q , OS
G.

The situation for twist-4 is more complicated. In general
the operators at twist-4 can be classified into several types
which mix at the one-loop level. The specific number of
operators grows with the spin-n unlike the case at twist-2.
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A complete basis of twist-4 operators with tree level Wilson
coefficients was first given in Refs. [20,21] and parts of the
anomalous dimension matrix were computed at one loop in
Refs. [32–34]. The ‘canonical’ basis in Refs. [20,21] was
constructed by requiring that the time-ordered product of
electromagnetic currents is expanded in terms of operators
that (a) are totally symmetric, (b) traceless, and (c) contain
no contracted derivatives. In this paper, we extend the work
of Refs. [32–34] and compute the full anomalous dimension
matrix of flavor non-singlet operators at twist-4 and spin-2.
The operators at twist-4 that contribute at spin-2 are given by

 · Q1(k,�)
n = gψ̄R/ d

←�

d
→k

ψR ψ̄R/ d
→n−2−k−�

ψR,

 · Q2(k,�)
n = gψ̄Rτa/ d

←�

d
→k

ψR ψ̄R/ d
→n−2−k−�

τaψR,

 · Q3(k,�)
n = gψ̄R/ d

←�

d
→k

ψR ψ̄L/ d
→n−2−k−�

ψL,

 · Q4(k,�)
n = gψ̄Rτa/ d

←�

d
→k

ψR ψ̄L/ d
→n−2−k−�

τaψL, (18)

 · Q5(k,�)
n = gψ̄L/ d

←�

d
→k

ψL ψ̄L/ d
→n−2−k−�

ψL,

 · Q6(k,�)
n = gψ̄Lτa/ d

←�

d
→k

ψL ψ̄L/ d
→n−2−k−�

τaψL,

 · Q7(k)
n = ψ̄ d

←k

f/∗ γ5d
→n−1−k

ψ,

 · Q8(k)
n = iψ̄/ d

←k

f/ d
→n−1−k

ψ,

where  is a light-like vector,  · Qn = μ1 · · · μnQn,μ1···μn
,

d = iμDμ, f β = Fρβρ , and ∗f β = ερβστFστρ . The
subscripts R,L on the quark fields denote the chirality so
that ψR,L = 1±γ5

2 ψ . In this paper we compute the anomalous
dimension matrix of the operators listed in Eq. (18), however
in the small x-Bjorken domain, we expect purely gluonic
operators to make the main contribution. For twist-4, in
addition to the quark operators listed above, we list purely
gluonic operators as well [39]:

 · OG1
n = Tr

[
Fαβ d

→n

Fαβ

]
,

 · OG2(k,�)
n = Tr

[
fαd

→n−4−k−�

f α d
→k

fβd
→�

f β
]
,

 · OG3(k,�)
n = Tr

[
fαd

→n−4−k−�

f βd
→k

fαd
→�

f β
]
, (19)

 · OG4(k,�)
n = Tr

[
fαd

→n−4−k−�

f βd
→k

fβd
→�

f α
]
,

 · OG5(�)
n = Tr

[
fαd

→n−2−�

Fαβ d
→�

f β
]
.

IV. RENORMALIZATION OF TWIST-4 OPERATORS

The renormalization of the twist-4 operators listed in the
last section is complicated by the large number of mixings
present. In this section, we classify the operator basis into
distinct types to better organize the calculation of the one-loop
anomalous dimension matrix that determines the RG evolution
at leading order. In Eqs. (18) and (19), the operators Q1

n − Q6
n

are four-quark operators, Q7
n,Q

8
n are two-quark operators, and

QG1
n − QG5

n are pure gluon operators which we symbolically
denote as 4Q, 2Q, and G type operators, respectively. In terms
of this classification, the anomalous dimension matrix then
takes the following schematic form:

γn =

⎛
⎜⎝

γ 4Q→4Q
n γ 4Q→2Q

n γ 4Q→G
n

γ 2Q→4Q
n γ 2Q→2Q

n γ 2Q→G
n

γ G→4Q
n γ G→2Q

n γ G→G
n

⎞
⎟⎠ , (20)

where γ 4Q→4Q
n is a matrix that arises from the self-

renormalization graphs of the 4Q operators, γ 2Q→4Q
n denotes

contributions from graphs that mix the 2Q operators into 4Q
operators, and so on. Recall that we are restricting our analysis
to spin-2 (n = 2), flavor nonsinglet twist-4 operators. At one
loop, Fig. 1(a) shows the QCD self-renormalization graphs
of the 4Q type operators. The graphs of Fig. 1(b) contribute
to the 4Q → 4Q self-renormalization after using the QCD
equations of motion which were not considered in previous
work. Figure 2 shows the self-renormalization of the 2Q
operators, and Fig. 3 shows the 2Q → 4Q mixing graphs.
For the graphs in Fig. 2, we have chosen to compute using the
background field method [40].

Below we review in schematic notation, the ingredients
that go into the anomalous dimension calculation. The bare
and renormalized operators are related as

Oi
b = ZijOj , (21)

where the subscript b on the left-hand side (LHS) indicates
a bare operator and the operator on the right-hand side
(RHS) denotes the renormalized operator and Zij denotes the
renormalization constants. The indices i, j run over the basis
of operators. We also denote the renormalization factors for
the massless fermion wave function and the strong coupling
constant as Zψ and Zg , respectively, so that the bare (b) and

FIG. 2. Feynman diagrams for the renormalization of 2Q operators.
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FIG. 3. Feynman diagrams for 2Q → 4Q mixing.

renormalized quantities are related as

ψb = √
Zψψ, gb = μεZgg. (22)

The renormalization constants can be expanded around
unity as

Zψ = 1 + δZψ, Zg = 1 + δZg, (23)

where δZψ and δZg denote the contributions from higher order
perturbative diagrams.

We have found that the anomalous dimension for γ 4Q→2Q

is zero as one expects on general grounds [25]. Consequently,
only the γ

4Q→4Q
2 , γ

2Q→2Q
2 , and γ

2Q→4Q
2 blocks of the

anomalous dimension matrix are relevant. We break the matrix
Zij of Eq. (21) into the component blocks Z4Q,4Q,Z2Q,2Q, and
Z2Q,4Q corresponding to mixings among the 4Q operators,
the 2Q operators, and the mixing of 2Q operators into 4Q
operators, respectively. As mentioned previously, the 4Q
operators do not mix into the 2Q operators and since we restrict
our analysis to flavor nonsinglet operators we do not include
the pure gluon G-type operators in the basis. The Z4Q,4Q and
Z2Q,2Q renormalization matrices can be expanded around the
unit matrix as

Z2Q,2Q = 1 + δZ2Q,2Q, Z4Q,4Q = 1 + δZ4Q,4Q, (24)

while the off-diagonal block Z2Q,4Q gets nonzero contribu-
tions starting at one-loop and is written as

Z2Q,4Q = δZ2Q,4Q. (25)

We now have all the necessary notation to discuss the
extraction of the one-loop anomalous dimension. We outline
the steps for the 4Q and 2Q operator renormalization below.

A. Four-quark operators

The bare 4Q operators have the schematic form

O4Q
b = g2

b ψ̄bψbψ̄bψb,

where we have suppressed flavor indices and the Lorentz and
Dirac structure. The renormalized and bare 4Q operators are
related as

O4Q = (Z−1)4Q,4Q O4Q
b = g2μ2ε ψ̄ψψ̄ψ

+ (2δZψ + 2δZg − δZ4Q,4Q) g2μ2ε ψ̄ψψ̄ψ, (26)

where the second term above is just the counterterm and
determines the renormalization matrix δZ4Q,4Q. Once δZ4Q,4Q

is extracted from the counterterm above, the anomalous
dimension matrix is given by is given by

γ 4Q→4Q = (Z4Q,4Q)−1μ
d

dμ
Z4Q,4Q. (27)

B. 2 Q operators

The bare 2Q operators have the schematic form

O2Q
b = ψ̄bgbFbψb, (28)

where Fb denotes the bare field strength tensor and we have
suppressed flavor indices and Lorentz and Dirac structure.
There renormalized 2Q operator is related to the bare
operators as

O2Q = (Z−1)2Q,2Q O2Q
b + (Z−1)2Q,4Q O4Q

b

= ψ̄gFψ + (δZψ − δZ2Q,2Q) ψ̄gFψ

+ (δZ−1)2Q,4QZ2
ψZ2

gμ
2εg2 ψ̄�ψψ̄�ψ, (29)

where the two terms in the first line above correspond to
mixing among the 2Q operators and the mixing of the 2Q
operators into 4Q operators, respectively. The combination
gbFb remains unrenormalized in the background field method,
and the last two terms in the second line of Eq. (29) denote the
counterterms and the anomalous dimension components are
given by

γ 2Q→2Q = (Z2Q,2Q)−1μ
d

dμ
Z2Q,2Q,

(30)

γ 2Q→4Q = (Z2Q,4Q)−1μ
d

dμ
Z2Q,4Q.

For one-loop renormalization, Eq. (29) simplifies to

O2Q = ψ̄gFψ + (
δZ

(1)
ψ − δZ(1)2Q,2Q

)
ψ̄gFψ

+ (δZ(1)2Q,4Q)−1μ2εg2 ψ̄�ψψ̄�ψ,

where the superscript (1) on the renormalization constants
indicate the respective one-loop contributions.
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FIG. 4. Left: A representative Feynman diagram illustrating
operator G4 mixing into G3, an order g correction to G3. Right:
The Feynman diagram illustrating the mixing of G3 into G4, which
is order g3.

V. CONSISTENT POWER COUNTING IN POWERS OF g

Before proceeding to the calculation of the anomalous
dimension, we address an issue concerning consistent treat-
ment of orders in perturbation theory [20]. Using abbreviated
notation, we collectively call O1 = (ψ̄ψ)2, O2 = ψ̄Fψ , G3 =
FD2F , and G4 = F 3. A close look at the mixings among
O1 − G4 reveals that ZG3→G4 is order g3 whereas ZG4→G3 is
order g as shown in Fig. 4. One can readily see that the counting
inconsistencies persist when computing the mixings ZG3→O1

as well. It is desirable to write the anomalous dimension in a
scaled form γij 	 g2dij when computing Eq. (10). This form
of γ renders direct calculations of the integral

T exp

[
−
∫

γ̃ (g′)
β(g′)

]
(31)

to be quite simple. However, a leading log evolution of the
operators O1 − G4 leads to an anomalous dimension matrix
which is not proportional to one consistent power in the
coupling, e.g.,

γ̃ (g′) ∼

⎛
⎜⎜⎜⎜⎝

g2 γ11 g3 γ12 0 0

g γ21 g2 γ22 g γ23 g2 γ24

0 g3 γ32 g2 γ33 g3 γ34

0 g2 γ42 g γ43 g2 γ44

⎞
⎟⎟⎟⎟⎠ . (32)

A form of the mixing matrix proportional to g2 in lowest
order can be regained by an appropriate rescaling of the twist-4
operators. We have chosen the following redefinitions:

O1 → g2(ψ̄ψ)2, O2 → g(ψ̄ /Fψ),

G3 → FD2F, G4 → gF 3.

Of course, the dominant logarithm is independent of such con-
ventions. After these redefinitions, the anomalous dimension

matrix has a homogenous scaling in the strong coupling

γ̃ (g′) ∼ g2

⎛
⎜⎝

γ11 γ12 0 0
γ21 γ22 γ23 γ24

0 γ32 γ33 γ34

0 γ42 γ43 γ44

⎞
⎟⎠ . (33)

VI. FLAVOR STRUCTURE

In this section we discuss and establish notation for the
flavor structure of the twist-4 operators. The structure of the
anomalous dimension matrix can be organized according to
flavor structure since QCD with massless quarks preserves
flavor symmetry. The electromagnetic current entering in the
forward Compton amplitude in Eq. (8) is given by

Jμ(x) = ψ̄(x)γ μQψ(x), Q = 1

2

(
λ3 + 1√

3
λ8

)
, (34)

where ψ is a column vector in flavor space so that ψ =
(ψu,ψd, ψs) and Q is the electromagnetic charge operator
acting on ψ and can be written in terms of the SU(3)f
Gell-Mann matrices λi as shown. The twist-4 operators from
the OPE of the product of electromagnetic currents in Eq. (8)
can be classified in terms of their transformation properties
under SU(3)f . Schematically, the 4Q and 2Q operators have
the following flavor structures:

4Q : A) ψ̄Qψψ̄Qψ, B) ψ̄Q2ψψ̄ψ,
(35)

2Q : C) ψ̄Q2ψ,

where the precise color and Dirac structure is suppressed. The
flavor structure A) in Eq. (35) arises from the first handbag
diagram of Fig. 5. The second diagram of Fig. 5 generates
both B) and C) flavor structures where the flavor structure in
B) arises after an application the gluon equation of motion
(EOM) for the external gluon. These flavor structures can then
be decomposed into irreducible representations of SU(3)f with
definite isospin (I, Iz) and hypercharge (Y = 2λ8/

√
3) [41].

Since the charge operator Q is a linear combination of λ3 and
λ8 all these operators have Iz = Y = 0.

The flavor decomposition of the 4Q operator of type A) in
Eq. (35) is given by

ψ̄Qψ ψ̄Qψ =
√

2

3
O

27,A
I=2 + 2√

10
O

27,A
I=1 + 2√

30
O

27,A
I=0

+ 2√
15

O
8,A
I=1 + 2

3
√

5
O

8,A
I=0 −

√
2

3
O

1,A
I=0,

(36)

FIG. 5. Left: Double handbag diagram with flavor structure ψ̄Qψψ̄Qψ . Middle: Feynman diagram with flavor structure ψ̄Q2ψ . Right:
Feynman diagram with flavor structure ψ̄Q2ψψ̄ψ .
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and the flavor structure ψ̄Q2ψ that appears in the 4Q operators
of type B) and 2Q operators of type C) in Eq. (35) is
decomposed as

ψ̄Q2ψψ̄ψ = O
8,B
I=1 + O

8,B
I=0,

(37)
ψ̄Q2ψ = O

8,C
I=1 + O

8,C
I=0.

The superscripts on the operators on the RHS of Eqs. (36)
and (37) denote the SU(3)f representation and the subscripts
denote the isospin representation of the SU(2)I subalgebra of
SU(3)f . The labels (A,B,C) are included to remind the reader
the specific flavor structure given by Eq. (35). For notational
convenience we define “meson” fields that make the flavor

structure of quark bilinears manifest as

π+ = d̄u, K+ = s̄u, K̄0 = d̄s,

η8 = − 1√
6

(d̄d + ūu − 2s̄s),

π0 = 1√
2

(d̄d − ūu), K0 = ¯sd, K− = −ūs,

η′ = 1√
3

(ūu + d̄d + s̄s),

π− = −ūd.

In terms of these fields, the flavor structure of type A operators
appearing on the RHS of Eq. (36) is given by

O
27,A
I=2 ∼ 1√

6
[2π0π0 + π+π− + π−π+],

O
27,A
I=1 ∼ 1√

10
[(K̄0K0 + K−K+) + (K0K̄0 + K+K−) +

√
3(π0η8 + η8π

0)],

O
27,A
I=0 ∼ 3√

30

[
1

6
(π0π0 − π+π− − π−π+) − 1

2
(K̄0K0 − K−K+) − 1

2
(K0K̄0 − K+K−) + 3

2
η8η8

]
,

(38)

O
8,A
I=1 ∼ −

√
3

5

[
1

2
(K̄0K0 + K−K+) + 1

2
(K0K̄0 + K+K−) − 1√

3
(π0η8 + η8π

0)

]
,

O
8,A
I=0 ∼ 1√

5

[
(π0π0 − π+π− − π−π+) − 1

2
(K̄0K0 − K−K+) − 1

2
(K0K̄0 − K+K−) − η8η8

]
,

O
1,A
I=0 ∼ − 1√

8
[(π0π0 − π+π− − π−π+) + (K̄0K0 − K−K+) + (K0K̄0 − K+K−) + η8η8].

The last operator O
1,A
I=0 in Eq. (38) is a flavor singlet and can

mix with the pure gluon operators and will not be considered
in the rest of the analysis. The flavor structure of operators of
type B in Eq. (37) are given by

O
8,B
I=1 ∼ − 1√

6
π0η′,

(39)

O
8,B
I=0 ∼ − 1√

18
η8η

′ + 2

3
η′η′,

and the flavor structure of the two quark operator ψ̄Q2ψ is

O
8,C
I=1 ∼ − 2

3
√

2
π0,

(40)

O
8,C
I=0 ∼ 2

3
√

3
η′ − 1

3
√

6
η8.

VII. STRUCTURE OF THE ANOMALOUS
DIMENSION MATRIX

In this section, we expand the discussion of Sec. IV on the
structure of the anomalous dimension matrix to incorporate
the flavor structure discussed in Sec. VI. Equations (36)–(40)
give the SU(3) flavor decomposition of the 4Q and 2Q type
operators. The conservation of flavor in massless QCD implies

that the O
27,A
I=2,1,0 operators in Eq. (36) will not mix with

operators living in a different representation of SU(3) or with
those in a different isospin subgroup. On the other hand, the
octet operators O

8,A
I=1 and O

8,B,C
I=1 can mix with each other. Thus,

the analog of Eq. (21) that relates the bare and renormalized
operators for O27

I=2,1,0 (dropping the A label) is diagonal:

⎛
⎜⎝

O27
I=2

O27
I=1

O27
I=0

⎞
⎟⎠

b

=

⎛
⎜⎝

PI=2 0 0

0 PI=1 0

0 0 PI=0

⎞
⎟⎠
⎛
⎜⎝

O27
I=2

O27
I=1

O27
I=0

⎞
⎟⎠ , (41)

where the vector O27
I is a six-dimensional column vector

corresponding to the Dirac and color structures of the 4Q

operators Q
1,...,6
n=2 of Eq. (18) with flavor structure given by the

27 flavor representation with isospin I appearing in Eq. (36)

O27
I = (

Q
1(0,0)
n=2 ,Q

2(0,0)
n=2 ,Q

3(0,0)
n=2 ,Q

4(0,0)
n=2 ,Q

5(0,0)
n=2 ,Q

6(0,0)
n=2

)T
27,I

,

(42)

where the superscript T denotes the transpose. Note that there
are no 2Q operators in the 27 representation of SU(3)f .
The renormalization constants PI are thus 6 × 6 matrices.
The anomalous dimension matrix for the 27 operators is
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given by

γ 27
I = P−1

I μ
d

dμ
PI . (43)

The octet sector of the anomalous dimension matrix is more
complicated. Operator types (A,B,C) in Eq. (35) all contain
flavor-octet operators, and in general, these three operator
types will mix under renormalization. For flavor structures of

type A) and B) one encounters only four quark operators while
for C) one has the two-quark operators. For convenience, we
embed those of type A) in a ten-component vector O8,A

I and
combine those of type B) and C) into a second ten component
vector, O8,BC . The first six entries of O8,BC are filled by the
Q8,B (4Q) operators and the last four operators are filled by
Q8,C (2Q) operators,

O8,A
I = (

Q
1(0,0)
n=2 ,Q

2(0,0)
n=2 ,Q

3(0,0)
n=2 ,Q

4(0,0)
n=2 ,Q

5(0,0)
n=2 ,Q

6(0,0)
n=2 , 0, 0, 0, 0

)T
8,A,I

,
(44)O8,BC

I = (
Q

1(0,0)
n=2 ,Q

2(0,0)
n=2 ,Q

3(0,0)
n=2 ,Q

4(0,0)
n=2 ,Q

5(0,0)
n=2 ,Q

6(0,0)
n=2 ,Q

7(0)
n=2,Q

7(1)
n=2,Q

8(0)
n=2,Q

8(1)
n=2

)T
8,BC,I

.

With these definitions, the bare and renormalized operators are
related as ( O8,A

I

O8,BC
I

)
b

=
(

LI MI

QI NI

)( O8,A
I

O8,BC
I

)
. (45)

The matrices L, M, N, Q are then 10 × 10 matrices which
have the form

LI =
(

L4Q→4Q
I L4Q→2Q

I

L2Q→4Q
I L2Q→2Q

I

)
,

MI =
(

M4Q→4Q
I M4Q→2Q

I

M2Q→4Q
I M2Q→2Q

I

)
,

(46)

NI=1 =
(

N4Q→4Q
I N4Q→2Q

I

N2Q→4Q
I N2Q→2Q

I

)
,

QI =
(

Q4Q→4Q
I Q4Q→2Q

I

Q2Q→4Q
I Q2Q→2Q

I

)
.

The LI and NI matrices encode the renormalization structure
of the 4Q and 2Q operator structures for the 8A and 8BC
representations, respectively. The matrices MI and QI encode
the mixing of the 4Q and 2Q operator structures between
the 8AB and 8C representations. Many of the submatrices in
LI , MI , NI , QI vanish

L4Q→2Q
I = L2Q→4Q

I = L2Q→2Q
I = M4Q→2Q

I

= N4Q→2Q
I = Q4Q→2Q

I = 0. (47)

All but the L4Q→2Q
I vanish since only 4Q operators appear in

O8,A
I . The remaining sub-blocks M4Q→2Q

I , N4Q→2Q
I , Q4Q→2Q

I

would give rise of mixing of 4Q into 2Q operators (see
Appendix A for more details). However, it is known on general
grounds that such mixing does not arise. A recent modification
of the BFKL formalism in Ref. [25] has shown that operators
containing a larger number of fields are forbidden to mix into
operators containing a smaller number of fields at one loop.
We have verified these results with explicit computation.

VIII. WILSON COEFFICIENTS FOR n = 2

Having outlined the flavor structures of the twist-4 con-
tributions, we now present the Wilson coefficients for the

twist-4 2Q and 4Q operators at leading spin. According to the
formalism established in Ref. [20], the Compton amplitude
at twist-4 naturally divides into two pieces arising from the
graphs of Fig. 5:

−i

∫
d4x eiq·x T[Jμ(x)Jν(0)] = Xμν + Yμν. (48)

The Yμν term arises from the double handbag-type diagrams
(corresponding to the first and last diagram in Fig. 5) and the
Xμν term arises from the remaining diagrams. The explicit
calculations of Xμν and Yμν are given in detail in Ref. [20],
and we summarize the full form of these expressions in
Appendix B. For a leading moment (n = 2) analysis, these
expressions simplify greatly. The Yμν term is given by

Y T =4,n=2
μν = −4g

q6
T μ1μ2

μν O2(0,0)
n=2,μ1μ2

,

T μ1μ2
μν = q2gμ1

μ gμ2
ν − (

gμ1
μ qν + gμ1

ν qμ

)
qμ2 + gμνq

μ1qμ2 ,

(49)

and the Xμν term is given by

XT =4,n=2
μν = − g

2q6

[
qμqν

q2
− gμν

]

× {
2 q · O7(0)

n=2 − 3 q · O3(0)
n=2 − 3 q · O3(1)

n=2

}
− g

2q6

[
gμν − pμqν + pνqμ

p · q
+ q2pμpν

(p · q)2

]

×
{

1

2
q · O3(0)

n=2 + 1

2
q · O3(1) + 5 q · O7(0)

n=2

}
.

(50)

Here q · O is shorthand for qμ1 . . . qμn
Oμ1...μn , while the

explicit form of the operators appearing in Xμν and Yμν in
terms of the canonical operators of Eq. (18) is [20]

 · O2(0,0)
n=2 =  · Q

2(0,0)
n=2 − 2  · Q

4(0,0)
n=2 +  · Q

6(0,0)
n=2 ,

 · O3(0)
n=2 =  · Q

7(0)
n=2, (51)

 · O3(1)
n=2 = − · Q

7(1)
n=2,

 · O7(0)
n=2 =  · Q

2(0,0)
n=2 + 2  · Q

4(0,0)
n=2 +  · Q

6(0,0)
n=2 .

Note that the first term in the RHS of Eq. (50) contributes to
the longitudinal structure function FL while all other terms in
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Eqs. (49) and (50) contribute to F2 whose moments we analyze
in this work.

The foregoing decomposition does not yet reflect any flavor
structure. To avoid introducing unwieldy notation, we simply
indicate this structure below:

 · O2(0,0)
n=2 Flavor Structure A: 27,8,

 · O7(0)
n=2 Flavor Structure B: 8, (52)

 · O3(0,1)
n=2 Flavor Structure C: 8.

We now apply these results to the forward matrix elements
of the vector current correlator in Eq. (48). Several steps are
required: (i) expressing the matrix elements in terms of those
of the individual twist-4 operators Qi,(k,l)

μ1μ2
; (ii) decomposing the

current-current product in terms of the various flavor structures
A), B), and C); and (iii) expressing the latter in terms of the
operators associated with their SU(3) flavor decomposition
given in Eqs. (36) and (37). Starting with the first of these
steps, we write the matrix elements of the twist-4 canonical

basis operators as

〈N | Qi,(k,l)
μ1μ2

|N〉 = Ai,(k,l)
(
pμ1pμ2 − 1

4M2
Ngμ1μ2

)
, (53)

where the A factors are reduced matrix elements encoding the
nonperturbative multiparton correlations. Second, using this
form for the matrix elements in Eqs. (49) and (50), we write
the n = 2 component of Tμν as

Tμν = −i

∫
d4x eiq·x 〈P | T[Jμ(x)Jν(0)] |P 〉

∣∣∣
n=2

= −ω2 dμν

Q2

{
AA + 5

8
AB + 1

16
AC

}

− ω2 eμν

Q2

{
1

4
AB − 3

8
AC

}
, (54)

in agreement with Ref. [36]. Here, we have defined ω2 = 1/x2
B

and have indicated the flavor structures of each matrix element
for clarity, introducing the shorthand notation:

AA ≡ A2,(0,0) − 2A4,(0,0) + A6,(0,0) Flavor Structure: ψ̄Qψψ̄Qψ,

AB ≡ A2,(0,0) + 2A4,(0,0) + A6,(0,0) Flavor Structure: ψ̄Q2ψψ̄ψ,

AC ≡ A7,(0) − A7,(1) Flavor Structure: ψ̄Q2ψ.

The tensors eμν and dμν are written in full in Appendix B. The
coefficients of dμν contribute only to the F2 structure function
whereas the coefficients of eμν contribute to the FL structure
function [20].

We now express the leading moment of the isovector part of
F2 in terms of the foregoing matrix elements. In doing so, we
also carry out the SU(3) decomposition following [32]. The
result is

MI=1
n=2,τ=4(Q2)

=
∫

dxB F I=1
2,τ=4(xB,Q2) = 1

2Q2

∑
j

{
2√
10

C
27,j
A (Q2)A27

A,j

+ 2√
15

C
8,j
A (Q2)A8

A,j + C
8,j
B (Q2)A8

B,j + C
8,j
C (Q2)A8

C,j

}
(56)

≡ M27(Q2) + M8A(Q2) + M8B(Q2) + M8C(Q2). (57)

We have introduced the notation A27 for the matrix element of
O27

I=1 appearing in Eq. (38). The subscripts A, B, C indicate
the specific flavor structure of each operator, e.g., that AB

is the matrix element of an operator of type ψ̄Q2ψψ̄ψ and
AC is the matrix element of type ψ̄Q2ψ , respectively.1 The
explicit factors of 2/

√
10 result from the SU(3) decomposition

of the A,B,C type operators while the C
27,j
A (Q2) are the

1For the flavor 27, the subscript A is clearly redundant, as only the
structure A can yield a 27 after SU(3)f decomposition. However, we
retain the subscript in this case for overall uniformity of notation.

corresponding Wilson coefficients. The index j runs over all
relevant operators in the canonical basis in Eq. (18) [20]. The
values of the Wilson coefficients at an appropriate input scale
(discussed below) are given in Table I.

One may ask whether it is possible to isolate experimentally
the 27-plet and octet contributions to the leading moment.
To this end, we note that for unpolarized DIS processes, the

photon couples to a current we denote by JEM = V3 +
√

1
3V8,

where V signifies the vector nature of the current, and we
have defined V

μ
i = ψ̄ λi

2 γ μψ . Following [32], a similar flavor
decomposition can be done for the electroweak charged
current. The charged current contains both a strangeness-
changing piece and a non-strangeness-changing piece. For
the strangeness-changing part of the charged current, the
isovector 27-plet and octet moments are expressed as linear
combinations of moments of F2 extracted from neutral and
charged current DIS processes (see Ref. [32] for details) so

TABLE I. Tree-level Wilson coefficients C
N,j
k (Q2

0) evaluated at
the input scale Q0. Here, N denotes the SU(3) multiplet while j

runs over the set of isovector canonical operators in Eq. (18). We
have not included Wilson coefficients for operators with j = 8(0)
and j = 8(1) as these coefficients all vanish at the input scale.

C
N,j
k j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7(0) j = 7(1)

C
27,j
A 0 1 0 −2 0 1 0 0

C
8,j
A 0 1 0 −2 0 1 0 0

C
8,j
B 0 5/8 0 5/4 0 5/8 0 0

C
8,j
C 0 0 0 0 0 0 1/16 −1/16
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that we can write

M27
I=1,n=2 =

√
1

10

{
3
(
M

ep
2 − Men

2

)− 1

2 sin2θC

× (
M

νp
2 + M

ν̄p
2 − Mνn

2 − Mν̄n
2

)}
, (58)

and

M8
I=1,n=2 =

√
15

10

{
2
(
M

ep
2 − Men

2

)+ 1

2 sin2θC

× (
M

νp
2 + M

ν̄p
2 − Mνn

2 − Mν̄n
2

)}
. (59)

Thus, through a combination of experiments it is in
principle possible to isolate specific flavor structures that
contribute at twist-4 to the moments of F2.

IX. LEADING LOG RG EVOLUTION

In this section we present results for the Wilson coefficients
of the flavor nonsinglet twist-4 operator combinations. Within
each flavor representation, the RG evolution is affected by
mixing between various operators in the canonical basis. The
evolution of the Wilson coefficients in flavor representation R
is then given by

CR
i

(
Q2

μ2
, g(t)

)
=
∑

j

CR
j (1, g(0))Exp

[
−
∫ t

0
dt ′ γ [g(t ′)]

]
ji

,

(60)

where t = 1/2 ln(Q2/μ2) and the subscripts i, j label the
Wilson coefficients of the canonical operators in Eq. (18).
The Wilson coefficients CR

j (1, g(0)) correspond to the values
obtained in the matching calculation at μ2 = Q2. For leading
log running, the CR

j (1, g(0)) correspond to the tree level values
obtained from the OPE. The Wilson coefficient on the LHS
of Eq. (60) corresponds to the value of the Wilson coefficient
after RG evolution from the initial scale Q2 to the final scale
μ2. With one loop running the evolution of the strong coupling
is given by

g2(t) = g2(0)

1 + 2β0g2(0)t
, (61)

where β0 ≡ 1/(4π )2(11/3 CA − 4/3Tf nf ) and g(0) corre-
sponds to the strong coupling evaluated at μ2 = Q2. To
solve the evolution equation, we first diagonalize the one-loop
anomalous dimension matrix so that

γji[g(t)] = g2(t) Rjm dm� R−1
�i , (62)

where dm� = δm�dm is the diagonalized matrix with eigenval-
ues dm and R denotes the appropriate rotation matrix. The
anomalous dimension matrix elements γji for the various
canonical operators in different flavor representations are
presented in Sec. VII. The evolution equation for the Wilson

coefficients can now be written as

CR
i

(
Q2

μ2
, g(t)

)

=
∑
j,m

CR
j (1, g(0))Exp

[
−
∫ t

0
dt ′

g2(0)dm

1 + 2β0g2(0)t ′

]
RjmR−1

mi .

(63)

The Wilson coefficients are evolved from the scale Q2 to the
scale of the nonperturbative matrix elements which we denote
as μ2 = Q2

0 and refer to as the input scale. Thus, in terms of the
latter the Q2 dependence of the Wilson coefficients is given by

CR
i

(
Q2

Q2
0

, g(t0)

)
=
∑
j,m

CR
j (1, g(0))

× exp

[
−
∫ t0

0
dt ′

g2(0)dm

1 + 2β0g2(0)t ′

]
×RjmR−1

mi , (64)

where t0 = 1/2 ln(Q2/Q2
0) and CR

j (1, g(0)) are the tree-level
values determined from the OPE at the matching scale
Q2

0 = Q2.
The above expression can be simplified further to give

CR
i

(
Q2

Q2
0

, g(t0)

)
=
∑
j,m

CR
j (1, g(0))

×
[

1 + β0g
2(0) ln

Q2

Q2
0

]− dm
2β0

RjmR−1
mi ,

(65)

where

g2(0) = 1

β0 ln Q2

�2

(66)

so that

CR
i

(
Q2

Q2
0

, g(t0)

)
=
∑
j,m

CR
j (1, g(0))

[
1 + ln

(
Q2/Q2

0

)
ln(Q2/�2)

]− dm
2β0

×RjmR−1
mi , (67)

In Fig. 6, we plot the RG evolution of the Wilson coefficients
in the isovector combination. We have used the input scale
Q2

0 = 5 GeV2, corresponding to the scale at which existing
theoretical evaluations of the nonperturbative matrix elements
have been performed (see Sec. X below) and the tree-level
Wilson coefficients given in Table I. We have chosen nf = 3
in Fig. 6 which is consistent with the SU(3)f decomposition.
At the top of each plot, the notation CR

A,B,C denotes the
Wilson coefficient in representation R and of the type A,B,C
corresponding to flavor structures ψ̄Qψψ̄Qψ , ψ̄Q2ψψ̄ψ ,
and ψ̄Q2ψ , respectively. Note that we evolve the coefficients
to smaller rather than larger values of Q2 since we are
interested in the kinematic regime relevant to the CLAS
analysis and since the scale Q2

0 associated with existing
theoretical matrix element input lies above this region.

Several features emerge from Fig. 6. First, several of the
Wilson coefficients that vanish at the input scale become
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FIG. 6. Evolution of Wilson coefficients using Eq. (67). The flavor representation of each coefficient is indicated at the top of each plot
[see Eq.(56)]. As input to Eq. (67), we have taken � = 0.3 GeV and nf = 3.

nonvanishing and significant in magnitude at lower scales due
to operator mixing. Second, the coefficient C

8,j
C for j = 7(1)

changes sign, going through zero near Q2 = 2 GeV2. All other
coefficients increase in magnitude with decreasing Q2. We
find no satisfying explanation for the particular behavior of
C

8,j
C for j = 7(1) other than that its tree-level value is rather

small and that there exist various contributions from operator
mixing having opposite signs. Together, these features lead
to the possibility that significant cancellations among various
operator contributions may occur at one scale—leading to a
suppressed twist-four effect—but that these cancellations are
broken at other scales by the Q2 evolution. Alternately, the
overall twist-four contribution to the leading moment may
be relatively small at all scales due to suppressed values of
the operator matrix elements at the input scale. We explore
these possibilities in the following sections.

X. HIGHER TWIST MATRIX
ELEMENTS—THEORETICAL INPUT

In order to obtain a prediction for MI=1
n=2,τ=4(Q2), we now

require values of the hadronic matrix elements of the twist-4
operators at the input scale Q0 [see Eq. (56)]. Knowledge
of higher twist quark and gluon correlators in hadrons is of
fundamental interest in order to understand the structure of
baryons and mesons on the basis of QCD. These matrix ele-
ments are between hadronic states, making model independent
computations challenging. However, there do exist attempts in

the literature to compute twist-4 matrix elements at leading
spin on the lattice [35]. Due to the complicated mixings with
lower dimensional operators however, the analysis performed
in [35] was restricted to operators of the specific flavor
channels outlined in Sec. VI. An alternate phenomenological
approach was used in Ref. [36]. In what follows, we draw on
the results from these two studies to determine nonperturbative
input for an initial, illustrative analysis of MI=1

n=2,τ=4(Q2).
Before proceeding we observe that the aforementioned

matrix element calculations provide only partial input for
the evaluation of the RHS of Eq. (56). The lattice study of
Ref. [35] gives only a value for the combination A27

A appearing
in Eq. (55), at the input scale, while the work of Ref. [36] gives
only the octet contributions A8

B,C . Away from the input scale,
one no longer has the specific linear combinations given in
Eq. (55), owing to the evolution of the Wilson coefficients. A
robust prediction for the evolution of MI=1

n=2,τ=4(Q2) would
require values for the individual contributions to AA,B,C .
Moreover, we could find no evaluation of the octet contribution
A8

A, nor do there appear to exist any computations of the
matrix elements whose Wilson coefficients vanish at the input
scale but become non-zero at lower scales. Consequently, we
will adopt some reasonable ansatz for the individual matrix
elements, motivated by the computations that do exist but with
the caveat that a complete computation will require values for
all matrix elements.

To proceed, we first consider the combination A27
A . The 4Q

operators introduced in Ref. [35] have been evaluated on the
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lattice using Wilson fermions in the quenched approximation.
Phenomenological constraints for twist-4 2Q operators were
estimated in Ref. [36]. The reduced matrix element of the 4Q
operator A27

A shown in Eq. (56) at an input scale of Q2
0 ≈

5 GeV2 was computed on the lattice and found to be

A27,I=1
A

∣∣
Latt = (−10.4 ± 1.6) × 10−4 GeV2. (68)

We take this to be the value of the reduced matrix element
A27

A appearing in Eq. (56). Neglecting the Q2 dependence
associated with evolution, the corresponding contribution to
the Nachtmann moment for F2 at leading spin is then [35]

M
27, I=1
n=2,τ=4(Q2) =

∫ 1

0
dx F

27,I=1
2,Latt (x,Q2)

= −0.001(1)
m2

pαs

Q2
. (69)

We note that the matrix element of A27,I=1
μν causes the moment

to be quite small relative to the flavor nonsinglet twist-2
operator, whose corresponding contribution is 0.14 at the same
input scale (see Refs. [42,43]).

We could find no corresponding lattice computation of A8
A

which appears in Eq. (56). As a benchmark, we first take its
value to be equal toA27

A at the input scale Q2
0 ≈ 5 GeV2, though

a larger magnitude for A8
A is possible (see below). This leaves

the twist-4, 4Q operator of type B) and the 2Q operator of type
C). We were also unable to find lattice calculations of these
operator matrix elements in the literature. As an alternative,
we use the phenomenological estimates obtained in Ref. [36]
that rely, in part, on information extracted from DIS data from
both CERN and SLAC. The 2Q and 4Q operators studied in
Ref. [36] have the forms

Qg
μν = ig ψ̄{Dμ, F̃να}γ αγ5Q

2ψ, (70)

Qc2μν = g2ψ̄γμQ2τ aψ ψ̄γντ
aψ. (71)

After integrating by parts, the 2Q operator Qg is the tree-
level 2Q combination for the octet combination appearing in
Eq. (54):

Qg
μν = ig ψ̄(DμF̃να + F̃ναDμ)γ αγ5Q

2ψ

→ ig ψ̄(−←−
D μF̃να + F̃να

−→
D μ)γ αγ5Q

2ψ

= Q7,(0)
μν − Q7,(1)

μν . (72)

Following [36], we denote the reduced matrix elements these
operators Ag and A2, respectively. For the proton (neutron)
they are written

Ag
p(n) = Q2

u K
g
u(d) + Q2

d K
g
d(u), (73)

A2
p(n) = Q2

u K2
u(d) + Q2

d K2
d(u), (74)

where

K
g
u(d) = 2ig

M2
〈P |ū{D+, F̃+μ}γ μγ 5 u|P 〉, (75)

K2
u = 2

M2
〈P |(ūγ+τ au) (ūγ+τ au)|P 〉, (76)

K2
d = 2

M2
〈P |(d̄γ+τ ad) (d̄γ+τ ad)|P 〉, (77)

and γ+ = 1/
√

2(γ0 + γ3). The neutron matrix elements can
be obtained from isospin symmetry and the strangeness
contribution has been neglected to simplify the analysis. The
range of possible values for K

g
u and K2

u (see Ref. [36] for
details) are

−0.585 GeV2 � Kg
u � −0.238 GeV2, (78)

−0.318 GeV2 � K2
u � 0.203 GeV2. (79)

The values for K
g,2
d were then computed by introducing a

flavor ansatz, e.g.,

K
g,2
d /Kg,2

u 	
∫

dx(d(x) + d̄(x))x∫
dx(u(x) + ū(x))x

≡ β. (80)

Where u(x), d(x) are the twist-2 parton distribution functions
and β = 0.476 at Q2 = 5 GeV2. Finally, the isovector com-
bination corresponds to the difference Ag,2

p − Ag,2
n the final

results are

A8
B ≡ A2

p − A2
n = 1

3 (1 − β)K2
u,

(81)
A8

C ≡ Ag
p − Ag

n = 1
3 (1 − β)Kg

u

from the range of K
g,2
u , the final values for the reduced matrix

elements appearing in Eq. (56) are

−0.10 GeV2 � A8
C � −0.04 GeV2,

(82)
−0.06 GeV2 � A8

B � 0.04 GeV2.

For A8
C , we take the central value in this range. However for

A8
B , it is possible to choose a range of values both positive

and negative and have chosen three representative cases,
AB = −0.06 GeV2, AB = 0.0 GeV2, and AB = 0.04 GeV2.
We assume a theoretical uncertainty in each value to be of the
order of the lattice uncertainty for the 4Q matrix element A27

A

in Eq. (68). A summary of all matrix element inputs is given
in Table II.

We now observe that in order to predict the logarithmic
corrections to the 1/Q2 scaling of the MI=1

n=2,τ=4(Q2), we
require knowledge of individual operator matrix elements that
contribute to A27,8

A and A8
B,C since the Wilson coefficients for

the contributing operators (labelled “j”) do not have identical
evolution. The matrix elements of these operators at the input
scale [see Eq. (55)] are constrained by the values listed in
Table II. These constraints are insufficient to compute the
individual values of the matrix elements appearing on the RHS
of Eq. (55) however. To do so and for purposes of illustration,
we have assumed several relationships among the Aj,(k,l).
To illustrate our method, we introduce a shorthand for the
four-quark operators of type A and B appearing in Eq. (55)

Aj,c
± = Aj ;2 ± 2Aj ;4 + Aj ;6, (83)

Aj
± = Aj ;1 ± 2Aj ;3 + Aj ;5, (84)

where j denotes the flavor structures of the 4Q operators and
takes the value A or B [see Eq. (55)]. The integers (1–6) specify
the individual matrix element of the basis operators appearing
in Eq. (18), and c denotes the presence of an SU(3) color
generator. Using the above relationships, and the computation
of the AA,c

± matrix elements from the lattice, we have the
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TABLE II. Reduced matrix elements used in computing MI=1
n=2,τ=4(Q2). Note that the input for the A8

A represent two
different ansatz.

Operator Flavor rep. Value Method

A27
A ψQψψQψ −10.4 × 10−4 GeV2 Lattice [35]

A8
A ψQψψQψ −10.4 × 10−4 GeV2 A8

A ∼ A27
A |Latt

A8
A ψQψψQψ −10.4 × 10−3 GeV2 A8

A ∼ 10 × A27
A |Latt

A8
B ψQ2ψψψ −0.06 � AB � 0.04 GeV2 Phenomenology [36]

A8
C ψQ2ψ −0.1 � AC � −0.04 GeV2 Phenomenology [36]

following constraints for the 4Q operators:

AA;4 = 1
4 (AA,c

+ − AA,c
− ), (85)

AA;6 = 1
2 (AA,c + AA,c

− ) − AA;2. (86)

Thus, AA;4 is determined by the lattice values for AA,c
+ and

AA,c
− , while AA;2 remains unconstrained. We take the value of

AA;2 to be 25% smaller than the matrix elements AA,c
± and use

a similar set of relations for the AB,(c)
± matrix elements. The

above procedure is applied to all 4Q matrix elements regardless
of flavor. The values of the octet matrix elements of type A (A8

appearing in Table II) are taken to equal the flavor 27 matrix
elements.

For the two-quark operators, the analysis in [36] along with
Eq. (72) constrains the combination

AC = A7,k=0 − A7,k=1. (87)

We have made the following ansatz to compute the individual
matrix elements (A7,k=0,1):

A7,k=0 = −A7,k=1 = 1
2AC. (88)

This leaves the 2Q matrix elements A8,k=0,1 appearing in
Eq. (18). We have assumed these matrix elements are equal
to A7,k=0,1. A complete Table of each matrix element, their
flavor structure and the methods used to compute them can be
found in Appendix E.

XI. LEADING MOMENT ANALYSIS

Using the input discussed above, we show illustrative
results for the 27 and 8 contributions for values of Q2

in the resonance region in Fig. 7. Under the assumptions
used for the matrix elements, the twist-4 contributions to the
moment are typically quite small in the resonance region. For
A8

A ∼ A27
A |Latt, the flavor octet contribution to the moment

is determined largely by the AB,C matrix elements since
A27

A |Latt is quite small. Moreover, for positive values of A8
B ,

cancellations occur within the octet sector, further reducing
the overall octet contribution.

The total contribution to MI=1
n=2,τ=4(Q2) is given in Fig. 8.

We plot two representative cases for differing values of A8
A.

In the left-hand plot, we have taken A8
A ∼ A27

A |Latt. In the
event that the behaviors of the leading proton and isovector
moments are similar, this value would be disfavored by the
CLAS data. CLAS has measured the twist-4 moment to be
positive (Ref. [11]) in the range of Q2 shown in Fig. 8. In
the right-hand plot, we have taken A8

A ∼ 10 × A27
A |Latt. Here,

a range of small positive values of A8
B yields an isovector

moment which is qualitatively similar to the CLAS data for
the proton. It is possible, then, that the CLAS data provide
a hint of a hierarchy among the twist-4 operator matrix
elements, though a definitive statement will require data on
F2 for the neutron as well as an improvement in overall
experimental precision. At present, the experimental error on
the determination of the twist-4 contribution to the leading
moment of the proton F2 structure function is ±0.015 for
Q2 ≈ 1 GeV2 [4,11], while the magnitude of the leading twist
contribution to the isovector moment is ≈ 0.1 throughout
the indicated region. The systematic error in obtaining the
moments from data consists of genuine uncertainties in the
data, as well as uncertainties in the evaluation procedure.

For comparison to the theory predictions, we note that
the CLAS data for F2 is extracted from electron-proton DIS
and thus is not the linear combination of moments shown in
Eqs. (58) and (59). The experimental data are also not separated
into flavor singlet and nonsinglet channels, and thus include
the effects of the gluonic operators shown in Eq. (19). One can
see from Fig. 8 that the experimental precision in extracting
the leading moment for higher twist does not yet allow one to
disentangle the separate flavor channels computed here. Next
generation experiments may be required to probe the higher
twist flavor contributions to the leading moment of F2.

Finally, we explore the possibility that the twist-4 contri-
bution may be suppressed at one scale due to cancellations
between operator contributions and that Q2 evolution may
lead to a breakdown of this cancellation at other scales. In
Fig. 9, we have tuned the values of A8

B and A8
C such that the

total octet contribution to the isovector moment cancels the
flavor 27 contribution at Q2 ≈ 2 GeV2. The total moment is
given by the dashed curve in Fig. 9. The chosen values of the
reduced matrix elements are consistent with Table II and are
given by

A27
A = (25, −1.3, 25, −1.0, 25, −1.8)T × 10−4 GeV2,

(89)

A8
A = (25, −1.3, 25, −1.0, 25, −1.8)T × 10−4 GeV2,

(90)

A8
B = (1.96, 1.96, 1.96, 1.96, 1.96, 1.96)T × 10−3 GeV2,

(91)

A8
C = (−0.035, 0.035, −0.035, 0.035)T GeV2. (92)

The sum of the 27 and octet moment is given by the dashed
curve in Fig. 9 which vanishes at the input scale of Q2 =
5 GeV2. At smaller values of Q2, the dashed curve deviates
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FIG. 7. (Color online) Flavor decomposition of MI=1
n=2,τ=4(Q2), using the logarithmic evolution discussed in Secs. VIII and IX and the

matrix elements in Table IV. The values of the AB octet matrix elements are shown above each plot. The notation 〈Q8
B〉 follows the notation in

Table IV. The specific values listed above each plot are used for all type-B matrix elements contributing to the moment. Central values were
used for the two-quark octet operators for each curve.

from zero. We have multiplied the moment by Q2 so that one
can see more clearly that the spoiling of this cancellation is
due to QCD evolution. The magnitude of the departure from
this cancellation is well below the present CLAS experimental
error, so an observation of this effect—should it be realized
in nature—would again require significant improvements in
experimental precision, at least for the leading moment.

XII. CONCLUSIONS AND OUTLOOK

In this work, we have provided the first complete computa-
tion of the logarithmic evolution of twist-4 contributions to the
flavor nonsinglet, leading moment of the structure function F2.
Our results can be employed to analyze future deep-inelastic
scattering experiments carried out in the resonance regime,
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FIG. 8. (Color online) Total contribution to MI=1
n=2,τ=4(Q2), see Eq. (56). In the left-hand plot we have taken A8

A ∼ A27|Latt, in the right-hand
plot we have taken A8

A ∼ 10 × A27
A |Latt. In each plot, the three curves represent different values for the reduced matrix element A8

B . We have
taken the central values appearing in Table IV for the A8

C matrix elements for both plots.
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FIG. 9. (Color online) We have tuned the values of A8
B and A8

C

to cancel against the flavor 27 moment at Q2 ≈ 5 GeV2. The chosen
values for the reduced matrix elements, shown in Eqs. (89)–(92), are
consistent with Table II. Each value is an element of a column vector
which multiplies the corresponding Wilson coefficient in Eq. (56). A
complete list of the reduced matrix elements including the methods
used in arriving at their final values can be found in Table IV. We
have multiplied all curves by Q2 to illustrate the breaking of this
cancellation is due to QCD evolution.

going beyond the simple ansatz given in Eq. (3) and utilized
in Refs. [11,18,19]. In the present instance, we have used our
calculation to carry out an illustrative phenomenological study
the magnitude and Q2 dependence of the leading moment,
drawing on existing lattice computations and phenomenologi-
cal determinations of a subset of the operator matrix elements
and plausible ansatz for the others. Despite lacking a complete
set of non-perturbative QCD matrix element computations, we
are able to draw a few broad conclusions from our study:

(i) Theoretically one expects the overall scale of twist-4
contributions to the leading, flavor nonsinglet moment
to be small and consistent in magnitude with the results
obtained from the CLAS analysis [11].

(ii) The suppressed scale may result either from all matrix
elements individually being small or a cancellation
between various twist-4 contributions.

(iii) The CLAS data may provide early hints of a hierarchy
among operator matrix elements, possibly indicating a
larger magnitude for the flavor 8 than for the flavor 27.

(iv) Additional data on F2 for the neutron as well as
improvement in overall experimental precision will
be needed to further disentangle contributions from
different flavor channels as well as to observe a
cancellation scenario if it exists.

(v) A full QCD prediction for the leading moment re-
quires computation of several nonperturbative matrix
elements.

To amplify on these remarks, we note that the opposite
sign behavior in Fig. 7 allows for cancellation effects within
twist-4. Such cancellations have been alluded to as the reason
the higher twist moments are essentially independent of Q2

in the resonance region [11], leading to a scaling behavior in
the moment of F2(x,Q2) known as Bloom-Gilman duality.
Within past analyses, however, cancellations are typically

found between the twist-4 and higher twist pieces in the twist
expansion. Here we find evidence that even within twist-4,
there is a possibility of cancellation independent of the higher
twist matrix elements being small. However, we note that the
twist-4 contribution to the moment is quite small over a wide
range of Q2. This suggests that the cancellation effects within
twist-4 may not in themselves be the cause of the twist-4
moment being so modest and that small size of the individual
matrix elements is also responsible.

This issue can be viewed as being due to the relative sizes
of the matrix elements. We note that the scale of both the
27 and 8 moments is set by the matrix elements of the twist-4
operators, and given different, possibly larger matrix elements,
one may see adequate variation in the moment at a higher scale
in Q2. The current experimental precision in extracting the
leading moment for higher twist does not allow a determination
of the separate flavor channels computed here. Thus probing
cancellation effects would require higher level of experimental
precision. From the theoretical perspective, one need not stop
at a leading moment analysis however.

Higher twist effects are expected to play a larger role at a
given Q2 for larger moment. Heuristically this is due to the
fact that the resonance region weights the large-x region more
heavily and is thus dominated by larger-n moments. This effect
is clearly illustrated in the CLAS data for ep scattering where
the moment is decomposed in terms of the parametrization
given in Eq. (3). It is thus desirable to compute the anomalous
dimension for the operators appearing in Eq. (18) for arbitrary
n since experiments are more sensitive to higher twist effects
for larger n. The technical challenges encountered in going
beyond the leading moment are quite demanding however,
both from perturbative QCD viewpoint and also from a
lattice QCD perspective. One of the main advantages in
performing a leading moment analysis is due to the already
existing lattice estimates of the tree level 4Q operators, and
we know of no lattice computation of these matrix elements
beyond leading spin that exists in the literature. Due to these
technical challenges, we leave a higher spin analysis of the
type presented in here for future work.
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APPENDIX A: ANOMALOUS DIMENSION MATRICES

We give here the anomalous dimension matrices for
operators introduced in Sec. VI. When computing the one
loop corrections to these operators, each operator was inserted
into a Green’s function with the same number of external
legs as the operator itself, and dimensional regularization
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was employed where d = 4 − 2ε. For the 2Q Feynman
diagrams shown in Eq. (29), we have calculated each using
the background field method and have chosen the Feynman
gauge for all calculations [40]. Incorporating operator mixing,

the anomalous dimension is, in general, a matrix in flavor
space.

Following the notation in Sec. VII the 27-plet anomalous
dimension matrix is

⎛
⎜⎝

O27
I=2

O27
I=1

O27
I=0

⎞
⎟⎠

b

=

⎛
⎜⎝

PI=2 0 0

0 PI=1 0

0 0 PI=0

⎞
⎟⎠
⎛
⎜⎝

O27
I=2

O27
I=1

O27
I=0

⎞
⎟⎠ , (A1)

PI=2,1,0 = g2

4π2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
2

35
6 0 0 0 0

119
18

35
6 0 0 0 0

0 0 11
2

47
6 0 0

0 0 127
18

20
3 0 0

0 0 0 0 11
2

35
6

0 0 0 0 119
18

35
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

The anomalous dimension matrix for the octet sector has the schematic form( O8,A
I=1

O8,B,C
I=1

)
b

=
(

LI=1 MI=1

QI=1 NI=1

)( O8,A
I=1

O8,B,C
I=1

)
. (A3)

And each of L, M, Q, N are divided according to the mixings between two and 4Q operators

LI =
(

L4Q→4Q
I L4Q→2Q

I

L2Q→4Q
I L2Q→2Q

I

)
, N =

(
N4Q→4Q

I N4Q→2Q
I

N2Q→4Q
I N2Q→2Q

I

)
,

(A4)

MI =
(

M4Q→4Q
I M4Q→2Q

I

M2Q→4Q
I M2Q→2Q

I

)
, QI =

(
Q4Q→4Q

I Q4Q→2Q
I

Q2Q→4Q
I Q2Q→2Q

I

)
.

For LI=1, the only nonzero sector is the four-quark mixing back to four-quark piece:

LI=1 =
(

L4Q→4Q
I=1 0

0 0

)
where L4Q→4Q

I=1 = g2

4π2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
2

35
6 0 0 0 0

119
18

35
6 0 0 0 0

0 0 11
2

47
6 0 0

0 0 127
18

20
3 0 0

0 0 0 0 11
2

35
6

0 0 0 0 119
18

35
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A5)

For MI=1, we find its anomalous dimension to be

MI=1 =
(

M4Q→4Q
I=1 0

0 0

)
where M4Q→4Q

I=1 = g2

4π2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 17
2 0 17

2 0 0

0 64
9 0 64

9 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 17
2 0 17

2

0 0 0 64
9 0 64

9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

The anomalous dimension for QI=1,0 vanishes. For NI=1 the anomalous dimension has a schematic form

NI=1 =
(

N4Q→4Q
I=1 0

N2Q→4Q
I=1 N2Q→2Q

I=1

)
10×10

, (A7)
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where the nonvanishing sectors of this matrix are

N4Q→4Q
I=1 = g2

4π2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
2

13
2 0 15

2 0 0
119
18

58
9 0 67

9 0 0

0 0 11
2

47
6 0 0

0 43
6

127
18

43
6 0 7

0 0 0 15
2

11
2

13
2

0 0 0 67
9

119
18

58
9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, N2Q→2Q
I=1 = g2

4π2

⎛
⎜⎜⎜⎜⎝

1151
144

415
144

19
8 − 25

24
193
72

187
24

31
9 − 16

9

89
144

121
144

587
72

145
72

29
96

23
288

59
48

107
16

⎞
⎟⎟⎟⎟⎠ ,

N2Q→4Q
I=1 = g2

4π2

⎛
⎜⎜⎜⎜⎝

16
27

61
72 − 8

27
9
4 − 8

27
181
72

8
27 − 37

36
8

27
13
18 − 16

27
23
36

− 1
27 0 − 2

27
1
2 − 1

27 0

− 1
27 − 41

144
2
9 − 7

24 − 1
27 − 41

144

⎞
⎟⎟⎟⎟⎠ . (A8)

The matrix LI=0 has only one, nonvanishing piece

LI=0 =
(

L4Q→4Q
I=0 0

0 0

)
where L4Q→4Q

I=0 = g2

4π2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
2

35
6 0 0 0 0

119
18

35
6 0 0 0 0

0 0 11
2

47
6 0 0

0 0 127
18

20
3 0 0

0 0 0 0 11
2

35
6

0 0 0 0 119
18

35
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A9)

Similarly MI=0 has only one sector which does not vanish, it is

MI=0 =
(

M4Q→4Q
I=0 0

0 0

)
where M4Q→4Q

I=0 = g2

4π2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 17
2 0 17

2 0 0

0 64
9 0 64

9 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 17
2 0 17

2

0 0 0 64
9 0 64

9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A10)

Finally, this leaves NI=0:

NI=0 =
(

N4Q→4Q
I=0 0

N2Q→4Q
I=0 N2Q→2Q

I=0

)
10×10

. (A11)

The three nonvanishing sectors of NI=0 are

N4Q→4Q
I=0 = g2

4π2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

11
2

13
2 0 15

2 0 0
119
18

58
9 0 67

9 0 0

0 0 11
2

47
6 0 0

0 0 127
18

43
6 0 85

12

0 0 0 15
2

11
2

13
2

0 0 0 67
9

119
18

58
9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, N2Q→2Q
I=0 = g2

4π2

⎛
⎜⎜⎜⎜⎝

1151
144

415
144

19
8 − 25

24
193
72

187
24

31
9 − 16

9

89
144

121
144

587
72

145
72

29
96

23
288

59
48

107
16

⎞
⎟⎟⎟⎟⎠, (A12)

N2Q→4Q
I=0 = g2

4π2

⎛
⎜⎜⎜⎜⎝

16
27

61
72 − 8

27
9
4 − 8

27
181
72

8
27 − 37

36
8
27

13
18 − 16

27
23
36

− 1
27 0 − 2

27
1
2 − 1

27 0

− 1
27 − 41

144
2
9 − 7

24 − 1
27 − 41

144

⎞
⎟⎟⎟⎟⎠. (A13)
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APPENDIX B: WILSON COEFFICIENTS

We list here the full expressions for the Wilson coefficients derived in [20]. Starting with the forward Compton amplitude,

Tμν = −i

∫
d4x eiq·x〈N |T (Jμ(x)Jν(0))|N〉

=
∑
i,n

(
2

−q2

)n [(
gμν − qμqν

q2

)
qμ1 . . . qμn

Cn
L,iOi

L,μ1...μn

− (gμμ1gνμ2q
2 − gμμ1qνqμ2 − gνμ2qμqμ1 + gμνqμ1qμ2 )qμ3 . . . qμn

Cn
2,iOi

2,μ1...μn

]

=
∑
i,n

[(
gμν − qμqν

q2

)
ωnCn

L,iAi
L,n −

(
2

−q2

)n

{pμpνq
2 − pμqνq · p − pνqμq · p + gμν(q · p)2}(q · p)n−2Cn

2,iAi
2,n

]

=
∑
i,n

[
eμνC

n
L,iAi

L,n + dμνC
n
2,iAi

2,n

]
ωn. (B1)

In the second line above, we have parametrized the symmetric and traceless matrix elements in terms of the nucleon
four-momenta,

〈N |O(i),τ=4
L,μ1...μn

|N〉 = A(i),τ=4
L,n (pμ1 . . . pμn

− traces)

〈N |O(i)τ=4
2,μ1...μn

|N〉 = A(i),τ=4
2,n (pμ1 . . . pμn

− traces).

The sum over n is even, i distinguishes the type of operator, and n denotes the spin of the operator, we have also used the
shorthand expressions

eμν = gμν − qμqν

q2
, (B2)

dμν = −gμν + (pμqν + qνpν)

(p · q)
− q2 pμpν

(p · q)2
, (B3)

ω = −2 p · q

q2
. (B4)

The coefficients of the tensor eμν contribute to FL and whereas the coefficients of dμν contribute to F2. The full expressions for
Yμν and Xμν are [21]

Y T =4
μν = − g

q6

∞∑
n=2(even)

(
2

q2

)n−2

T μ1μ2
μν qμ3 . . . qμn

×
n−2∑
k=0

n−2−k∑
l=0

{
O1(k,l)

n,μ1...μn

[
n!

k!l!(n − 1 − k − l)!

[
1

n − k
− 1

n − l

]
+ (−1)k+l (l + k + 1)!

k!l!

[
1

k + 1
− 1

l + 1

]]

+ O2(k,l)
n,μ1...μn

[
n!

k!l!(n − 1 − k − l)!

[
1

n − k
+ 1

n − l

]
+ (−1)k+l (l + k + 1)

k!l!

[
1

k + 1
+ 1

l + 1

]]}
, (B5)

XT =4
μν = g

∞∑
n=2even

[
− 2

q2

]n+1 1

(n + 2)2

{[
qμqν

q2
− gμν

][
−(n + 1)

n−1∑
k=0

q · O3(k)
n − 2(n + 1)

n−3∑
k=0

n−3−k∑
l=0

(l + 1)q · O5(k,l)
n

− 4
n−3∑
k=0

n−3−k∑
l=0

(k + 1)(n − 2 − k − l)q · O5(k,l)
n + 2(n + 1)

n−3∑
k=0

n−3−k∑
l=0

(l + 1)q · O6(k,l)
n

+ 2
n−2∑
k=0

(−1)k(k + 1)(n − 1 − k)q · Ok
n

]
+
[
gμν − pμqν + pνqμ

p · q
+ q2pμpν

(p · q)2

]
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×
[

n(n − 1)

4

n−1∑
k=0

q · O3(k)
n − (5n + 4)

2

n−3∑
k=0

n−3−k∑
l=0

(l + 1)q · O5(k,l)
n

− (n + 8)
n−3∑
k=0

n−3−k∑
l=0

(k + 1)(n − 2 − k − l)q · O5(k,l)
n + (5n + 4)

2

n−3∑
k=0

n−3−k∑
l=0

(l + 1)q · O6(k,l)
n

+ (n + 8)

2

n−2∑
k=0

(−1)k(k + 1)(n − 1 − k)q · O7(k)
n

]}
, (B6)

where

T μ1μ2
μν = q2gμ1

μ gμ2
ν − (

gμ1
μ qν + gμ1

ν qμ

)
qμ2 + gμνq

μ1qμ2 (B7)

for n = 2, k = l = 0, for example, we find

YT =4,n=2
μν = −4g

q6
T μ1μ2

μν O2(0,0)
n=2,μ1μ2

(B8)

and

XT =4,n=2
μν = − g

2q6

[
qμqν

q2
− gμν

] {
2 q · O7(0)

n=2 − 3 q · O3(0)
n=2 − 3 q · O3(1)

n=2

}

− g

2q6

[
gμν − pμqν + pνqμ

p · q
+ q2pμpν

(p · q)2

]{
1

2
q · O3(0)

n=2 + 1

2
q · O3(1) + 5 q · O7(0)

n=2

}
. (B9)

Using the parametrization in Eq. (53) reproduces the expres-
sion given in Sec. VIII.

APPENDIX C: OPERATOR REDUCTION

Organizing the pole structure of the one loop corrections
to the 2Q operators is a nontrivial task due to the appearance
of various noncanonical, gauge-invariant operators appearing
at the one-loop level. The following list of identities was used
repeatedly to remove each noncanonical operator in favor of
canonical ones:

1. γ αγ βγ χ = γ χgαβ + γ αgβχ − γ βgαχ + iγ σ γ 5εαβχσ ,

2. (εαβμλγ λγ 5−→D β)ψ = −i(Dμγ α − Dαγ μ)ψ,

3. ψ̄(εαβμλγ λγ 5←−D α) = −iψ̄(Dμγ β − Dβγ μ),
4. D2 = /D /D − 1

4 [γ α, γ β][Dα,Dβ],
5. DμFμν = 1

2ig
([Dμ, [Dμ,Dν]] + D2Dν − DνD

2),
6. [Dα,Dβ] = igFαβ,
7. /Dψ = 0,
8. [Dβ, Fβρ] = gτa

∑
f ψ̄f γ ρτ aψf .

As a simple example, one such noncanonical oper-
ator encountered in the one-loop analysis of Q

(0,0)
7 is

�μ�ν ψ̄γμ
←−
D νD

2ψ . Applying identity 4. and identity 1. we
find this operator is easily expressed in terms of a linear
combination of canonical operators:

= ψ̄ ��� · ←−D ( /D /D − 1
4 [γ α, γ β ][Dα,Dβ)ψ

= − 1
4 ψ̄ ��� · ←−

D [γ α, γ β][Dα,Dβ]ψ

= − 1
4�ρψ̄γ ρ� · ←−

D [γ α, γ β ]Fαβψ

= − 1
4�ρψ̄� · ←−

D (2iγ σ γ 5εαβρσ + 2γ βgαβ − 2γ αgβρ)Fαβψ

= − 1
2�ρψ̄(� · ←−D (iγ σ γ 5)F̃ρσ )ψ − 1

2 ψ̄(� · ←−
D �f )ψ

− 1
2 ψ̄(� · ←−

D �f )ψ

= − 1
2 ψ̄(

←−
d ˜�f )ψ + iψ̄(

←−
d �f )ψ

= − 1
2Q7

k=1 + Q8
k=1.

An exhaustive proof that all noncanonical, gauge invariant
operators can be reduced to canonical form can be found in
[21].

APPENDIX D: RENORMALIZATION GROUP RUNNING

The μ dependence of the coefficient functions on Q2 is
given by the solution to the RG equation

μ
d

dμ
Cj

nτ = γ ij
n Ci

nτ (D1)

the standard solution is given by

Ci
nτ (Q2/μ2, g) 	

∑
j

Cj
nτ (1, ḡ(t ′)) T

×
[

exp

{
−
∫ t

0
dt ′ γnτ (ḡ(t ′))

}]
ji

. (D2)

And for a one-loop analysis, the T ordering can be dropped
when evaluating the integral. Using the operator rescaling
outlined in Sec. V in the strong coupling, we may write
γji(ḡ(t)) = ḡ2(t)dji , and dropping the subscript n, τ for

025202-20



HIGHER TWIST IN ELECTROPRODUCTION: FLAVOR . . . PHYSICAL REVIEW C 88, 025202 (2013)

TABLE III. Reduced matrix elements for the four-quark operators of each flavor representation. All values have been
computed at the input scale 5 GeV2 and the third column summarizes the methods used to compute the final value.

j = A, (I = 1, 27) − ψ̄Qψ ψ̄Qψ Value (GeV2) Method

Ac
+ 5.2 × 10−3 Lattice [35]

Ac
− −10.4 × 10−4 Lattice [35]

A+ 9.8 × 10−3 Lattice [35]
A− 0.0 Lattice [35]
j = A, (I = 1, 8) − ψ̄Qψ ψ̄Qψ Value (GeV2) Method
Ac

+ 5.2 × 10−3 27 ≡ 8A Assumption
Ac

− −10.4 × 10−4 27 ≡ 8A Assumption
A+ 9.8 × 10−3 27 ≡ 8A Assumption
A− 0.0 27 ≡ 8A Assumption
j = B, (I = 1, 8) − ψ̄Q2ψ ψ̄ψ Value (GeV2) Method
Ac

+ −0.06 � Ac
+ � 0.04 Phenomenology [36]

A+ −0.06 � Ac
+ � 0.04 Assumption

j = C, (I = 1, 8) − ψ̄Q2ψ Value (GeV2) Method
Aj=C −0.1 � Aj=C � −0.04 Phenomenology [36]

simplicity

Ci

(
Q2

�2
, g,m

)
=
∑

j

Cj (1, ḡ(0)) Rjm

×
{

1

β0g2
log

(
Q2

�2

)}− dml
2β0

R−1
li , (D3)

where R is a rotation matrix that diagonalizes the anoma-
lous dimension, and we have made use of the following
relations:

μ = � exp

(
1

2β0g2

)
,

ḡ2(t) = g2

1 + 2β0 g2 t
,

(D4)

β0 = 1

(4π )2

(
11

3
CA − 4

3
Tf nf

)
,

t = 1

2
log

(
Q2

μ2

)
.

APPENDIX E: MATRIX ELEMENTS

In this section we list the values of all matrix elements
used to predict MI=1

n=2,τ=4(Q2). In Tables III and IV we include
a brief description of the assumptions and denote the flavor
structure of each operator for clarity. Following the notation
at the end of Sec. X, we list the reduced matrix elements (A±)

the four-quark operators,

Aj,c
± = Aj,2 ± 2Aj,4 + Aj,6, (E1)

Aj
± = Aj,1 ± 2Aj,3 + Aj,5, (E2)

where the index j denotes the flavor representation and c
denotes the presence of an SU(3) color generator.

To make contact with the operators listed in Eq. (18), we
have written the reduced matrix elements using the notation
〈Qj 〉, where the index j denotes basis operator of type j
appearing in Eq. (18). For all operators appearing in Table IV,
we have set n = 2 and specify the k values for operators Q7,8.

APPENDIX F: CONVENTIONS AND FEYNMAN RULES

In this section, as elsewhere in the paper, we contract all
free Lorentz indices with a light light vector �μ, where �2 = 0
to project out the symmetrized and traceless portion of each
operator. Following [21] we write

f α = �βF βα,

�f = �βγαF βα, (F1)

d = i� · D,

where

Fa
μν = ∂μAa

ν − ∂νA
a
μ − igf abcAb

μAc
ν,

(F2)
Dμ = ∂μ + igτ aAa

μ,

and the QCD vertices and propagators are

A

k 1

k 2 k 3

= −gf abc

{
gαχ

(
k1
β − k3

β − 1

ξ
k2
β

)
+ gαβ

(
k2
χ − k1

χ + 1

ξ
k3
χ

)
+ gχβ

(
k3
α − k2

α

)}
, (F3)
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TABLE IV. All values of the reduced matrix elements used in computing MI=1
n=2,τ=4(Q2) at an input scale of Q2

0 = 5 GeV2.
The methods and assumptions used to arrive at these values are summarized in the third column.

(I = 1, 27) ψ̄Qψ ψ̄Qψ Value (GeV2) Method

〈Q1〉 2.5 × 10−3 Lattice [35], & Eq. (85)
〈Q2〉 −1.3 × 10−4 Lattice [35], & Eq. (85)
〈Q3〉 2.5 × 10−3 Lattice [35], & Eq. (85)
〈Q4〉 −1.0 × 10−3 Lattice [35], & Eq. (85)
〈Q5〉 2.5 × 10−3 Lattice [35], & Eq. (85)
〈Q6〉 −1.8 × 10−3 Lattice [35], & Eq. (85)
(I = 1, 8A) ψ̄Qψ ψ̄Qψ Value (GeV2) Method
〈Q1〉 2.5 × 10−3 27 ≡ 8A, Assumption
〈Q2〉 −1.3 × 10−4 27 ≡ 8A, Assumption
〈Q3〉 2.5 × 10−3 27 ≡ 8A, Assumption
〈Q4〉 −1.0 × 10−3 27 ≡ 8A, Assumption
〈Q5〉 2.5 × 10−3 27 ≡ 8A, Assumption
〈Q6〉 −1.8 × 10−3 27 ≡ 8A, Assumption
(I = 1, 8B) ψ̄Q2ψ ψ̄ψ Value (GeV2) Method
〈Q1〉 −0.0015 � 〈Q1〉 � 0.01 Phenomenology [36]
〈Q2〉 −0.0015 � 〈Q2〉 � 0.01 Phenomenology [36]
〈Q3〉 −0.0015 � 〈Q3〉 � 0.01 Phenomenology [36]
〈Q4〉 −0.0015 � 〈Q4〉 � 0.01 Phenomenology [36]
〈Q5〉 −0.0015 � 〈Q5〉 � 0.01 Phenomenology [36]
〈Q6〉 −0.0015 � 〈Q6〉 � 0.01 Phenomenology [36]
(I = 1, 8C) ψ̄Q2ψ Value (GeV2) Method
〈Q7,(k=0)〉 −0.05 � 〈Q7,k=0〉 � −0.02 Phenomenology [36], & Eq. (87)
〈Q7,(k=1)〉 0.02 � 〈Q7,k=0〉 � 0.05 Phenomenology [36], & Eq. (87)
〈Q8,(k=0)〉 −0.05 � 〈Q7,k=0〉 � −0.02 〈Q8〉 = 〈Q7〉, Assumption
〈Q8,(k=1)〉 0.02 � 〈Q7,k=0〉 � 0.05 〈Q8〉 = 〈Q7〉, Assumption

= −igγ μτa, (F4)

= −iδab

k2

{
gαβ − (1 − ξ )

kαkβ

k2

}
, (F5)

= i(/k + mf )

k2 − m2
f + iε

, (F6)

where, in our calculations, we take mf = 0, and choose ξ = 1. The Feynman rules for the single gluon, 2Q operators:

p 1 p 2

→
{

Q7
k=0 = 2i�ατ a εαβνμ γ βγ 5 qν� · p1

Q7
k=1 = −2i�ατ a εαβνμ γ βγ 5 qν� · p2

, (F7)

p 1 p 2

→
{

Q8
k=0 = −(� · q γμ − /q�μ) τ a� · p1

Q8
k=1 = (� · q γμ − /q�μ) τ a� · p2

. (F8)
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Feynman rules for the two-gluon, 2Q operators:

q 1 q 2

p 1 p 2

→

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q7
k=0 = ig γβγ5 εμβαν μ

{
2�ωτ aτ b q1

ν + iτ cf cabgων� · p1
}

+ ig γβγ5 εμβων μ

{
2�ατ bτ a q2

ν + iτ cf cbagαν� · p1
}

Q7
k=1 = −ig γβγ5 εμβαν μ

{
2�ωτ bτ a q1

ν + iτ cf cbagων� · p2
}

− ig γβγ5 εμβων μ

{
2�ατ aτ b q2

ν + iτ cf cabgαν� · p2
}

, (F9)

q 1 q 2

p 1 p 2

→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q8
k=0 = g{(τ aτ b�ω)(� · q1γ α − /q1�α) − (igτ cf cab)(�αγ ω� · p1)}

+ g{(τ bτ a�α)(� · q2γ ω − /q2�ω) − (igτ cf cba)(�ωγ α� · p2)}

Q8
k=1 = g{−(τ aτ b�α)(� · q2γ ω − /q2�ω) + (igτ cf cab)(�αγ ω� · p2)}

+ g{−(τ bτ a�ω)(� · q1γ α − /q1�α) + (igτ cf cba)(�ωγ α� · p2)}

. (F10)
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