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Quarkyonic percolation and deconfinement at finite density and number of colors
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We examine the interplay between the percolation and the deconfinement phase transitions of Yang-Mills
matter at finite temperature, quark chemical potential μQ, and number of colors Nc. We find that, whereas the
critical Nc for percolation goes down with density, the critical Nc for confinement generally goes up. Because of
this, Yang-Mills matter falls into two qualitatively different regimes: the “low-Nc limit,” where percolation does
not occur because matter deconfines before it percolates, and the “high-Nc limit,” where there are three distinct
phases—confined, deconfined, and confined but percolating matter—characterizing Yang-Mills matter at finite
temperature and density. The latter can be thought of as the recently conjectured “quarkyonic phase.” We attempt
an estimate of the critical Nc to see if the percolating phase can occur in our world. We find that, while percolation
will not occur at normal nuclear density as in the large-Nc limit, a sliver of the phase diagram in Nc, energy
density and baryonic density where percolation occurs while confinement persists is possible. We conclude by
speculating on the phenomenological properties of such percolating “quarkyonic” matter and suggesting avenues
by which to study it quantitatively and to look for it in experiment.
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I. INTRODUCTION: THE PHASE DIAGRAM AT LARGE Nc

The “large number of colors” approach [1,2] has been a
promising way to simplify some of the tremendous mathemat-
ical difficulties inherent in handling nonperturbative features
of Yang-Mills theory. The idea is to take the number of colors
Nc to infinity while taking the Yang-Mills coupling constant
gYM to zero in such a way that g2

YMNc = λ stays constant,
defined at some perturbative fixed scale. Numerical results,
obtainable by plugging in Nc = 3, should be correct within
1
Nc

∼ 30% or so, and hence this simplified theory should be
enough for a qualitative estimate.

While this theory shares with QCD its nonperturbative
nature (strong coupling arises at a scale ∼N0

c , parametrically
similar therefore to the QCD scale of �QCD � 250 MeV), this
approach has led to some important qualitative results: The fact
that in a confined regime mesons are quasiparticles [1] while
baryons are classical states [2] can be explained in this large-Nc

limit. Features of QCD such as the dominance of planar dia-
grams (and hence the string description of gluon propagators
and extension into the gauge/string correspondence [3]) and
the OZI rule are also well explained with Nc counting. This
has made large Nc a useful tool for phenomenological as well
as theoretical analysis [4].

The large-Nc limit, however, has some qualitative differ-
ences from physical QCD, too, differences too big to be put
down as a 30% correction.

Owing to the identification of confinement with center sym-
metry restoration [5–7], deconfinement is a first-order phase
transition in the large-Nc limit provided that the number of
light flavors Nf � Nc; it is a smooth crossover in our Nc = 3
world [8,9].

Nuclear matter is a tightly bound crystal in the large-Nc

limit [10], whereas it is a liquid in our world [11–19]. The

latter feature is a consequence of the fact that in the large-Nc

limit the interbaryon binding energy scales as the baryon mass,
Nc�QCD. In reality, the scale of internuclear forces is around
∼O[�QCD/(10–100)], a “hierarchy problem” which, given the
soundness of the large-Nc description, needs to be resolved.

Given the considerations above, a phase transition in Nc,
between Nc = 3 and Nc → ∞, is a plausible resolution of
some of these issues [20–22]. The existence of two possibly
linked transitions in Nc is, in fact, fairly certain, owing to the
arguments above: If we could keep Nf constant (Nf � 1 for
baryons to exist) and increase Nc, we would find a critical point
for confinement at zero quark chemical potential (somewhere
between the crossover in our world and a first-order transition
at Nf /Nc → 0 [23,24]) and a liquid-crystal transition for
matter at high chemical potential (because the large-Nc

matter is crystalline [10] and a crystal-liquid transition is
typically associated to a phase transition owing to a change
in translational symmetries).

As discussed in Ref. [20] (and hinted at from gauge/string
calculations [25,26]), the crystal-liquid transition is linked to
the nuclear-matter hierarchy problem: The classical picture
of the baryon necessarily entails an Nc much larger than
NN ∼ O(10), where NN is the number of neighbors in a
densely packed system. Below this limit, one cannot ignore the
Pauli exclusion principle in the noncolor part of the baryonic
wave function. This raises the energy cost of compressing
baryonic matter by ∼Nc�

3
QCD and hence most likely lowers

the equilibrium density to values lower than ∼�3
QCD (in fact,

even �m3
π ). Because interquark interactions are suppressed

by the confinement scale, and pionic exchanges are ∼e−rmπ ,
the nuclear forces get weaker; hence, the critical point of
the nuclear liquid-gas phase transition happens at T ,μQ �
�QCD.
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Going further is hampered by the fact that our understanding
of corrections to Nc in this regime is limited. The regime in
which this transition occurs is inevitably strongly coupled,
making perturbative calculations untenable. Standard methods
of lattice QCD cannot be used, because μQ/T ∼ O(1)
[27–29]. As discussed in [30], gauge/gravity techniques are
also unreliable because this transition, by its very nature, is
quantum-gravitational, something of which we have a very
limited understanding.

The only possible way to move forward, then, is to
investigate models that are simple and qualitative, yet are
universally applicable. One suggested way to describe phase
transitions in Yang-Mills is via percolation [31–33]. The idea is
that, at increasing energies, the increasing parton densities will
make partons of different hadrons “overlap” as their interaction
cross section becomes of the order of interparton spacing.
It is logical to associate this transition to deconfinement,
where a quark can propagate throughout the hot medium
rather than being confined to the hadron size, whose natural
scale is ∼�−1

QCD ∼ 1 fm. While these analogies might touch
on deeper conceptual issues [34], the percolation picture of
confinement misses the order of the phase transition both at
Nc = 3 and Nc → ∞, so its direct relevance to confinement
is questionable.

There is, however, a newly conjectured regime where
the percolation picture might be viable: It is the proposed
“quarkyonic matter” at low temperature (below the decon-
finement temperature Tc) and moderate density (one baryon
per baryonic size, μQ = μB/Nc � �QCD) [35–41], which is
confined (the excitations at the Fermi surface are baryonic) but
“quarklike,” in that pressure and perhaps also entropy density
feel the quarks below the Fermi surface and consequently scale
as N1

c , as opposed to N0
c .

Unlike in Refs. [31–33], the quarkyonic transition is
thought to be distinct from deconfinement, to be found in
lower energy heavy-ion scans [42–45] at low temperature
but high baryochemical potential μB = NcμQ (a description
of deconfinement at finite density as percolation was also
postulated in Refs. [46,47]).

The reason for conjecturing the existence of a new phase
boils down to comparing the quark-hole screening with the
gluon-gluon antiscreening at large chemical potential (Fig. 1):
Confinement is broken when the screening by quark-hole pairs
∼μ2

QNcNf at the Fermi surface (which decreases the effective
coupling) overpowers antiscreening by gluon loops (∼N2

c ),

quark
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FIG. 1. (Color online) Panel (a) shows the interplay between
antiscreening by gluons (driving confinement) and screening at high
chemical potential. As the panel (b) shows, higher order corrections
will not alter the dependence leading in Nf /Nc [48].

FIG. 2. (Color online) (Left) The phase diagram in the Nc → ∞
limit, where the deconfinement line becomes flat as quark corrections
vanish, and a first-order phase transition, with the baryon density as
an order parameter, rises up vertically with respect to temperature
at μQ ∼ �QCD. The scaling of the pressure with Nc is shown in the
different phases. (Right) A qualitative sketch of the expected situation
at Nc = 3.

which drives the coupling constant above nonperturbative
values at momenta ∼�QCD and ultimately causes the onset of
the strong coupling regime. This can be used to get an estimate
for the low-temperature deconfinement point as scaling at least
as ∼�QCD

√
Nc/Nf . A cursory examination of Fig. 1 (bottom

panel) shows that higher loops giving a (Nc/Nf )z>1/2 scaling
[48], and hence perturbative contributions to the QCD β func-
tion, cannot lower the extra scale μq ∼ √

Nc/Nf
z�1/2

�QCD,
which appears when one explores the deconfinement phase
transition in chemical potential rather than temperature.

Thus, the phase diagram at Nc → ∞ looks like the one in
Fig. 2 (left) [35]: The deconfinement line becomes infinitely
flat. At the same time, the transition to “nuclear matter,” with
the baryonic density as order parameter, becomes infinitely
sharp because the baryon mass ∼Nc�QCD. Therefore, baryons
drop out of the confined vacuum partition function entirely,
but continue to be present at μQ � �QCD.

Hence, nuclear matter at μQ ∼ �QCD should, at large Nc,
be in the confined phase. In configuration space, however,
interquark distance ∼N

−1/3
c : For large-enough Nc, then,

one should be in the confinement regime, yet somehow
neighboring quarks should be so close that asymptotic freedom
applies. The authors of Ref. [35] proposed a solution to this
seeming contradiction by postulating that matter in this regime
is quarkyonic, with quarklike degrees of freedom deep inside
the Fermi surface (and hence a scaling ∼N1

c for the pressure)
but baryonic excitations on the surface.

While the argument above is compelling, it raises some-
what subtle issues about how to characterize matter in the√

Nc/Nf �QCD � μQ � �QCD part of the diagram. Above
μQ = �QCD, baryons will conceivably overlap. If quarks
are free within baryons, then how does one distinguish the
quarkyonic phase from a deconfined phase? Intuition from
models such as the bag model [49] does, indeed, suggest that
deconfinement happens at μQ � �QCD, in contrast with Fig. 1
and Ref. [35].

It is clear that if color can flow within overlapping baryon
regions and asymptotic freedom applies in the large Nc limit,
the Wilson loop expectation value within an area covering
“many overlapping baryons” will break the area law because,
within the overlapping regions, the Gauge field configurations
will fluctuate chaotically around a zero average [50,51]. (An
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alternative way to see it, originally owing to Ref. [52], is that
if Gauge bosons can propagate through overlapping baryons,
Gauss’ law forces interquark fields to ∼1/r2.) In this scenario,
quarkyonic matter will be essentially deconfined (according
to the criteria set in Refs. [50,51] to define confinement),
and hence indistinguishable from a QGP, and the picture in
Ref. [49] will be correct. This is possible, because Fig. 1 does
not preclude nonperturbative contributions to the running of
quark-quark interactions, which could, in principle, bring the
critical μQ for deconfinement down to N0

c �QCD.
However, as we explore in Sec. IV (and was explored in the

past in the context of color superconductivity [53–56]), it is
not an inevitable conclusion: Periodic quark wave functions,
together with a generalization of spin-charge separation, can
provide a physical mechanism whereby quantum numbers
associated with quarks can move across arbitrary distances
while color itself is confined to a configuration-space scale of
∼1 fm. In this case, quarkyonic percolation and deconfinement
are physically different phases, distinguishable by the usual
order parameters associated with confinement.

Of course, it remains to be seen whether such mechanisms
are realized in nature, and either possibility (a new phase or
a nonperturbative breaking of Nc scaling of the β function) is
interesting. In the rest of this work we assume that dynamics of
the type in Sec. IV holds, so a regime where color is localized,
but quarks of neighboring baryons can interact is possible. We
then use the model developed in Ref. [21] to try to define where,
in density, temperature, and Nc, this regime can be located, to
provide future experimentalists and phenomenologists tools to
distinguish between the above possibilities.

The possibility of exploring the quarkyonic transition
experimentally further assumes that physics at high chemical
potential is qualitatively the same when Nc is varied from 3 to
infinity. In Ref. [21] it has been shown that for a wide variety
of reasonable propagators at a fixed baryonic number density
of ρB = �3

QCD/8 a percolation transition is found as Nc is
varied. If one identifies the percolation transition with the
quarkyonic phase, deconfinement and percolation are indeed
separate, and they cover different regions not just in T and
μB , but also along Nc.

In this work, we aim to extend the results of Ref. [21]
to variable density and nonzero temperature. The purpose of
this exercise is to determine the role of percolation in the
full T -μ-Nc phase diagram, and to see whether percolation is
involved in the physical Nc = 3 world, or, instead, whether this
transition divides our world from the “truly large-Nc” regime.

Specifically, we aim at determining whether there is a re-
gion, in the T -μB plane, where a percolating yet confined phase
is likely at Nc = 3, �QCD � μQ �

√
Nc/Nf �QCD. If so,1 this

1In our world, of course, Nf = 2 if the strange quark is heavy,
and Nf = 3 if the strange quark is light. Because the bare strange
quark mass ∼�QCD, it is far from clear which limit applies, yet this
is the crucial question determining whether Nf /Nc is an expansion
parameter at all. The mass of the strange quark might well be the
crucial qualitative uncertain driving factor in our results and hence
fundamentally determine the nature of the QCD phase diagram [57,
58].

would be the natural region to investigate for quarkyonic ef-
fects in experiment. We also ask ourselves whether percolation
is related to the more usual liquid-gas phase transition and if
its onset therefore accounts for the large phenomenological
failures of the large-Nc picture in this regime [20].

We close with a discussion outlining what an effective
theory for percolating matter would look like and suggesting
ways of looking for it in both lower energy experiments and
astrophysical searches (neutron and proto-neutron stars).

II. THE VARIABLE-DENSITY PERCOLATION MODEL

The strategy used to investigate the percolation properties
of high-density baryonic matter is a generalization of the
model presented in Ref. [21], to which we refer for further
introductory details. In our description, baryonic matter is
arranged in a cubic lattice, with a baryon sitting at each lattice
site: Its quarks will be randomly, independently positioned
according to a hard-sphere distribution with radius 1/�QCD:
f (x) ∝ �(1 − �QCD|x − xcenter|). In Ref. [21], each sphere
touches exactly its six neighbors, that is, the lattice spacing
is fixed to 2/�QCD and the density ρ is therefore fixed (we
relate ρ to the thermodynamic baryonic density ρB in Sec. III).
Replacing the cubic arrangement with another regular three-
dimensional (3D) lattice would have changed the percolation
threshold by O(30%) or so [59] and hence not impacted our
results qualitatively.

The generalization to a variable-density setting is realized
by the introduction of the parameter ε, defined as the ratio of
the lattice spacing over twice the spheres’ radius: Thus, the
density ρ0 examined in Ref. [21] had ε = 1. Because at ρ0
each baryon occupies a volume of (2/�QCD)3, we now have

ρ(ε) = ρ0
1

ε3
= �3

QCD

8

1

ε3
. (1)

In support of this classical, static description of baryonic
matter, we keep an eye to the large-Nc limit and note that the
propagation speed of Fermi-surface baryons, ∼1/

√
Nc/Nf

in the confined regime, is parametrically smaller than the
characteristic momentum of quarks, ∼N0

c ; hence, percolating
quarks see the baryons as quasistatic (a crystal at larger Nc

[2,10], and, presumably, a disordered “glass” at smaller Nc).
Deviations from the “baryons are spheres” assumption might
become significant when the number of colors approaches the
number of neighbors of a densely packed system [20], which in
3D means Nc ∼ O(10). This, as we show, coincides roughly
with the percolation threshold for “sensible” choices of the
parameters at play.

We note that we are assuming that baryon size does not
depend on baryonic density. Seemingly, this assumption is
counterintuitive because the pionic corona around the baryon
is set by f −1

π , which should decrease as chiral symmetry is
partially restored [60]. We note, however, that fπ ∼ √

Nc and
hence diverges for all chemical potentials as Nc → ∞. In this
limit baryons interact strongly with pions [1,2,61], as strongly,
in fact, as with each other (NN interactions via pions scale
in the same way as NN interactions via quarks [2]). The
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baryon size, however, stays finite and ��−1
QCD in this limit.

This suggests that at large Nc the baryon size becomes a
lot more dependent on “bag physics”/confinement (and, in
general, the scale at which QCD becomes strong) than on
the pion corona. Because of this, pion size changes with Nc

are, at best, a subleading effect, to be disregarded here. The
fact that percolation, as defined here, is primarily an effect of
confinement physics, as it survives in a world with only one
quark flavor and no mesons, reinforces this conclusion.

Let us briefly summarize the results in Ref. [21] before
generalizing to the present setting. We assume a probability
(“squared propagator”) for two quarks in different baryons to
exchange energy/momentum with the essential properties of
(a) getting weaker as λ/Nc at increasing Nc and (b) dropping
quickly to zero around some confinement scale rT /�QCD ∝
O(1)N0

c . These requirements enforce the relevant physics of
the problem; we then consider two representative choices for
the “propagator,” inspired by the Gribov-Zwanziger theory
[62,63]: the step function in coordinate space and the step
function in momentum space (that is, the squared Fourier
transform of a p-space θ function). These can arise out of
chromo-field interactions, such as in Refs. [46,47]. Their
expression, suitably normalized, is given by

FT (y) = λ

Nc

�

(
1 − y

rT /�QCD

)
, (2)

FK (y) = λ

Nc

2r2
T

πy2
sin2

(
y

rT /�QCD

)
∝

[ ∫
dp e−ipy�(p − �QCD/rT )

]2

, (3)

respectively, where y is the interquark distance in physical
units. The two parameters are rT ∼ 1 and λ ∼ 1 (’t Hooft
coupling), controlling, respectively, the range and the intensity
of the interquark exchanges.

Conceptually, these definitions leave some ambiguity of
what is “propagated.” Our working hypothesis is that Eqs. (2)
and (3) represent tunneling-driven interactions of quarks from
different baryons exchanging conserved quantum numbers
(spin, flavor, energy-momentum) concurrently with some
global color-neutralization mechanism acting at distance
scales ��−1

QCD. We leave discussion as to how this could
happen to Sec. IV. We note, however, that similar propagators
have already been used in the context of quarkyonic matter,
having been instrumental in the study of the conjectured
quarkyonic “chiral spirals” [64,65] [the results in Ref. [36]
are based on a propagator of the form of Eq. (3)].

With F (y) and f (x) as input, then, a probability p for the ex-
change between neighboring baryons A and B is computed via

p(Nc) = 1 −
{ ∫

fA(xA)d3xA

∫
fB(xB)d3xB

× [1 − F (|xA − xB |)]
}Nα

c

. (4)

In Ref. [21] we concluded that, to meet the expectation p → 1
for Nc → ∞, the correct choice is α = 2: We interpret it as

a cross-baryon “interaction,” as opposed to the cross-baryon
“propagation” associated with α = 1.

Varying baryon density should not alter the α = 2 depen-
dence assumed in Ref. [21]: If Nc is large enough, α = 2
will obviously always dominate over the α = 1 component.
Furthermore, as shown in Ref. [21], α = 1 would imply
a regime where Nc → ∞ matter would be less correlated
(and hence less strongly bound) than Nc � ∞ (the nuclear
binding energy dependence of Nc would have a peak at some
intermediate Nc and reach the limit of Ref. [2] from above).
Because quantum corrections generally make a many-Fermion
system more repulsive (by Pauli blocking arguments alone),
and because at large Nc attractive channels dominate over
repulsive ones, it is difficult to imagine a physical justification
for such behavior in either naive Nc counting or gauge/gravity.

At large Nc, therefore, it is natural to expect α = 2, but at
Nc = 3 an α = 1 component, negligible at Nc → ∞, could be
significant. As the next section makes clear, assuming α = 2
throughout can be regarded as an “optimistic limit” for the
existence of the percolating phase, and any α = 1 admixture
will make the percolating phase less likely.

A similar discussion is needed to clarify the role of
antibaryons in percolation at T > 0. Because by percolation
we mean the delocalization of the quark wave function across
baryons, as we do in Sec. IV, then only quarks delocalize,
because delocalization is brought about not by deconfinement
but by the formation of a quark Fermi surface. Antibaryons
will then show up as an impurity in the percolation links.
We ignore this impurity for the current work, because we
are concentrating on the “most optimistic scenario” and any
impurity will flatten the ρB-Nc percolation curves, making
a percolating but deconfined phase less likely. In addition,
the probability of having a local impurity ∼exp[−Nc] ∼ 1%
even at the highest temperature T � Tc, so its effect should be
smaller than other effects we neglect in this work.

The resulting p is a function of Nc (see Ref. [21] for details)
and can be compared with the bond-percolation threshold to
determine if large-scale correlations occur or not, identifying
a critical N∗

c where the system starts to percolate. Note that
direct exchange between non-neighboring baryons is neglected
by construction.

However, in the variable-density setting, when ε is small
we have substantial overlapping between the spheres and
non-negligible contributions from non-nearest-neighbor direct
exchange: We need to take into account a set of baryon-to-
baryon probabilities pi , one for nearest neighbors, one for
neighbors with relative distance of (1, 1, 0) spacings, and
so on. In practice, we considered nine probabilities {pi, i =
0, · · · , 8}, associated to nine “neighboring classes” (we assume
the probability of direct exchange between spheres that are
further apart can safely be neglected): The corresponding
relative distances, in units of the interbaryonic distance, read

(1, 0, 0), (2, 0, 0), (1, 1, 0), (2, 1, 0), (2, 2, 0),

(1, 1, 1), (2, 1, 1), (2, 2, 1), (2, 2, 2). (5)

Thus, for each choice of the parameters (rT , λ), each
“propagator” and each ε, a set of {pi} can be evaluated
numerically with Eq. (4) by placing the two centers at the
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FIG. 3. (Color online) Baryon-to-baryon probabilities for the FK propagator; the reference case is ε = rT = λ = 1.00. (a) p0 for varying ε.
(b) p0 for varying λ. (c) p0 for varying rT . (d) pi at all neighboring classes considered.

desired distance. Representative results are shown in Fig. 3 for
the FK propagator. We examine 9 values of rT ∈ [0.6:1.4], 6 of
λ ∈ [0.7:1.2], and 13 of ε ∈ [0.8:1.4]: The latter corresponds
to ranging in density from ∼0.046�3

QCD to 0.244�3
QCD. We

generate data for all integer Nc from 2 to 80. The {pi}
are calculated numerically by sampling the integrand about
4 × 105 times per setup.

The next step is to translate the set {pi} to a single
probability p, which will be compared to the 3D cubic-lattice
bond-percolation threshold pc � 0.2488. This is accomplished
by means of Monte Carlo renormalization (see, e.g., Chapter
4 of Ref. [66]): We perform a blocking step on a cell of b3

sites, mapping the problem to a superlattice whose sites are
the corners of the cell; the corresponding p is evaluated by
numerical simulation, with the {pi} as input, as the probability
that two opposite planes on the cell are connected by a
continuous path. Because p0 is the only relevant coupling
in the blocking-out flow, we are effectively moving on a
renormalization group (RG) trajectory in the 9D space of the
pi , whose fixed point—the percolation critical point—lies on
the axis pi = 0, i > 0. The procedure is illustrated in Fig. 4.
In practice, we start with an empty b3 lattice and, considering
all pairs of sites, we switch on the links according to the pi for
the corresponding neighboring class. At the end of the process
we can have a continuous path connecting the z = 0 wall of
the cube with the z = b − 1 wall: The probability p(pi) for
this to happen is computed by repeating the operation many
times (in our case, 20 000 times per setup).

The exact choice of the “crossing rule” R1 (that is, we get a
1 if and only if there is a connection between two opposite wall
in a chosen direction, ignoring what happens along the other
two directions) is arbitrary: for large-enough b, all recipes
would lead to the same final result.

In the limit b → ∞, the crossing probability is a step
function, zero before percolation and one after percolation.
When evaluated exactly at criticality, it assumes a universal
value depending only on the crossing rule considered. In 3D,
with the R1 rule, p∗(b) = �1 + βb−y with the limit value
�1 = 0.265 [67], and leading correction b1/ν , with ν � 0.8765
the 3D percolation critical exponent.

To check the implied assumption of a b “large enough,”
cell sides from three to seven lattice steps are employed, and
the results compared for stability. This technique is first tested
on the 1D subspace of nearest-neighbor-only p0 → p, where

p
pi

FIG. 4. (Color online) Schematic procedure for the RG step. The
b = 3 cell on the left, with all its bond probabilities pi , becomes an
elementary square of the superlattice on the right, with the associated
p as its only, nearest-neighbor, bond probability.
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N∗

c , for FT with ε = 0.8, λ = 0.7, rT = 0.6. Horizontal lines mark p∗.

we roughly reproduce the scaling to the large-b limit: Yet, the
curves pb(p0) have a rather b-dependent value p∗ at the critical
threshold:

p∗ = {0.5825, 0.5226, 0.4788, 0.4488, 0.4293},
for b = 3, 4, 5, 6, 7. (6)

This leads us to define an effective, b-dependent critical N∗
c ,

the value at which the full renormalization step yields the p∗
for that cell size (practically found by interpolation). We are
satisfied with the procedure whenever N∗

c shows a substantial
independence of b; indeed, this will be the case: For example,
at ε = 0.8, λ = 0.7 and rT = 0.6, we get for the propagator
FT (cf. Fig. 5)

N∗
c = {27.9, 27.6, 27.9, 27.6, 27.5}, b = 3, 4, 5, 6, 7. (7)

The final result is then obtained by the above population of
results. The choice of considering bonds between baryons
far apart has, however, a drawback: namely, the propagator
FK [Eq. (3)], as it is, has local maxima around y�QCD ∼
πrT , 3πrT and so on, which dramatically alters the results
in a nonphysical way; the coincidence of the secondary
peaks with neighboring positions is, of course, specific to a
cubic lattice and should not occur in a disordered “glass of
baryons.”

More generally, however, the power law “tail” in the
propagator makes correlation lengths diverge at Nc ∼ O(1) for
densities arbitrarily close to O(�3

QCD). The implementation of
such a sharp step propagator in momentum space, however,
contradicts our intuition of statistical physics: A probe charge
interacting with a statistical medium is generally exponentially
screened by charge-hole pairs, acquiring a screening length of
dimension ∼1/μ (or ∼1/T for T ∼ μ). This is a “universal”
feature of interacting systems at equilibrium, because any
backreaction of a charge on a field, to first order, will give
a similar effect (the absence of such a screening leads to a
divergence in the partition function of the fully interacting
system; the hydrogenic atom’s case is a well-studied example
of these classes of phenomena [68,69]). Because μQ ∼ �QCD

in the limit we are using, the propagator should be exponen-
tially screened at a similar scale. Then, in the following, we
use a “K” propagator altered by an exponential screening,

FS(y) = λ

Nc

2r2
T

πy2
sin2

(
y�QCD

rT

)
e−M|y|, (8)

that is, a FK times a damping exponential factor whose
characteristic length is, in practice, fixed to 1/�QCD. FS , taking
the square root and antitransforming, yields

g̃S(k) =
∫ +∞

−∞
dx

√
Fs(x)eikx ∝

{
atan

[
2�QCD

MrT

(
k

rT

�QCD
+ 1

)]
− atan

[
2�QCD

MrT

(
k

rT

�QCD
− 1

)]}
,

i.e., a “rounded off” step function in momentum space.
Following the above methodology, we obtain curves in ε,

one for each propagator (FT , FK—later ignored—and FS)
and each (rT , λ), which can be translated into curves N∗

c (ρ)
through Eq. (1).

Examples of such curves are shown in Fig. 6. We note that
they are well fitted to the form

N∗
c (ρ) = A

(ρZ + B)
. (9)

We have shown that the percolation transition line in ρ-Nc

space is strongly curved. This has the potential of dramatically
altering the conclusions of Ref. [21], provided the assumption
that the relevant density is ∼�3

QCD/8 is relaxed: At a greater
density, provided baryons still exist, N∗

c can very well be
lowered from O(10) to Nc = 3, making the percolating phase

accessible to experiment. The existence of baryonic states, of
course, implies that the relevant density is still in the confined
phase. In Sec. III, therefore, we examine the interplay between
the confining and percolating transitions.

III. THE CONFINEMENT PHASE TRANSITION
IN Nc-ρB-e SPACE

As discussed in the Introduction, if one identifies the density
of interest for percolation, ρB ∼ �3

QCD/8 (one baryon per
baryon size), with the thermodynamic density, then, at T � Tc,
the percolation transition happens firmly in the confined phase
in the large-Nc limit because of the μ2

Q dependence of the
quark-hole screening diagram (Fig. 1).

We also know that, at T � Tc—where the chemical po-
tential for deconfinement is zero—, μQ does not scale with
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FIG. 6. (Color online) Representative results, with some choices of rT , λ, for the critical percolation N∗
c as a function of the baryon density,

coming from using the propagators FT of Eq. (2) (a), FK of Eq. (3) (b), and FS of Eq. (8) (c).

Nf ,Nc. Hence,

μconf
Q

∣∣
T �Tc

= O(1)

√
Nc

Nf

�QCD; μconf
Q

∣∣
T ∼Tc

→ 0;

Tc �
(

2�QCD

3

)
N0

c N0
f . (10)

In this section, we use the ideal gas ansatz for the nuclear
liquid to translate these estimates into an estimate of how ρconf

B

and the energy density econf depend on Nc. We note that, even
in the case of Van der Waals corrections of order O(Nc), the
density ρB at a given T will change at most with terms of
O(1) [20] and therefore can be ignored for this calculation.

We start with the ideal gas formula for the density of a
relativistic massive gas of fermions,2

ρB = 4πgf gs

(2π )3
[B1(m, T ,μB ) − B1(m, T ,−μB )], (11)

the first term accounting for baryons and the second for
antibaryons, with [58,70]

B1(m, T ,μB ) =
∫ ∞

0

p2dp

exp
[

1
T

(√
p2 + m2 − μB

)] + 1

=
∞∑

n=1

(−1)nm2 T

n
exp

(
nμB

T

)
K2

(
nm

T

)
(12)

and Kn(x) = ∫ ∞
0 e−x cosh t cosh(nt)dt the modified Bessel

function. The degeneracy terms gf and gs are both somewhat
nontrivial: gf counts the total “generalized isospin” states
accessible allowed for the baryon, and so is 1 for one flavor
and Nf (Nf − 1) for a higher number. If we ignore excited spin
states, the baryon will always have spin- 1

2 , so that gs(Nc) ≡ 2;
we later refine this simplification.

For T � Nc�QCD the antibaryon term becomes negligible
and the baryon density becomes, in units of “one baryon per

2For “baryons” to be fermions, we should limit ourselves to integer,
odd Nc, as long as we do not include the excited spin states; however,
the formulas are valid—and have here been calculated—for generic
positive values of Nc.

baryon size,”

ρB = K
3/2
0

4

3
π (0.6 fm)−3, μB � 2π

(
3
√

π

4

)2/3
ρ

2/3
B

m
,

μB � 1.7K0 GeV. (13)

For K0 = 1 (approximately one baryon per baryon size), this
corresponds to the density examined in Ref. [21], where Nc ∼
O(10) is necessary for percolation. We need, therefore, K0 >
1, but not enough to trigger deconfinement.

We note that it is impossible to estimate theO(1) parameters
in Eq. (10), and hence K0, to better than an order of magnitude:
These factors depend on the SU(Nc) structure constants
showing up in the two diagrams of the top panel of Fig. 1,
as well as the mean-field corrections to the quark and gluon
wave functions, which enter in the incoming and outgoing lines
in the same top panel of Fig. 1 [71]. The latter are completely
undetermined, even for a dilute gas at large Nc [72,73].
Finite temperature and antibaryons will introduce additional
modifications of K0.

Unfortunately, this uncertainty radically limits the predic-
tive power of this section, because, as we shall see, factors
of O(1) are crucial for deciding whether a percolating phase
does, in fact, occur at Nc = 3. Nevertheless, we shall continue
to illustrate the issues at hand.

From Eq. (10), we parametrize the zero-temperature bary-
onic chemical potential needed for deconfinement as

μ0 = μconf
B (T � m) = O(1)N3/2

c N
−1/2
f �QCD (14)

(roughly N
1/2
c N

−1/2
f baryons need to overlap), and the baryon

mass is m ∼ Nc�QCD. Omitting such factors of O(1), we are
led to change the variables to

γ =
√

Nc

μ0
m, α =

√
Nc

μ0
p, β = �QCD

T

Nc√
Nf

; (15)

note that at zero-temperature deconfinement we have β → ∞
and γ = √

Nf . We write the critical ρconf
B for confinement as

ρconf
B

(
β � �−1

QCD

) = 4πgf gs

(2π )3

N3
c

N
3/2
f

�3
QCDB2(Nc, γ, β),

(16)
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where

B2(Nc, γ, β) =
∫

α2dα

1 + exp
[
β
(√

α2 + γ 2 − √
Nc

μ
μ0

)] −
∫

{same with μ → −μ}

=
∞∑

n=1

(−1)n
nγ 2

β
sinh

[(√
Nc

μ

μ0
β

)n]
K2 (nγβ) . (17)

This is the general expression for the baryon density at
deconfinement as a function of Nc. For very low temperatures
(β → ∞, μ = μ0), the second term in B2 vanishes and the
exponential at the bottom of the first term is infinity if χ > 0
and zero if χ < 0, where

χ =
√

γ 2 + α2 −
√

Nc =
√

α2 + Nf −
√

Nc. (18)

We then get easily the low-temperature behavior:

ρconf
B (T = 0) = �3

QCD
1

6π2
gf gs

N3
c

N
3/2
f

(Nc − Nf )3/2

∼ gf gs

6π2
�3

QCD
N

9/2
c

N
3/2
f

. (19)

At T = 0, ground-state baryons are the only possible hadronic
degrees of freedom of the system. Hence, one can trivially
identify ρB with the ρ of Sec. II and directly compare
deconfinement with percolation: This is done in Fig. 7. In
contrast to what we find in Ref. [21], it seems that a confined
but percolating density at Nc = 3 is possible. The discussion
in Sec. II elucidates what Ref. [21] missed: Because of the
curvature of the density in ρB-Nc space, the critical Nc drops
very rapidly with density, while the density required for
deconfinement rises with Nc. However, the conclusion made in
Refs. [20,21] still stands in that the densities required for it are
well away from normal nuclear density, as in the large-Nc limit.
Hence, percolation is well distinct from the nuclear liquid-gas

phase transition and might not arise if the strange quark is “too
light” (see footnote 1). To extend our knowledge to nonzero
temperature, we choose the simplest parametrization for the
deconfinement line in the T -μB plane, i.e., that of a quarter of
an ellipse whose radii are given by the known points T = Tc

and T = 0:

1 − θ2 =
(

μconf
B

μ0

)2

, θ = T

Tc

� 3

2

T

�QCD
. (20)

Considering that the transition line is given by the interplay of
the matrix elements shown in Fig. 1, this elliptical parametriza-
tion is actually physically well motivated, although it misses
the ∼T μ interference between screening and antiscreening.

When raising the temperature, we should also include states
of higher spin in our calculation: In the large-Nc limit, a spin
flip has a cost of ∼�QCD/Nc [74], and there can be up to (Nc −
1)/2 of them.3 We now assume Nc = 2Q + 1 odd integer
and introduce a sum over spin states parametrized by η =
0, 1, . . . , Q (in this way, neglecting higher-spin states amounts
to limiting all sums to η = 0), each carrying its degeneracy
(2η + 2): This setup replaces the factor gs of Eq. (11). Thus,
we write, for nonzero temperature and including higher spins,
the density as

3Admittedly, here we prefer to keep the model simple despite the
fact that in our Nc = 3 world the cost of flipping, say, a proton into a
�+ is around �QCD and not �QCD/3.

ρconf
B = 4πgf

(2π )3

N3
c

N
3/2
f

�3
QCD

Q∑
η=0,1...

(2η + 2)

⎧⎪⎪⎨⎪⎪⎩
∫

α2dα

1 + exp
[

3
2

Nc√
Nf

1
θ

(√
α2 + Nf + η

√
Nf

N2
c

− √
Nc

√
1 − θ2

)]

−
∫

α2dα

1 + exp
[

3
2

Nc√
Nf

1
θ

(√
α2 + Nf + η

√
Nf

N2
c

+ √
Nc

√
1 − θ2

)]
⎫⎪⎪⎬⎪⎪⎭ . (21)

This relation is plotted in Fig. 8, top panels. As temperature and Nc rise, less and less energy density is carried by baryons,
because the hadronic degrees of freedom are light mesons (of mass �2�QCD) carrying no baryonic quantum number and heavy
baryons (∼Nc�QCD). The critical energy density econf , neglecting the meson mass, is

econf = N2
f

π2

15
T 4 + econf

B , (22)
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with the baryonic contribution given by

econf
B = 4πgf

(2π )3

N4
c

N2
f

�4
QCD

∑
η

(2η + 2)

⎧⎪⎪⎨⎪⎪⎩
∫ α2

[√
α2 + Nf + η

√
Nf

N2
c

]
dα

1 + exp
[

3
2

Nc√
Nf

1
θ

(√
α2 + Nf + η

√
Nf

N2
c

− √
Nc

√
1 − θ2

)]

+
∫ α2

[√
α2 + Nf + η

√
Nf

N2
c

]
dα

1 + exp
[

3
2

Nc√
Nf

1
θ

(√
α2 + Nf + η

√
Nf

N2
c

+ √
Nc

√
1 − θ2

)]
⎫⎪⎪⎬⎪⎪⎭ . (23)

In the e-Nc plane, at Tc, the deconfinement line,

econf(Tc) = N2
f

π2

15
T 4

c (24)

(with Tc = 165 MeV or so [8,9]), is independent of Nc (a
vertical line), with a mixed phase in the region

N2
f

π2

15
T 4

c < e <

(
N2

c + 7

8
NcNf

)
π2

15
T 2

c . (25)

At T → 0 (that is, θ → 0), the line is found by solving
Eq. (23) and, similar to the plane shown in Fig. 7, with all
energy carried by baryons, in this case we have e = eB . For
intermediate temperatures, solving Eq. (23) into Eq. (22) will
give an intermediate solution, with a nontrivial approach to
the T = Tc case for different Nc; see Fig. 8, bottom panels.
The behavior of the energy density is the reason why all curves
“curve” (anticorrelate) for low to moderate Nc values in Nc-ρB

space: At moderate Nc (including our Nc = 3 world) baryons

carry a non-negligible fraction of the energy density even in
the vacuum phase, with the flavor and spin degeneracy factors
beating thermal suppression. At high Nc, while of course
baryons continue to carry the baryonic number, mesons carry
the bulk of the energy density. Because the scaling with Nc

of the deconfinement line is very sensitive to where one is in
e-ρB [as per Eq. (20)], this interplay can, at lower Nc, change
the Nc-ρB correlation of confinement into an anticorrelation.

At T > 0 baryonic density and energy density are not the
parameters driving the percolation phase transition anymore.
The way percolation treats baryons in Sec. II does not dis-
tinguish between baryons created through chemical potential,
whose number is conserved on average, and baryons created in
pairs, whose number fluctuates. Each baryon can give rise to
quark tunneling and therefore participate in percolating links.

Therefore, and consistently with the discussion in Sec. II,
recast the deconfinement curve in the ρ-Nc plane, where from
Eq. (21) we define

ρ = gf

2π2

N3
c

N
3/2
f

�3
QCD

∑
η

∫
(2η + 2)α2dα

1 + exp
[

3
2

Nc√
Nf

1
θ

(√
α2 + Nf + η

√
Nf

N2
c

− √
Nc

√
1 − θ2

)] . (26)

At T = 0, where the antibaryon density is strictly zero, these
distinctions are insignificant, and the comparison in Fig. 7
suffers no problem. At T > 0, however, in principle, we need
to use the temperature and chemical potential to calculate the
relevant nonconserved quantity. The final result is shown in
Fig. 9. As can be seen, the deconfinement line on the new axis
is quantitatively very similar to the upper two panels in Fig. 8.
Then, the two cases in the previous paragraph yield virtually
identical regimes on the phase diagram.

From Figs. 7 and 9 we see that, in the T -μB-Nc space,
there can be three distinct phases: confined, deconfined, and
confined but percolating. In the latter case, arising at high
Nc, the Polyakov loop expectation value is still zero and
baryons are still physical degrees of freedom but 〈q(x)q(x ′)〉

should not vanish at scales larger than the baryon size owing
to tunneling-driven quark interactions across asymptotically
large distances. At low Nc, the confinement density is lower
than the percolation density. Because the percolation transition
necessitates baryons as physical states, it therefore does not
occur, and quarkyonic phases such as in Ref. [35] are not
realized.

The critical Nc allowing for a distinction between decon-
finement and percolation is typically O(100) at θ � 1 and
O(101) at θ � 1. Hence, the percolation phase at Nc = 3 is
accessible at T � �QCD, but at nuclear densities about 2–3
times that of the liquid phase, which, at least using the scaling
of Eq. (10), are not yet confining. This regime is somewhat
lower in T than that examined in, e.g., Refs. [37,39,40], making
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FIG. 7. (Color online) Log-log plot of zero-temperature decon-
finement curves versus percolation curves in the plane of ρB � ρ and
Nc. The deconfinement curves [Eq. (19)] are calculated for Nf = 1, 3
and are compared to their large-Nc asymptotic form. The percolation
curves are shown with their parametrization from Eq. (9).

it likely that percolation dynamics is relevant in proto-neutron
stars (a similar regime to that examined in Refs. [75,76]) rather

than lower energy colliders [42–45]. In fact, given that at
Nf = Nc deconfinement and nuclear matter parametrically
coincide, the crucial parameter determining the existence
of a confined but percolating phase, rather than an “early
deconfinement” at μQ ∼ �QCD, might be the strange quark
mass [57,58]. A further uncertainty is the influence of the
α = 1 component [see Eq. (4) and following discussion]. If
at Nc ∼ 3 this component dominates, the percolation Nc-ρB

line is considerably less flat than shown in Fig. 9 (note the
different orientation of the Nc axis in Figs. 3 and 9), while
the deconfinement line is unaffected. This has the effect
of increasing the “critical Nc,” where deconfinement and
percolation cross; hence, just as in the case of a “light strange
quark” or in the presence of antibaryons, a physical percolating
but confined phase becomes less likely.

Given the quantitative roughness of the models considered
here, however, these are in no way definite conclusions.
If anything, these results are much more encouraging for
phenomenology than those of Ref. [21], which suggested that
at Nc = 3 the percolating regime was strictly inaccessible.
Given the uncertainties illustrated above, we devote the next
two Secs. IV and V, to exploring some theoretical and
phenomenological aspects of the percolating phase, in view
of giving both experimentalists and astrophysicists some
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FIG. 8. (Color online) (a),(b) Deconfinement line in the ρB -Nc plane according to Eq. (21). (c),(d) Deconfinement line in the e-Nc plane
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FIG. 9. (Color online) Percolation and deconfinement as a function of ρ [defined in Eq. (26)] for one flavor (a) and three flavors (b).

insight into how this phase could manifest and sketching
what the effective theory of this percolating phase might be
like.

We close this section by comparing the percolating phase
to the more “usual” nuclear matter in the large-Nc limit. One
can ask how the phase considered here overlaps with the
transition between the classical baryonic crystal considered
in Ref. [10] and normal nuclear matter. The equivalence
between the percolation transition and the onset of the
classical regime for baryon dynamics cannot be exact, because
percolation is insensitive to the number of flavors (as long as
Nf � 1, required for baryons to exist), while the transition
is driven not by Nc/NN � 1 but rather Nc/(Nf NN ) � 1,
where NN is the number of neighbors in a closely packed
system [20].

However, the interplay between this transition and decon-
finement has a similar, albeit weaker, dependence on Nf

(∼N
−1/2
f rather than ∼N−1

f ). Because the critical Nc for this
transition is of O(10), the two transitions do approximately
coincide for Nf ∼ O(1). This suggests that varying Nc and Nf

separately could yield extremely nontrivial dynamics. Such an
“experiment,” of course, is possible only on the lattice, perhaps
by applying the strong-coupling methods of Ref. [19] to the
large-Nc limit [23,24].

IV. EFFECTIVE THEORY OF THE
PERCOLATING PHASE

In this work we have used a simple but universal model,
motivated by what we know about Nc scaling of the ther-
modynamics of Yang-Mills theories, to map the interplay of
percolation and deconfinement across density, temperature,
and number of colors Nc. We found a hitherto-unexplored
percolating phase, where confinement persists (the Polyakov
loop expectation value vanishes and baryons exist as semi-
classical soliton states) but quarks are able to propagate to
arbitrarily high distances via interbaryon tunneling, whose
probability is governed by a nonperturbative color-neutralizing
propagator à la [7,62,63]. Because of this, perturbative quarks

and holes should be able to coexist at momenta ∼�QCD in the
background of baryonic “classical” potential wells.

While, in many ways, our phase bears similarities to the
quarkyonic phase conjectured in Ref. [35] and explored in
Refs. [36,64,65], there are also differences: In the quarkyonic
phase, excitations about the Fermi surface are assumed
to be ∼N0

c at all momenta, and hence entropy continues
to be ∼N0

c , because sub-Fermi surface states carry no entropy.
However, the Gibbs-Duhem relation, linking energy density e
and conserved charge density ρB to pressure P and entropy
density s,

s = dP

dT
= P + e − μBρB

T
, (27)

seems to demand a s ∼ Nc scaling in an interacting phase
where P ∼ Nc. If the pressure scales as P ∼ Ncf (T ), then
the only way to avoid entropy density to scale as ∼Nc is to
have an equation of state strictly of the form

P = N0
c f1(μB, T ) + N1

c f2(μB) (28)

(without temperature dependence of sub-Fermi degrees of
freedom). At T = 0 this is certainly the case, but quark-hole
diagrams such as in Fig. 10 will inevitably add ∼Ncf (μBT )
terms to the partition function, representing excited quark-hole
states. Exciting these states will cost momentum ∼ρ

−1/3
B /Nc ∼

Nα
c �QCD with α < 1/2; hence, it is is not suppressed in the

percolating phase. Therefore, perturbations around the Fermi
surface could still be colored, but confinement should be
maintained at superbaryonic distances. Provided we come up
with a physical way to realize such a system, it is a reasonable
way of identifying the percolation transition demonstrated here
with the phase conjectured in Ref. [35].

quark

sub−Fermi

excited quark

sub−Fermi

quark

FIG. 10. A typical diagram introducing a temperature depen-
dence on the pressure.
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+

+

...
FIG. 11. An illustration of the “free quark” wave functions of the

percolating phase. Baryons play the role of semiclassical potentials
and analogously to atoms in a conductor. Quark wave functions are
delocalized by tunneling, and their Eigenstates are in superposition,
analogously to electrons. Below percolation, tunneling probability
diverges for an infinitely large system, so quarks remain localized
with an O(1) baryonic cluster.

A physical analogy arising from condensed-matter physics
is the metal-insulator transition:4 The critical point of this
transition can be understood as percolation of electrons across
the semiclassical potential wells generated by the atoms of
the material [77]. Tunneling probabilities, as well as electron-
electron interactions, are what drive this transition. The
analogy with the picture presented here, with the baryons
taking place of the atoms, is immediate. In this picture, the
low-Nc confined system can only be an “insulator,” with quarks
of different hadrons not interacting or propagating. At high Nc,
however, a “confined conductor” phase is possible, in which
the low-energy degrees of freedom are not N0

c heavy baryons,
but ∼Nc quark-hole pairs: The quarks and holes are confined in
hadrons but, owing to tunneling, cannot be univocally assigned
to a given hadron. The free energy eigenstates are therefore
superpositions of quasiparticle quark wave functions across
the whole system, with characteristic momentum k ∼ �QCD,
in the same way as the free energy eigenstates of electrons in
a metal are delocalized: The “free particle” quark, hole (q,h)
wave functions (combining color, flavor, and spin) are not a
continuum in k but obey the Bloch constraint

�k
q,h

(
x + ρ

−1/3
B

) = �k
q,h(x) exp

[
ikρ

−1/3
B

]
; (29)

this forces the spectral function ρq(k) to be of the form

ρq(k) �
∞∑

n=0

ρn
q

(
nkρ

−1/3
B

)
, (30)

where ρn
q (k) is a Lorentzian-type function. Diagrammatically,

this is shown in Fig. 11, where the solid lines represent the
semiclassical “mean-field” baryon potentials and the dashed
lines represent the delocalized quark wave functions. Even if
Nc is “high enough” for pQCD quark-hole dynamics to be

4Note that this analogy is not perfect, at least because the
critical exponents of metal-insulator and percolation are different; in
percolation only the two-point correlation is relevant, while typically
in metal-insulator transitions higher order correlation functions play
a part. The source terms in Eq. (33) could be used to represent such
terms.

relevant, this density of states is radically different from that
of a free thermal quark-gluon plasma at high chemical po-
tential, where the spectral function is approximately constant,
ρq(k) ∼ k0.

The combination between the asymptotically free nearly
massless quarks with a spectral function inhomogeneous in
momentum space such as Eq. (30) is what ultimately enables
the chiral inhomogeneities found in Refs. [64,65] and also
in models such as Refs. [78,79] and Refs. [46,47]. If such
“conductive” quarks are in the asymptotic freedom regime in
some limit, their dynamics can be computed perturbatively
by adding form factors to quark propagators. For scattering
processes (such as quark-hole scattering of Fig. 13 and the
virtual excited quark of Fig. 10) the quark and hole propagators
will acquire form factors F̃ (k) (Fig. 12),

kn−2
0

kn
→ (F̃ (k))2kn−2

0

kn
. (31)

n = 2 would describe a 3D quasiperturbative regime, while
n = 4 would be close to the Gribov limit described in Sec. II.
The propagators of the non-Abelian degrees of freedom in
Eq. (33) would be similarly modified. The form factor F̃ (k)
would be the Fourier transform of the lattice of nucleon mean
fields shown in Fig. 11. If quark wave functions are of the
form of Eq. (29), then lower Fourier components �k

q,h(x)

can be color singlets (note that the lowest mode is ∼ρ
1/3
B ),

while the higher modes are allowed to be colored, provided
a compensating mechanism (such as in Refs. [54–56]) exists,
neutralizing the color perturbations over scales larger than
�−1

QCD. Such color compensation must actually exist in the QGP
as well to avoid paradoxes described, for example, in Ref. [80];
however, such sub-�QCD correlations in the high-temperature
regime would be negligible for any thermodynamic property
of the deconfined phase, because the microscopic scale of this
system is above confinement ∼1/(N2

c Nf T ) � �−1
QCD. This is

not so obvious in a confined but quarkyonic phase; we therefore
must invent a way for P, s ∼ Nc to hold at T � Tc and yet
color neutrality be maintained at scales ��QCD.

Condensed-matter physics gives us another example of
how this could work, namely, spin-charge separation in 1D
systems [81,82] (an effect that does indeed seem to be found
in non-Abelian gauge theories [83,84]): In a 1D interacting
fermion chain, spin and charge generally separate. If, as
suggested in Refs. [64,65], quarkyonic matter is governed
by dimensional reduction, such separation could provide the
neutralizing force: Confinement would localize the color part
of the wave function only, while allowing spin and charge to
propagate as Nc copies of a color-singlet field.

h
q

h
q

F(k)q

FIG. 12. (Color online) The difference between free-theory and
quarkyonic-theory Feynman diagram expansions. The form factor
F̃ (k) is approximately the Fourier transform of the potential in Fig. 11.
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M~ ρ
Β

1/3

q
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2
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h
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flavor
excitations
color
excitations

(η,ω,ρ,φ,...)
Hadronic resonance peaks,M>0.5 GeV
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~0.2−0.4 GeV

π

π
ρ,φ,... Hadron gas

QGP

QuarkyonicF(k)

FIG. 13. (Color online) Sketch of what the �+�− spectral function
could look like in percolating quarkyonic matter, in a QGP and in a
resonance-dominated hadron gas. The gap in quarkyonic matter arises
because no delocalized free quark states can exist around k ∼ ρ

1/3
B

[the form factor in Eq. (31) vanishes]. At frequencies below the gap
the color part of the wave function stops contributing, but the flavor
part might still be present.

While the quantitative development of such a theory is left
for future work, we present a sketch of how this works. We use
the approach of Ref. [64]; the effective Lagrangian along an
infinite percolating chain of quarks will reduce, for Nc colors
and Nf flavors, to

S = S2Nf
[hcolor] + SNc

[hflavor], (32)

where hflavor,color are separate “flavor” and “color” fields; note
that each comes with “redundant” copies of the other.

Neglecting color neutralization, both S2Nf and SNc should
have the following WZNW-inspired form [36,64,85–93]:

Sk[�] = k tr

[
1

16π

∫
d2x f (x, �, ∂μ�)∂μ�∂μ�−1

+ 1

24π

∫
d3x εμνλ(�−1∂μ�)(�−1∂ν�)(�−1∂λ�)

]
+ Jbranch. (33)

The charges coming in and out of each effectively 1D
chain through the branching of the percolation clusters can
be represented by source terms Jbranch. At the percolation
transition, they can be defined by the requirement of the 3D
conformal invariance of the system.

If f (x, �, ∂μ�) = 1, reduces to the Lagrangian of [85–93],
and this will be approximately the case for the flavor part. For
the color part, however, f (· · ·) = g(x)h(�, ∂μ�) can be used as
a mean field.

Baryons can be represented by “mean-field wells,” having
the form

〈g〉(x) = G0

(
1 −

∑
ĝn(x)einρ

1/3
B

)
, (34)

where G0 ∼ Nc. This forces any wave function for � to be
centered around Eq. (29).

Neutralization can be enforced by making f (x, �, ∂μ�) = 1
trigger a large background field [54] for color nonsinglet states
of momentum p > �QCD. This effective mass could behave
in a similar way as the color chemical potentials discussed in
Refs. [55,56].

It can be seen that, with this ansatz, Nc “flavor” excitations
of arbitrary frequency and “color” excitations of momentum
k ∼ �QCD survive. For large Nc, these will dominate the
entropy.

We thus recovered the premises of Ref. [35], with
equations such as (2) as a phenomenological form of the
mean-field compensator f (x, p). We therefore arrive, from
the percolating side, at a consistent physical justification
of the ansätze used in the first part of the paper. When
Nc is below the percolation threshold, Eq. (29) becomes
unphysical, because the probability of the wave function to
tunnel more than one baryonic distance is vanishing. Above
the percolation threshold, quark wave functions are assigned
not to a baryon, but to all baryons in an infinite percolating
chain following Eq. (29). Quark-hole excitations will obey an
effective action given by Eq. (32). In thermal equilibrium,
the flavor part of the wave function should yield entropy
and pressure ∼Nc even if color is neutral at superbaryonic
scales.

Why has nothing similar been observed in gauge/string
duality, and how can this phenomenon be characterized in such
a picture? Because the percolation transition itself is driven by
Nc, to model the percolation point one would have to include
leading-order gs corrections, where gs is the string coupling
constant [21]. The percolating phase, however, is in the low-gs

limit and therefore could, in principle, be seen by constructions
which include baryons in the semiclassical gravity limit, such
as Refs. [26,94]. Yet nothing in these works suggests that the
dense phase is anything different from a “dense nuclear gas.”
Quark wave functions might be delocalized, yet this results in
no additional degrees of freedom at the level of the entropy
density and pressure.

The problem is that the argument in Ref. [35] assumes
asymptotic freedom. Even implementations such as Klebanov-
Strassler [95,96] do not have asymptotic freedom but rather
asymptotic N = 4 SYM with large λ for “hard” momentum
exchange. If this transition will appear in gauge/string duality,
it will be subleading in α′. The percolating regime occurs at
low gs (high Nc) but higher string tension α′ (lower λ), while
the “nuclear-matter” phase discussed in Refs. [25,26] happens
in the weak limit of both gs and α′.

Typically, in gauge/string constructions [25,26,94] baryons
are represented by stacks of D7-branes, with the nuclear-
matter phase being represented as a deformation of a string
hanging from charged D-branes owing to the charge on the
brane [25]. The extra entropy scaling of quarkyonic matter
must therefore be driven, in the gauge/gravity picture, by the
appearance of Kaluza-Klein modes in such a hanging string.
We conjecture, therefore, that quarkyonic matter of the type
we discuss arises at low gs and moderate α′. Subleading
corrections in gs will give rise to the Nc percolation transition
between percolating and nonpercolating matter [21] and
perhaps the baryon quantum-to-classical transition discussed
in Ref. [20].

V. PHENOMENOLOGY OF THE PERCOLATING PHASE

Our calculations show that seeing this phase transition in
future experiments in our Nc = 3 world [42–45] might be
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possible, provided low-T , high-ρB regions are accessible.
This makes it desirable to extend the above discussion and
develop some phenomenology for the percolating phase. As
in Sec. IV, the quantitative aspect of this is left for future
work [71], but we can let the analogy with the metal-insulator
transition guide us: A universal characteristic signature of
such a system is the appearance of band gaps in the spectral
function of charge carriers owing to Eq. (30) and the (weak)
interactions between neighboring charge carriers [97]. This
discussion is based on the assumption that baryon distributions
in quarkyonic matter are more or less regular, allowing for
regular band gaps in momentum space to form. While this
might not be unreasonable at high density [98], as shown
in Ref. [71], irregularities can introduce chaotic event-by-
event fluctuations in electromagnetic form factors. A more
quantitative calculation is needed to assess the effect of
these.

Such band gaps, of mass ∼250–400 MeV (well below
any resonance mass) could be directly detected in elec-
tromagnetic probes (the spectral function of e+e− pairs in
heavy-ion collisions): As the sketch in Fig. 13 shows, common
q hole → γ → l+l− scattering will give an approximately
flat spectral function for an unperturbed high-μ QGP. If
quark wave functions are delocalized across potential wells
of size ∼�QCD, M2 ∼ ρ

2/3
B will be suppressed, analogously

to the scattering of x rays by electrons in a conducting
metal, owing to the suppression of delocalized quark states
around that frequency: The form factors of Eq. (31) will
be F̃ (k = 1/ρ

−1/3
B ) � 1, and that will depress the scattering

cross section shown in Fig. 13. Below that frequency, color-
neutralizing effects might suppress the color part of the spectral
function, but the flavor part of the spectral function can still
contribute.

Heavy-ion collisions at CERN Super Proton Synchrotron
and BNL Relativistic Heavy Ion Collider energies have
yielded a continuum reminiscent of the QGP spectral function
[99,100] on the top of peaks associated to the decay of hadronic
resonances (ω, ρ, η, . . .), so perhaps the band gap structure can
be sought in upcoming lower energy experiments [42–45].

Alternatively, quarkyonic percolation as described here
could be detected in the phenomenology of neutron stars and
proto-neutron stars [75,76]. Quarkyonic matter would appear
at a pressure about ∼Nc = 3 times that of nuclear matter at
the same density, temperature, and chemical potential, while
maintaining a heat capacity and an energy density comparable
to that of nuclear matter. The extra boost in pressure is
analogous to the way the electron gas dominates pressure in
a metal. Such stiffer equations of state are desirable for stars
such as those reported in [101].5

Furthermore, a quarkyonic phase in proto-neutron stars
might be crucial in the dynamics of supernovae. The effective
stiffening of the equation of state might affect the early

5We would like to thank Irina Sagert for discussions regarding this
topic.

postbounce supernova dynamics and/or black hole formation
times during the core-collapse of massive stars. The first effect
is interesting in connection to the shock-stalling problem found
in, e.g., Ref. [102]. In Refs. [75,76] this problem was solved
with a more traditional deconfinement transition, making the
equation of state softer, because both equilibrium energy
density and pressure increase at deconfinement, and the mixed
phase drives the speed of sound to zero.

The percolation transition looks significantly different in
a way that might make it easier to maintain a shock wave.
In the Nc → ∞ limit the phase transition line is vertical in
the T -μB plane (regions I and II in Fig. 2; the real Nc = 3
world has a ∼30% curvature correction), and hence both
sides in the Clausius-Clayperon equation diverge. Percolation,
however, implies a second-order phase transition; hence, the
change in pressure [P/(TρB) jumps by ∼Nc = 3 when ρB

crosses the percolation threshold, as quarks start exerting
pressure] can only be gradual with density (the “jump” is
a rapid but smooth crossover at any finite Nc), and there is
no mixed phase or jump in energy density or heat capacity
[e/(TρB) stays approximately constant as ρB is varied]. It
would be very interesting to assess the effect of an equation
of state with such a transition in calculations such as in
Refs. [75,76,103–105].

In conclusion, we have studied the interplay between
percolation and deconfinement in Yang-Mills matter at finite
number of colors, temperature, and density. We find that these
transitions exhibit a nontrivial dependence on Nc, suggesting
that, at least for thermodynamics, we cannot automatically
assume QCD is in the “large-Nc limit” at T ,μQ ∼ �QCD.
Our calculations, however, show that the percolating phase
could appear for ρB ∼ (0.125–3)�3

QCD, provided quarks at
this density are still confined. Naive scaling in number of
colors and flavors suggests they are, although we cannot say
this with certainty. We have speculated what the dynamics
of the percolating phase looks like and how it is related
to popular approaches (such as the gauge/string duality)
for describing Yang-Mills matter in the same regime. Even
if the findings here will not be confirmed experimentally,
characterizing them more rigorously on the lattice and in the
gauge/string correspondence opens quite a few questions, the
solutions of which could help us clarify the qualitative structure
of Yang-Mills theories. Because a contact with our Nc = 3
world cannot be excluded, we have closed by suggesting
experimental and astrophysical signatures of the percolating
phase.
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