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Time and space dependence of the electromagnetic field in relativistic heavy-ion collisions
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Exact analytical solution for the space-time evolution of electromagnetic field in electrically conducting nuclear
matter produced in heavy-ion collisions is discussed. It is argued that the parameter that controls the strength of
the matter effect on the field evolution is σγ b, where σ is electrical conductivity, γ is the Lorentz boost-factor,
and b is the characteristic transverse size of the matter. When this parameter is of the order 1 or larger, which is
the case at the Relativistic Heavy Ion Collider and the Large Hadron Collider, the space-time dependence of the
electromagnetic field completely differs from that in vacuum.
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In relativistic heavy-ion collisions, production of valence
quarks in the central rapidity region (baryon stopping) is
suppressed [1]. Hence, Z valence quarks of each nucleus
continue to travel after heavy-ion collision along the straight
lines in opposite directions. These valence quarks carry total
electric charge 2Ze that creates electromagnetic field in the
interaction region. Unlike the valence quarks, gluons and sea
quarks are produced mostly in the central rapidity region, i.e.,
in a plane perpendicular to the collision axis. It has been
argued in Refs. [2,3] that high-multiplicity events in heavy-
ion collisions can be effectively described using relativistic
hydrodynamics. In particular, matter produced in heavy-ion
collisions can be characterized by a few transport coefficients.
This approach has enjoyed remarkable phenomenological
success (see, e.g., Ref. [4]). Since sea quarks carry an electric
charge, the electromagnetic field created by valence quarks
depends on the permittivity ε, permeability μ, and conductivity
σ of the produced matter.

Consider the electromagnetic field created by a point charge
e moving along the positive z axis with velocity v. It is
governed by the following Maxwell equations:

∇ · B = 0 , ∇ × E = −∂ B
∂t

, (1)

∇ · D = eδ(z − vt)δ(b) ,
(2)

∇ × H = ∂ D
∂t

+ σ E + ev ẑδ(z − vt)δ(b) ,

where r = z ẑ + b (such that b · ẑ = 0) is the position of the
observation point. Performing the Fourier transform

E(t, r) =
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dkz

2π

∫
d2k⊥
(2π )2

e−iωt+ikzz+ik⊥·b

× Eωk , etc. , (3)

we get

k · Bωk = 0 , k × Eωk = μωHωk , (4)

εk · Eωk = −2iπeδ(ω − kzv) ,
(5)

k × Hωk = −ωε̃ Eωk − 2πiev ẑδ(ω − kzv) ,

where ε̃ = ε + iσ/ω. The solution to these equations reads as
follows (see, e.g., Ref. [5]):

Hωk = −2πiev
k × ẑ

ω2ε̃μ − k2 δ(ω − kzv) ,

(6)

Eωk = −2πie
ωμv ẑ − k/ε

ω2ε̃μ − k2 δ(ω − kzv) .

Substituting (6) into (3), it is possible to take the integral over
k. However, integration over ω cannot be done in the general
form, because the dispersion relations ε(ω) and μ(ω) depend
on the matter properties.

The later time dependence of the electromagnetic field is
determined by a singularity of (6) in the plane of complex
ω that has the smallest imaginary part. We assume that the
leading singularity is determined by electrical conductivity.
(This gives a conservative estimate of the matter effect.)
Therefore, we adopt a simple model ε = μ = 1, i.e., neglect
the polarization and magnetization response of nuclear matter,
but take into account its finite electrical conductivity. Plugging
(6) into (3), we take, first, the trivial kz integral. Integration
over ω for positive values of x− = t − z/v is done by closing
the integration contour over the pole in the lower half plane of
complex ω. In the relativistic limit γ = 1/

√
1 − v2 � 1, the

result is [6]

H(t, r) = H (t, r)φ̂

= e

2πσ
φ̂

∫ ∞

0

J1(k⊥b)k2
⊥√

1 + 4k2
⊥

γ 2σ 2

× exp

{
1

2
σγ 2x−

(
1 −

√
1 + 4k2

⊥
γ 2σ 2

)}
dk⊥ , (7)

Ez(t, r) = e

4π

∫
k⊥J0(k⊥b)

1 −
√

1 + 4k2
⊥

γ 2σ 2√
1 + 4k2

⊥
γ 2σ 2

× exp

{
1

2
σγ 2x−

(
1 −

√
1 + 4k2

⊥
γ 2σ 2

)}
dk⊥ , (8)

E⊥(t, r) = H (t, r)r̂ , (9)

where r̂ and φ̂ are unit vectors of polar coordinates in the
transverse plane x, y. The electromagnetic field is a function
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FIG. 1. (Color online) Time evolution of the magnetic field created by a point unit charge at z = 0, b = 7.4 fm, γ = 100 and (a) σ =
5.8 MeV and (b) σ = 0.01 MeV. The black solid line is a numerical computation of (7), the red dashed line is the “diffusion” approximation
(11), and the blue dash-dotted line is a solution in free space.

of r − r ′, where r and r ′ = vt ẑ are the positions of the
observation point and the moving charge correspondingly. In
fact, it depends only on distances z − vt = −vx− and b.

Equations (7)–(9) have two instructive limits depending on
the value of parameter γ σb that appears in the exponents once
we notice that k⊥ ∼ 1/b. If γ σb � 1, then, after a simple
integration, (7)–(9) reduce to the boosted Coulomb potential
in free space as follows:

E = eγ

4π

b − vx− ẑ

(b2 + γ 2v2x2−)3/2
,

(10)

H = eγ

4π

vφ̂

(b2 + γ 2v2x2−)3/2
.

This is the solution discussed in Ref. [7]. In the opposite limit
γ σb � 1, we expend the square root in (7) and (8) and derive

Er = Hφ = e

2π

bσ

4x2−
e
− b2σ

4x− ,

(11)

Ez = − e

4π

x− − b2σ/4

γ 2x3−
e
− b2σ

4x− .

This is the solution pointed out in Ref. [8]. Notice that the
electromagnetic field in (10) drops as 1/x3

− at late times,
whereas in conducting matter only as 1/x2

−. At the Relativistic
Heavy Ion Collider γ = 100, σ ≈ 5.8 MeV [9,10]. For b =
7 fm we estimate γ σb = 19; hence, the field is given by
the “diffusive” solution (11). This argument is augmented by
numerical calculation presented in Fig. 1. In Fig. 1(a) we plot
the result of numerical integration in (7) for σ ≈ 5.8 MeV
and compare it with the asymptotic solutions (10) and (11). It
is seen that (11) completely overlaps with the exact solution
at all times, except at t < 0.1 fm (not seen in the figure). To
illustrate what happens at γ σb � 1, we plotted in Fig. 1(b)
the same formulas as in Fig. 1(a) calculated at artificially
reduced conductivity σ ≈ 0.01 MeV. One can clearly observe
that at early time matter plays only a small role in the field
time evolution which follows (10), whereas at later times the
Foucault currents eventually slow down the magnetic field
decline, which then follows (11). This conclusion supports

our previous results [6,8] and disagrees with the recent claims
made in Ref. [11].

The electromagnetic field of a charge moving at distance
b′ in the positive z direction with velocity v is given by
(7)–(9) with b replaced by b − b′. It is denoted as H(x−, |b −
b′|), and so on. In the laboratory frame, all charges in a
nucleus have approximately the same longitudinal coordinate
z′ = vt and, hence, the same x− = −(z − z′)/v. Therefore,
the electromagnetic field of the relativistic nucleus can be
calculated as

HZ(x−, b) =
∫

ρ(r ′)H(x−, |b − b′|)d3r ′

=
∫

2
√

R2
A − b′2ρ H(x−, |b − b′|)d2b′ , etc.,

(12)

where ρ = Z/( 4
3πR3

A) is the nuclear density and RA is the
nuclear radius and we used the fact that the ρdz′ is boost
invariant (in the z direction).1 The electromagnetic field of a

1We neglect fluctuations of nucleon positions that can also give
important contributions to electromagnetic field [12].
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FIG. 2. The transverse plane geometry of heavy-ion collision.
Thick lines depict nuclear boundaries. O1 and O2 are nuclear centers.
B is the impact parameter and b1 and b2 are positions of the
observation point P (x, y) with respect to the nuclear centers. b′ is
a position of an elementary charge in nucleus 1.
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FIG. 3. The time dependence of the total electromagnetic mag-
netic field F at midrapidity z = 0, γ = 100, B = 7 fm, t = 2 fm.
Solid line: F = Hy at x = y = 0; dashed line F = −Hx at x = y =
1 fm; dashed-dotted line F = −Ey at x = y = 1 fm.

nucleus moving in the negative z direction is given by (12)
with x− replaced by x+ = t + z/v.

Consider now the total electromagnetic field of two nuclei.
The geometry of a heavy-ion collision in the transverse plane
is depicted in Fig. 2. The magnetic field at point P with
coordinates x, y is directed along the azimuthal angle direction
φ̂ = − sin ψ1 x̂ + cos ψ1 ŷ, where ψ1 is the angle between the
vector b1 − b′ and x axis, which can be related to vectors b1

and b2 as follows:

cos ψ1 = (b1 − b′) · x̂
|b1 − b′|

= b1 cos φ1 − b′ cos φ′√
b2

1 + b′2 − 2b1b′ cos(φ′ − φ1)
. (13)

The transverse component of electric field has radial direction
r̂ = cos ψ1 x̂ + sin ψ1 ŷ. The final expression for the field of a
nucleus is

HZ(x−, b1) =
∫

2
√

R2
A − b′2ρ H (x−, |b1 − b′|)

× (− sin ψ1 x̂ + cos ψ1 ŷ)d2b′ , (14)

EZ(x−, b1) =
∫

2
√

R2
A − b′2ρ [H (x−, |b1 − b′|)

× (cos ψ1 x̂ + sin ψ1 ŷ)

+Ez(x−, |b1 − b′|) ẑ]d2b′ , (15)

with ψ1 given by (13) and H , Ez by (7)–(9). Similar expres-
sions hold for the other nucleus. The total electromagnetic field
of two nuclei is given by

H(t, z, b1, b2) = HZ(x−, b1) + HZ(x+, b2) ,
(16)

E(t, z, b1, b2) = EZ(x−, b1) + EZ(x+, b2) .
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FIG. 4. (Color online) Structure of the field components in the transverse plane at midrapidity z = 0 and γ = 100, B = 7 fm.
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In practice, one would like to know the electromagnetic
field at a given impact parameter B = b1 − b2 as a function
of time t and coordinates x, y, z defined in a symmetric way
shown in Fig. 2. This is accomplished using the following
equations:

tan φ1,2 = y

x ± B/2
, b1,2 =

√
(x ± B/2)2 + y2 . (17)

The time dependence of the total magnetic field is shown in
Fig. 3. As expected, the late time dependence of all components
is the same and governed by (11).

Space dependence is exhibited in Fig. 4. We observe that
the space variation of Hy is mild. Other transverse components

vary more significantly as they are required to vanish at
either x = 0 or y = 0 by symmetry. When averaged over the
transverse plane, only the Hy component survives. However,
one can think of observables sensitive to the field variations in
the transverse plane.

In summary, we presented an exact analytical and numerical
solution for the space and time dependencies of an electromag-
netic field produced in heavy-ion collisions. We confirmed our
previous result [8] that nuclear matter plays a crucial role in
its time evolution.
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