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Recently, two strongly intensive quantities, �[A, B] and �[A,B], designed for the study of event-by-event
fluctuations in high-energy collisions were introduced. They are defined in terms of two extensive event
observables A and B. In this paper a special normalization of the �[A, B] and �[A, B] fluctuation measures is
proposed. It ensures that they are dimensionless and yields a common scale required for a quantitative comparison
of fluctuations of different, in general dimensional, extensive quantities. Namely, the properly normalized strongly
intensive measures assume the value one for fluctuations given by the independent particle model, and they are
equal to zero when the A and B observables have constant values in all collision events.
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I. INTRODUCTION

Intensive quantities are defined within the grand canonical
ensemble of statistical mechanics. They depend on temper-
ature and chemical potential(s), but they are independent
of the system volume. Strongly intensive quantities [1] are,
in addition, independent of volume fluctuations. They were
suggested for and are used in studies of event-by-event
fluctuations of hadron production in nucleus-nucleus collisions
at high energies. This is because, in these collisions, the
volume of created states varies from collision to collision,
and moreover it is difficult or even impossible to measure.

Strongly intensive quantities are defined using two arbi-
trary, extensive state quantities A and B. Here, we call A and
B extensive when the first moments of their distributions for
the ensemble of possible states is proportional to volume. They
are referred to as state quantities as they characterize the states
of the considered system, e.g., final states (or equivalently
events) of nucleus-nucleus collisions or microstates of the
grand canonical ensemble. For example, A and B may stand
for multiplicities of pions and kaons in a particular state,
respectively.

The simplest family of strongly intensive quantities is given
by the ratio of the first moments (i.e., average values) of A and
B:

R[A,B] = 〈A〉
〈B〉 , (1)

where averaging 〈· · ·〉 is performed over the ensemble of
considered states.

There are two families of strongly intensive quantities
which depend on the second and first moments of A and B and
thus allow the study of state-by-state fluctuations [1]. These are

�[A,B] = 1

C�

[〈B〉ω[A] − 〈A〉ω[B]], (2)

�[A,B] = 1

C�

[〈B〉ω[A] + 〈A〉ω[B] − 2 (〈AB〉 − 〈A〉〈B〉)],
(3)

where

ω[A] ≡ 〈A2〉 − 〈A〉2

〈A〉 , ω[B] ≡ 〈B2〉 − 〈B〉2

〈B〉 (4)

are scaled variances of A and B. The normalization factors
C� and C� are required to be proportional to the first moment
of any extensive quantity.

It is important to stress that �[A,B] and �[A,B] are
independent of system size fluctuations, not only for the grand
canonical ensemble of states. They are also independent of the
average number of sources and source number fluctuations in
the model of independent particle sources, for example, in the
wounded nucleon model [2].

Usage of strongly intensive quantities for fluctuations has a
long history. The first quantity of this type, introduced in 1992,
was the so-called � measure of fluctuations [3]. According
to the current classification the � measure belongs to the
� family [1]. It is defined as the difference of the quantity
calculated for a studied ensemble (e.g., central Pb + Pb col-
lisions) and its value obtained within an independent particle
model (IPM) which preserves basic features of the ensemble.
Thus, by construction, � = 0 if the studied ensemble satisfies
the assumptions of the IPM. In general, � is a dimensional
quantity and it does not assume a characteristic value for
the case of nonfluctuating A and B (variances of A and B
distributions equal to 0). The latter properties were clearly
disturbing in numerous applications of � when attempting
to characterize fluctuations in experimental data [4] and
models [5].

In this paper we propose a specific choice of the C� and C�

normalization factors which makes the quantities �[A,B] and
�[A,B] dimensionless and leads to �[A,B] = �[A,B] = 1
in the IPM. Moreover, from the definition of �[A,B] and
�[A,B] it follows that �[A,B] = �[A,B] = 0 in the case
of absence of fluctuations of A and B, i.e., for ω[A] = ω[B] =
〈AB〉 − 〈A〉〈B〉 = 0. Thus the proposed normalization of
�[A,B] and �[A,B] leads to a common scale for which
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the values of the fluctuations measures calculated for different
state quantities A and B can be compared.

The paper is organized as follows. In Sec. II we introduce
an independent particle model within which we calculate the
�[A,B] and �[A,B] quantities. The calculation details are
given in Appendix A. Appendix B gives explicit expressions
of �[A,B] and �[A,B] for three choices of the quantities
A and B. Specific models which share the properties of the
IPM are discussed in Sec. III. Section IV presents the proposal
for the normalization of �[A,B] and �[A,B] discusses the
procedure to calculate them for a given ensemble of states and
provides numerical examples. A summary in Sec. V closes the
article.

II. �[A, B] AND �[A, B] IN AN
INDEPENDENT PARTICLE MODEL

In the independent particle model one assumes the follow-
ing:

(i) The state1quantities A and B can be expressed as

A = α1 + α2 + . . . + αN, B = β1 + β2 + . . . + βN, (5)

where αj and βj denote single-particle contributions to A
and B, respectively, and N is the number of particles.

(ii) Interparticle correlations are absent, i.e. the probability
of any multiparticle state is the product of probability
distributions P (αj , βj ) of single-particle states, and these
probability distributions are the same for all j = 1, . . . , N
and independent of N :

PN (α1, β1, α2, β2, . . . , αN, βN )

= P(N ) × P (α1, β1) × P (α2, β2) × · · · × P (αN, βN ),

(6)

where P(N ) is an arbitrary multiplicity distribution of
particles.

It is easy to show (see Appendix A) that within the IPM the
first and second moments of A and B are equal to

〈A〉 = α〈N〉, 〈A2〉 = α2〈N〉 + α2[〈N2〉 − 〈N〉], (7)

〈B〉 = β〈N〉, 〈B2〉 = β2〈N〉 + β
2
[〈N2〉 − 〈N〉], (8)

〈AB〉 = α β〈N〉 + α · β[〈N2〉 − 〈N〉]. (9)

The values of 〈A〉 and 〈B〉 are proportional to the average
number of particles, 〈N〉, and, thus, to the average size of
the system. These quantities are extensive. The quantities
α, β and α2, β2, α β are the first and second moments
of the single-particle distribution P (α, β). Within the IPM
they are independent of 〈N〉 and play the role of intensive
quantities. By using Eq. (7) the scaled variance ω[A] which
describes the state-by-state fluctuations of A can be expressed

1By “state,” we mean, e.g., a microstate of the grand canonical
ensemble or a final state of a nucleus-nucleus collision.

as

ω[A] ≡ 〈A2〉 − 〈A〉2

〈A〉 = α2 − α2

α
+ α

〈N2〉 − 〈N〉2

〈N〉
(10)

≡ ω[α] + αω[N ],

where ω[α] is the scaled variance of the single-particle quantity
α, and ω[N ] is the scaled variance of N . A similar expression
follows from Eq. (8) for the scaled variance ω[B]. The scaled
variances ω[A] and ω[B] depend on the fluctuations of the
particle number via ω[N ]. Therefore, ω[A] and ω[B] are not
strongly intensive quantities.

From Eqs. (7)–(9) one obtains expressions for �[A,B] and
�[A,B], namely,

�[A,B] = 〈N〉
C�

[βω[α] − αω[β]], (11)

�[A,B] = 〈N〉
C�

[βω[α] + αω[β] − 2(α β − α · β)]. (12)

Thus, the requirement that

�[A,B] = �[A,B] = 1, (13)

within the IPM, leads to

C� = 〈N〉[βω[α] − αω[β]], (14)

C� = 〈N〉[βω[α] + αω[β] − 2(α β − α · β)]. (15)

Two comments are in order here. First, Eqs. (7)–(9) have
the same structure as Eqs. (2)–(4) of Ref. [1] obtained within
the model of independent sources. The only difference is
that the number of sources, NS , in the model of independent
sources is replaced by the number of particles, N , in the IPM.
Each source can produce many particles, and the number of
these particles varies from source to source and from event to
event. Besides, properties of particles emitted from the same
source may be correlated. Therefore, in general, the model
of independent sources does not satisfy the assumptions of
the IPM. Nevertheless, the formal similarity between the two
models can be exploited and it gives the following rule of
one-to-one correspondence: all results obtained within the IPM
can be found from the expressions obtained within the model of
independent sources, by assuming artificially that each source
always produces one particle. Second, only the first and second
moments of two extensive quantities A and B are required in
order to define the strongly intensive quantities � and �.
However, in order to calculate the proposed normalization
factors C� and C� additional information is needed, namely,
the first and second moments of single-particle contributions
to A and B as well as the mean number of particles. Note that
in special cases the factors C� and C� may assume the value
zero and thus the proposed normalization is not possible (see
Sec. IV B for details).

Explicit expressions for Eqs. (14) and (15) for three
choices of A and B are given in Appendix B. The first two
cases correspond to the study of “transverse momentum” and
“chemical” fluctuations. The third choice is the most general.
The examples presented in Appendix B cover a broad spectrum
of cases. In Appendix B1 each particle contributes by one
unit to an event multiplicity N and by its pT to the event
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transverse momentum PT . On the other hand, in the case
of fluctuations of kaon and pion multiplicities, K and π ,
considered in Appendix B1, each particle is either a pion or
a kaon; i.e., it contributes either to K or to π . Nevertheless,
introducing the single-particle identity variables wK and wπ

we have succeeded in treating these different cases as well as
the most general situation of partially overlapping A and B
quantities within the same mathematical formalism.

III. EXAMPLES OF INDEPENDENT PARTICLE MODELS

In this section two specific models which satisfy the IPM
assumptions, i.e., Eqs. (5) and (6), are presented and discussed.

A. Grand canonical ensemble

The most popular model which satisfies the IPM assump-
tions is the ideal Boltzmann multicomponent gas in the grand
canonical ensemble (GCE) formulation. Here we refer to
it as the IB-GCE. In the IB-GCE the probability of any
microscopic state is equal to the product of probabilities of
single-particle states. These probabilities are independent of
particle multiplicity. Thus, the IB-GCE satisfies assumption (6)
of the IPM.

The IB-GCE predicts a specific form of the multiplicity
distribution P(N ), namely, the Poisson distribution and, thus,
ω[N ] = 1. Moreover, it also predicts the specific form of the
single-particle probability in momentum space, namely, the
Boltzmann distribution,

fB(p) = C exp

(
−

√
p2 + m2

T

)
, (16)

where p and m are particle momentum and mass, respectively,
T is the system temperature, and C is the normalization
constant.

Note that by introducing quantum statistics one destroys the
correspondence between the GCE and the IPM. This is because
of (anti)correlation between particles in the same quantum
state for the (Fermi) Bose ideal gas. Moreover, correlations
between particles are introduced if instead of resonances their
decay products are considered. Note that it is necessary to
include strong decays of resonances in order to compare the
GCE predictions to experimental results.

The correspondence between the IB-GCE and the IPM
remains valid even if the volume varies from microstate to
microstate2 but local properties of the system, i.e., temperature
and chemical potentials, are independent of the system volume.
Let volume fluctuations be given by the probability density
function F (V ). The averaging over all microstates includes
the averaging over the microstates with fixed volume and
the averaging over the volume fluctuations. The volume
fluctuations broaden the P(N ) distribution and increase its

2Statistical ensembles with volume fluctuations were discussed
in Ref. [6].

scaled variance:

ω[N ] ≡ 〈N2〉 − 〈N〉2

〈N〉 = 1 + 〈N〉
〈V 〉 · V 2 − V

2

V
, (17)

where V k ≡ ∫
dV F (V )V k for k = 1, 2. The first term on the

right-hand side of Eq. (17) corresponds to the particle number
fluctuations in the IB-GCE at a fixed volume V (i.e., this
is the scaled variance of the Poisson distribution), and the
second term is the contribution due to the volume fluctuations.
Equation (6) remains valid in this example; therefore, the
IB-GCE with arbitrary volume fluctuations satisfies the IPM
assumptions.

B. Mixed event model

The mixed event model is defined by the Monte Carlo
procedure frequently used by experimentalists in order to
create a sample of artificial events in which correlations
and fluctuations present in the original ensemble of events
are partly removed. Then the original and mixed events are
analyzed in the same way and the corresponding results
are compared in order to extract the magnitude of a signal
of interest, which by construction should be present in the
original events and absent in the mixed events. The mixed
event procedure is in particular popular in studies of resonance
production, particle correlations due to quantum statistics, and
event-by-event fluctuations (see Ref. [7] for examples).

There are many variations of the mixed event model. Here
we describe the one which in the limit of an infinite number
of the original and mixed events gives results identical to the
IPM.

The procedure to create a mixed event which corresponds
to the given ensemble of original events consists of two steps,
namely,

(i) a mixed event multiplicity, N , is drawn from the set of
multiplicities of all original events;

(ii) N particles for the mixed event are drawn randomly with
replacement from the set of all particles from all original
events.

Then these are repeated to create the next mixed event and
the procedure is stopped when the desired number of mixed
events is reached. In the limit of an infinite number of original
events, the probability of having two particles from the same
original event in a single mixed event is zero and thus particles
in the mixed events are uncorrelated. Therefore, in this limit
the mixed event model satisfies the IPM assumptions. Note
that, for an infinite number of mixed events, the first moments
of all extensive quantities and all single-particle distributions
of the original and mixed events are identical.

IV. DETERMINATION OF �[A, B] AND �[A, B]

The strongly intensive quantities �[A,B] and �[A,B]
were introduced for the study of state-by-state fluctuations of
any extensive quantities A and B in a given ensemble of states.
For example, states may refer to data for nucleus-nucleus
collisions recorded by an experiment or generated within a
Monte Carlo model. In this section, we first explicitly present
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how �[A,B] and �[A,B] with their normalization factors
can be calculated for a given ensemble of states. Then, we
comment on selected properties of �[A,B] and �[A,B] and
illustrate the procedure of their determination by numerical
examples.

A. Normalization procedure

Let the ensemble of states 	 and the extensive state
quantities A and B be given. We propose to define the
normalization factors C� and C� in Eqs. (2) and (3) such
that �[A,B] = �[A,B] = 1 in the IPM with the multiplicity
distribution P(N ) and the single-particle distribution P (α, β)
identical to those of the ensemble 	. The IPM which
corresponds to the ensemble 	 will be denoted as IPM-	.
The normalization factors C� and C� calculated within the
IPM-	 are then given by Eqs. (14) and (15), where all entering
quantities should be calculated from the ensemble 	.

The procedure of calculating �[A,B] and �[A,B] given
by Eqs. (2) and (3) with the normalization factors defined by
Eqs. (14) and (15) consists of the following steps:

(i) Calculate the 	-ensemble state averages of the first and
second moments of extensive quantities A and B.

(ii) Calculate the first and second moments of single-particle
quantities α and β, as well as the average number of
particles, 〈N〉, entering Eqs. (14) and (15); the averaging is
performed over the 	-ensemble.

(iii) Calculate �[A,B] and �[A,B] according to Eqs. (2)
and (3).

Note that the results obtained within the IPM-	 can be
approximated by the corresponding ones obtained using mixed
events constructed from the 	 ensemble (see Sec. III B for
details). As has been noted there, the mixed event construction
satisfies the IPM assumptions if the number of mixed events
approaches infinity.

B. Comments

There is an important difference between the �[A,B] and
�[A,B] quantities. Namely, in order to calculate �[A,B] one
needs to measure only the first two moments: 〈A〉, 〈B〉 and
〈A2〉, 〈B2〉. This can be done by independent measurements
of the distributions PA(A) and PB(B). The quantity �[A,B]
includes the correlation term 〈AB〉 − 〈A〉〈B〉, and thus it
requires, in addition, simultaneous measurements of A and
B in order to obtain the joint distribution PAB(A,B). The
quantities �[A,B] and �[A,B] also have properties under
exchange of A and B, namely, �[A,B] = �[B,A] and
�[A,B] = −�[B,A]. Using the last relation one can always
define � � 0 by exchanging the A and B quantities.

In the IPM the A and B quantities are expressed in terms
of sums of the single-particle variables α and β. Thus in order
to calculate the normalization C� and C� factors one has
to measure the single-particle quantities α and β. However,
this may not always be possible within a given experimental
setup. For example, A and B may be energies of particles
measured by two calorimeters. Then one can study fluctuations
in terms of �[A,B] and �[A,B] but cannot calculate the
normalization factors proposed here.

A special discussion is needed when C� and/or C� equal
zero, and the normalization procedure may lead to the singular
behavior of the � and/or � quantities. First, let us look at
the case of transverse momentum fluctuations (A = PT and
B = N ). According to Eq. (B5) one obtains C� = C� =
〈N〉 · ω[pT ]. Thus, for ω[pT ] = 0, C� = C� = 0. This is
possible only for an unphysical case when all particles in all
events have the same transverse momentum, pT = pT . The
total transverse momentum PT = pT N still may fluctuate
because of the particle number fluctuations. This corresponds
to the IPM with P (pT ) = δ(pT − pT ) and from Eq. (6) one
easily calculates

〈PT 〉 = pT · 〈N〉, 〈P 2
T

〉 = pT
2 · 〈N2〉, 〈PT N〉 = pT · 〈N2〉,

(18)

and �[PT ,N] = �[PT ,N ] = 1, as it should be in the IPM.
Thus, in the above example, in spite of having C� = C� = 0,
no singularity of � and � appears.

As a second example let us consider A and B as being
particle multiplicities. According to Eqs. (B11) and (B12) one
obtains

C� = 〈B〉 − 〈A〉, C� = 〈B〉 + 〈A〉. (19)

It is clear that C� > 0, but it may happen that C� = 0.
Therefore, normalization of the � quantity may not be
possible. For example, the average multiplicities of protons
and kaons can be equal to each other: 〈p〉 = 〈K〉. As discussed
above, the normalization is given by the requirement � = 1
within the IPM. For example, for the Boltzmann ideal gas in
the GCE one has ω[A] = ω[B] = 1, and thus �[A,B] would
be equal to 1 even for 〈A〉 = 〈B〉. However, in general, 〈A〉 =
〈B〉 does not imply ω[A] = ω[B] = 1, e.g., ω[p] �= ω[K] if
quantum statistics is assumed. Therefore, one should have in
mind that the proposed normalization makes the � quantity of
particle number fluctuations sensitive to small deviations from
the IPM results for 〈A〉 ≈ 〈B〉.

C. Numerical examples

The proposed procedure is illustrated by numerical results
obtained within the ultra-relativistic quantum molecular dy-
namics (UrQMD) model [8] and an ideal gas of quantum
particles.

Figure 1 shows the collision energy dependence of dif-
ferent fluctuation measures discussed in this paper in the
CERN Super Proton Synchrotron (SPS) energy range. In
this example, A = PT is the total transverse momentum of
negatively charged hadrons and B = H− is their multiplicity
(see Appendix B1). The UrQMD simulations were performed
for inelastic p + p interactions and for the 7% most central
Xe + La collisions. This choice of reactions is motivated by the
experimental program of the NA61/SHINE Collaboration [9]
at the CERN SPS. NA61/SHINE already reported the first
results on event-by-event fluctuations in p + p interactions
[10], and results for nucleus-nucleus (Be + Be, Ar + Ca, and
Xe + La) collisions will become available within the next
couple of years. A comparison between experimental data and
models is beyond the scope of this paper. The top plots show
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FIG. 1. (Color online) Fluctuation measures calculated within the UrQMD model for negatively charged hadrons produced in inelastic
p + p interactions and the 7% most central Xe + La collisions as functions of collision energy in the CERN SPS energy range. The top plots
show intensive measures of fluctuations, namely, the scaled variances of (a) the negatively charged hadron multiplicity, ω[H−], and (b) the
sum of magnitudes of their transverse momenta, ω[PT ]. The bottom plots show the corresponding strongly intensive measures (c) �[PT , H−]
and (d) �[PT , H−]. Statistical uncertainties are smaller than the symbol size and were calculated using the subsample method.

intensive fluctuation measures, namely, the scaled variance
of the negatively charged particle multiplicity distribution,
ω[H−], and of the distribution of the sum of the magnitudes
of their transverse momenta, ω[PT ]. The bottom plots show
the corresponding strongly intensive measures �[PT ,H−] and
�[PT ,H−] normalized as proposed in this paper according to
Eqs. (14) and (15) with their explicit form given in Eq. (B5).

The scaled variance of H− and PT is significantly larger
in central Xe + La collisions than in p + p interactions. To
a large extent this is due to fluctuations of the number of
nucleons which interacted (wounded nucleons) (see Ref. [11]
for a detailed discussion of this issue). The advantages of the
�[PT ,H−] and �[PT ,H−] quantities are obvious from the
results presented in the bottom plots. First, they are not directly
sensitive to fluctuations of the collision geometry (the number
of wounded nucleons), in contrast to the scaled variance. Thus,
the remaining small differences between results for central
Xe + La collisions and p + p interactions are entirely due to
deviations of the UrQMD model from the independent source
model. Second, they are dimensionless and expressed in units
common for all energies and reactions as well as for different
choices of state quantities A and B. Due to the particular
normalization proposed in this article, they assume the value
one for the independent particle model and zero in the absence
of event-by-event fluctuations.

The strongly intensive fluctuation measures �[PT ,N ] and
�[PT ,N] have been recently studied in Ref. [12] for the

ideal Bose and Fermi gases within the GCE. As was already
noted the GCE for the Boltzmann approximation satisfies the
conditions of the IPM; i.e., Eq. (13) is valid in the IB-GCE.
The following general relations have been found [12]:

�Bose[PT ,N] < �Boltzmann = 1 < �Fermi[PT ,N ], (20)

�Fermi[PT ,N ] < �Boltzmann = 1 < �Bose[PT ,N]; (21)

i.e., the Bose statistics makes �[PT ,N] smaller than unity and
�[PT ,N] larger than unity, whereas the Fermi statistics works
in the opposite way. The Bose statistics of pions appears to be
the main source of quantum statistics effects in a hadron gas
with a temperature typical for the hadron system created in A +
A collisions. It gives about a 20% decrease of �[PT ,N ] and a
10% increase of �[PT ,N ] at T ∼= 150 MeV in comparison to
the IPM results (13). The Fermi statistics of protons modifies
insignificantly �[PT ,N ] and �[PT ,N ] for the typical T and
μB . Note that UrQMD takes into account several sources of
fluctuations and correlations, e.g., the exact conservation laws
and resonance decays. On the other hand, it does not include
the effects of Bose and Fermi statistics.

V. SUMMARY

The strongly intensive quantities �[A,B] and �[A,B] are
fluctuation measures which are independent of the system vol-
ume and its fluctuations within the grand canonical ensemble
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of statistical mechanics. Moreover, they are independent of
the number of wounded nucleons and its fluctuations within
the wounded nucleon model. Strongly intensive quantities are
expected to be useful in studies of fluctuations in hadron
production in nucleus-nucleus collisions at high energies.
In this paper a special normalization of strongly intensive
quantities is proposed. It ensures that they are dimensionless
and yields a common scale enabling a quantitative comparison
of fluctuations of different extensive state quantities. With the
proposed normalization �[A,B] and �[A,B] assume the
value one for fluctuations given by the independent particle
model and zero in the absence of state-by-state fluctuations.

The paper includes details of calculations and explicit for-
mulas for “transverse momentum” and “chemical” fluctuations
as well as for the most general case of fluctuations of two exten-
sive motional quantities for partly overlapping sets of particles.
Moreover, numerical examples are given using final states of
high-energy collisions generated by the UrQMD model.
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APPENDIX A: CALCULATION DETAILS OF THE IPM

In this Appendix details of the derivation of Eqs. (7)–(9)
within the independent particle model defined by Eqs. (5) and
(6) are given.

The functions entering Eq. (6) satisfy the normalization
conditions ∑

N

P(N ) = 1,

∫
dα dβP (α, β) = 1. (A1)

The average values of αj and α2
j are

〈α1〉 = 〈α2〉 = · · · = 〈αN 〉 =
∫

dαdβ α P (α, β) ≡ α,

(A2)〈
α2

1

〉 = 〈
α2

2

〉 = · · · = 〈
α2

N

〉 =
∫

dαdβ α2 P (α, β) ≡ α2.

(A3)

Similarly,

〈β1〉 = 〈β2〉 = · · · = 〈βN 〉 = ∫
dα dββP (α, β) ≡ β, (A4)

〈
β2

1

〉 = 〈
β2

2

〉 = · · · = 〈
β2

N

〉 = ∫
dα dββ2P (α, β) ≡ β2. (A5)

At i �= j one finds

〈αiαj 〉 = 〈αi〉〈αj 〉 = α · α = α2,
(A6)

〈βiβj 〉 = 〈βi〉〈βj 〉 = β · β = β
2
.

The state averages of A and B are equal to

〈A〉 =
〈 N∑

j=1

αj

〉
=

∑
N

P(N )
N∑

j=1

〈αj 〉

=
∑
N

P(N )α · N = α 〈N〉, (A7)

〈B〉 =
〈 N∑

j=1

βj

〉
=

∑
N

P(N )
N∑

j=1

〈βj 〉

=
∑
N

P(N )β · N = β 〈N〉. (A8)

For the second moments of A and B one obtains

〈A2〉 = 〈(α1 + α2 + . . . + αN )2〉 =
〈

N∑
j=1

α2
j +

∑
1�=i<j�N

αiαj

〉

=
∑
N

P(N )

⎡
⎣ N∑

j=1

〈
α2

j

〉 + ∑
1�i �=j�N

〈αiαj 〉
⎤
⎦

= α2 〈N〉 + α2 [〈N2〉 − 〈N〉], (A9)

and similarly

〈B2〉 = β2 〈N〉 + β
2

[〈N2〉 − 〈N〉]. (A10)

Finally, for 〈AB〉 one finds

〈AB〉 = 〈(α1 + α2 + . . . + αN ) × (β1 + β2 + . . . + βN )〉

=
∑
N

P(N )

⎡
⎣ N∑

j=1

〈αjβj 〉 +
∑

1�i �=j�N

〈αiβj 〉
⎤
⎦

= αβ 〈N〉 + α · β [〈N2〉 − 〈N〉]. (A11)

APPENDIX B: EXAMPLES FOR THREE CHOICES
OF A AND B

In this Appendix explicit expressions for �[A,B] and
�[A,B] and their normalization factors C� and C� calculated
within the IPM are given for two popular choices of the
extensive state quantities A and B which correspond to the
study of “transverse momentum” and “chemical” fluctuations.
Finally, the most general case is considered, which corresponds
to the selection of two extensive motional quantities for partly
overlapping sets of particles.

1. “Transverse momentum” fluctuations

The first [3] and the most popular [4,5] application of the �
measure was the study of transverse momentum fluctuations.
In the formalism, introduced in Ref. [1], this corresponds to
the following choice of the extensive state quantities A and B:

A ≡ PT = p
(1)
T + p

(2)
T + . . . + p

(N)
T , (B1)

B ≡ N = w(1) + w(2) + . . . + w(N), (B2)
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where p
(j )
T is the absolute value of the transverse momentum

of the j th particle3and w(j ) is the particle identity [13] which
equals one for all particles: w(j ) = 1.

Thus, for the single-particle quantities

α = pT , β = w = 1, (B3)

one gets

α = pT , α2 = p2
T ,

β = β2 = w = w2 = 1, αβ = pT , (B4)

where pT and p2
T are the average values of pT and p2

T calcu-
lated from the properly normalized single-particle transverse
momentum distribution.4Consequently, Eqs. (14) and (15) give

C� = C� = 〈N〉 · p2
T − pT

2

pT

≡ 〈N〉 · ω[pT ]. (B5)

As was already mentioned in Sec. II, only the first and
second moments of two extensive quantities PT and N are
required to calculate the strongly intensive measures �[PT ,N]
and �[PT ,N]. However, in order to calculate the proposed
normalization factors C� and C� additional information may
be necessary. In the considered example, one also needs the
second moment of the single-particle pT distribution, p2

T .
Let us recall here that �(PT ,N) is directly related to

the �pT
measure of transverse momentum fluctuations (for

the explicit expression see Ref. [1]). The only difference
is in the scale used to quantify fluctuations measured by
both quantities. Namely, the �pT

measure is defined as the
difference of the event quantity calculated for the studied
ensemble (e.g., central Pb + Pb collisions) and its value
obtained within the independent particle model. Consequently,
�pT

= 0 if the studied ensemble satisfies the assumptions of
the IPM. Moreover, �pT

is a dimensional quantity and does
not assume a characteristic value for the case of nonfluctuating
A and B. These undesired properties of �pT

are removed
when fluctuations are measured using �(PT ,N ) normalized
as proposed in this article.

2. “Chemical” fluctuations

In the jargon of high-energy nuclear physics “chemical”
fluctuations refer to fluctuations of particle-type composition
of the system. In order to be specific let us consider relative
fluctuations of the number of charged pions π ≡ π+ + π−
and kaons K ≡ K+ + K−:

A ≡ K = w
(1)
K + w

(2)
K + . . . + w

(N)
K ,

(B6)
B ≡ π = w(1)

π + w(2)
π + . . . + w(N)

π ,

where w
(j )
π and w

(j )
K are the pion and kaon identities of the j th

particle.5 Particle identities were introduced first in Ref. [13]

3Similarly, one can consider sums of any other motional variables,
e.g., particle energies, rapidities, etc.

4In high-energy physics single-particle distributions are called
inclusive distributions.

5Similarly, one can consider sums of any other particle identities,
e.g., negatively charged particles, baryons, etc.

and used in the study of “chemical” fluctuations in terms of
the � measure [4,5,13].

In this example one defines the kaon w
(j )
K and pion w

(j )
π

identities as w
(j )
K = 1 and w

(j )
π = 0 if the j th particle is a

kaon and as w
(j )
K = 0 and w

(j )
π = 1 if the j th particle is

a pion.
For the single-particle quantities

α = wK, β = wπ, (B7)

one obtains

wK = w2
K = 〈K〉

〈N〉 ≡ k,

(B8)

wπ = w2
π = 〈π〉

〈N〉 = 1 − k, wK wπ = 0,

where N = K + π . Then from Eq. (B8) it follows that

ω [wK ] ≡ w2
K − wK

2

wK

= 1 − k, ω [wπ ] ≡ w2
π − wπ

2

wπ

= k,

(B9)

wKwπ − wK · wπ = −k · (1 − k). (B10)

Therefore, Eqs. (14) and (15) give

C� = 〈N〉 · (1 − 2k) = 〈π〉 − 〈K〉, (B11)

C� = 〈N〉 = 〈π〉 + 〈K〉. (B12)

As seen from Eqs. (B11) and (B12) the normalization factors
C� and C� depend only on the first moments of the extensive
state quantities K and π .

However, in general, more information is needed to cal-
culate C� and C� . As an illustration let us consider partly
overlapping sets of particles, e.g., the number of charged kaons
K = K+ + K− and all negatively charged particles H−. The
extensive state quantities A and B are

A ≡ K = w
(1)
K + w

(2)
K + · · · + w

(N)
K , (B13)

B ≡ H− = w
(1)
− + w

(2)
− + · · · + w

(N)
− , (B14)

where w
(j )
K and w

(j )
− are the kaon and negatively charged hadron

identities of the j th particle. The kaon w
(j )
K and negatively

charged hadron w
(j )
− identities are defined as w

(j )
K = 1 and

w
(j )
− = 0 if the j th particle is a K+, w

(j )
K = 1 and w

(j )
− = 1 if

the j th particle is a K−, and w
(j )
K = 0 and w

(j )
− = 1 if the j th

particle is a negative hadron but not a K−.
For the single-particle quantities

α = wK, β = w−, (B15)

one obtains

wK = w2
K = 〈K+〉 + 〈K−〉

〈N〉 ≡ k+ + k− ≡ k, (B16)

w− = w2− = 〈H−〉
〈N〉 ≡ h−, wK w− = 〈K−〉

〈N〉 = k−, (B17)
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where N = K+ + H−. Then from Eqs. (B16) and (B17) it
follows that

ω[wK ] ≡ w2
K − wK

2

wK

= 1 − k,

(B18)

ω[w−] ≡ w2− − w−2

w−
= 1 − h−,

wKw− − wK · w− = k− − k · h−. (B19)

Therefore, for Eqs. (14) and (15) one finds

C� = 〈N〉 · (h− − k) = 〈H−〉 − 〈K〉, (B20)

C� = 〈N〉 · (h− + k − 2k−)

= 〈H−〉 + 〈K〉 − 2 〈K−〉. (B21)

Thus in this case the normalization factors depend on 〈K〉 and
〈H−〉 and, in addition, on 〈K−〉.

3. The most general case

The most general case, which up to now was not considered
in the literature, concerns relative fluctuations of two motional
extensive quantities, e.g., energy of charged kaons, EK , and
transverse momentum of all negatively charged hadrons, P −

T .
These two sets of particles are partly overlapping. This
example corresponds to the following choice of the extensive
state quantities A and B:

A ≡ EK = w
(1)
K ε(1) + w

(2)
K ε(2) + · · · + w

(N)
K ε(N), (B22)

B ≡ P −
T = w

(1)
− p

(1)
t + w

(2)
− p

(2)
t + · · · + w

(N)
− p

(N)
t , (B23)

where w
(j )
K and w

(j )
− are the kaon and negatively charged hadron

identities of the j th particle, and ε(j ) and p
(j )
t are its energy and

transverse momentum. Note that for ε = pt = 1 Eqs. (B22)
and (B23) are reduced to Eqs. (B13) and (B14), respectively.

For the single-particle quantities

α = wK ε, β = w− pt , (B24)

one obtains

α = k · ε, α2 = k · ε2, β = h− · pt ,
(B25)

β2 = h− · p2
t , αβ = k− · ε pt ,

where (n = 1, 2)

εn =
∫

dε εn fK (ε), pn
t =

∫
dpt p

n
t f (pt ), (B26)

ε pt =
∫

d3p

√
p2 + m2

K pt fK− (p). (B27)

In order to calculate these averages [(B26) and (B27)] one
needs to know the single-particle ε distribution for kaons,
fK (ε), the pt distribution for negatively charged hadrons,
f (pt ), and the p distribution for K−. Then from Eq. (B25)
it follows that

ω[α] = ω[ε] + (1 − k) · ε,

ω[β] = ω[pt ] + (1 − h−) · pt , (B28)

αβ − α · β = k− · ε pt − k h− ε · pt . (B29)

Finally, one finds for the normalization factors

C� = 〈P −
T 〉 · [ ω[ε] + pt ] − 〈EK〉 · [ ω[pt ] + ε ], (B30)

C� = 〈P −
T 〉 · [ ω[ε] + pt ] + 〈EK〉 · [ ω[pt ] + ε ]

−2 〈K−〉 · ε pt . (B31)

For the special case ε = pt = 1 one gets

ε = ε2 = pt = p2
t = ε pt = 1, (B32)

leading to

ω[ε] = ω[pt ] = 0, 〈EK〉 → 〈K〉, 〈PT 〉 → 〈H−〉,
(B33)

and Eqs. (B30) and (B31) reduce to Eqs. (B20) and (B21),
respectively.
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