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Effects of the detection efficiency on multiplicity distributions
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In this paper we investigate how a finite detection efficiency affects three popular multiplicity distributions,
namely, the Poisson, the binomial, and the negative binomial distributions. We found that a multiplicity-
independent detection efficiency does not change the characteristic of a distribution, while a multiplicity-
dependent detection efficiency does. We layout a procedure to study the deviation of moments and their derivative
quantities from the baseline distribution due to a multiplicity-dependent detection efficiency.
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I. INTRODUCTION

One of the main purposes of relativistic heavy ion collision
experiments is to explore the QCD phase boundary [1], in
particular to look for signatures of a first order phase transition
[2,3] and a critical end point [4,5]. Moments of the distributions
of conserved quantities, such as net-baryon number, net-
charge, and net-strangeness, have been argued to be sensitive to
the phase transition and the critical end point and are drawing
increased attention from both experimentalists [6–8] and
theorists [9–12]. In the study of higher order moments and their
derivative quantities, an abnormal deviation from the baseline
distribution is usually interpreted as an interesting physics sig-
nal. In practice, such a deviation is complicated by experimen-
tal effects, such as a finite detection efficiency. In this paper, we
address how a finite efficiency would change three widely used
multiplicity distributions, namely, the Poisson, the binomial,
and the negative binomial distributions. We will discuss the
case of a multiplicity-independent efficiency, followed by the
case of a multiplicity-dependent efficiency, where we layout
a procedure to investigate how the efficiency affects the three
multiplicity distributions. The procedure also applies to the
difference distribution of two multiplicity distributions.

II. MULTIPLICITY DISTRIBUTIONS WITH A
MULTIPLICITY-INDEPENDENT EFFICIENCY

A. Poisson distribution

The probability mass function for the Poisson distribution
is given by

f (k; λ) = λke−λ

k!
, (1)

where k is a nonnegative integer ( the same for the other two
distributions discussed below), and λ is both the mean and
the variance of the distribution. The probability-generating
function for the Poisson distribution is given by

G(z) = e−λ(1−z), (2)

where z is a complex number with |z| � 1.
We treat observing and not-observing a particle as “decay”

modes of a particle, and apply the cluster decay theorem [13]

by replacing z with the generating function

g(y) = (1 − ε) + εy, (3)

where ε is the probability of seeing a particle, in practice less
than unity due to the finite acceptance and detection efficiency.
Without losing generality, below we refer to ε as the detection
efficiency inclusive of both sources.

Then Eq. (2) becomes

G(z) = G(g(y)) = e−λ(1−[(1−ε)+εy]) = e−λε(1−y). (4)

One immediately identifies that the new generating function,
for an experimental observable with a finite detection effi-
ciency, still maintains the form of a Poisson distribution, with
the mean of the distribution reduced to λε.

Note that Eq. (3) is simply the generating function for
a binomial process with n = 1 (see below). With Eq. (3)
convoluted into Eq. (2), the fluctuation of event-by-event
efficiency has been taken into account, similar to the procedure
proposed in [14].

B. Binomial distribution

The probability mass function for the binomial distribution
is given by

f (k; n, p) =
(

n

k

)
pk(1 − p)n−k, (5)

where p ∈ [0, 1], and the nonnegative integer n � k. The
mean and the variance of the distribution are given by np
and np(1 − p), respectively. The corresponding probability-
generating function is given by

G(z) = (1 − p + pz)n. (6)

Similarly with a finite detection efficiency,

G(z) = G(g(y)) = [1 − p + p(1 − ε + εy)]n

= [1 − pε + pεy]n. (7)

We have recovered the probability-generating function for the
binomial distribution with the replacement of p → p′(= pε).
The mean of the new distribution is given by μ′ = με. The
calculation of other quantities under the influence of a finite
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detection efficiency is thus straightforward. For example,

κσ 2 = C4

C2
= 1 − 6p + 6p2, (8)

where κ is the kurtosis and Ci is the ith order cumulant.
When taking the detection efficiency into account, one simply
replaces every p with pε,

κσ 2 = C4

C2
= 1 − 6pε + 6p2ε2. (9)

Such knowledge is useful for quantifying the deviation of the
observable of interest from the original distribution due to the
finite detection efficiency.

C. Negative binomial distribution

The probability mass function for the negative binomial
distribution is given by

f (k; r, p) =
(

k + r − 1

k

)
(1 − p)kpr , (10)

where p ∈ [0, 1], and the real number r > 0. It has identities
of p = μ

σ 2 and r = μp
1−p

, where μ and σ 2 are the mean and the
variance, respectively. Its probability-generating function has
the form of

G(z) =
( r

μ

1 + r
μ

− z

)r

=
(

p

1 − (1 − p)z

)r

, (11)

where p = μ
σ 2 = r

μ+r
.

Likewise, in the case of a finite detection efficiency, we
have

G(z) = G(g(y)) =
(

p

1 − (1 − p)(1 − ε + εy)

)r

=
(

p′

1 − (1 − p′)y

)r

, (12)

where p′ = p
ε+p−pε

, and r is unchanged. The form of the
probability-generating function for the negative binomial
distribution is recovered, with p → p′ and μ → μ′(= με).
Again, other quantities with a finite detection efficiency can
be evaluated with the two simple replacements. For example,
replacing p with p

ε+p−pε
everywhere in

κσ 2 = C4

C2
= 6 − 6p + p2

p2
(13)

gives the κσ 2 for the case with a finite detection efficiency.

III. MULTIPLICITY DISTRIBUTIONS WITH A
MULTIPLICITY-DEPENDENT EFFICIENCY

Usually the detection efficiency decreases with increased
multiplicity, as the reconstruction of a particle becomes more
difficult in a crowded environment. In this case, the detection
efficiency is expressed as a function of k, ε(k). Now for all
the three distributions, the probability-generating function can

no longer be written in a concise form. Instead, we take the
general definition

G(y) =
∞∑

k=0

f (k)zk =
∞∑

k=0

f (k)[1 − ε(k) + ε(k)y]k. (14)

Generally one cannot recover the generating function of the
same type. That means, a multiplicity-dependent efficiency
will distort the original distribution, unlike the case of a
multiplicity-independent efficiency, where the detector effect
will change the mean and width of the distribution, but keep
the characteristic shape (as the same type). Nevertheless, with
ε(k) as input, one can still calculate the mean μ′ and the
variance σ ′2:

μ′ = 〈M〉 = F1, (15)

σ ′2 = 〈M2〉 − 〈M〉2 = 〈M(M − 1)〉 + 〈M〉 − 〈M〉2

= F2 + F1 − F 2
1 , (16)

where Fi is the factorial moment 〈M(M − 1) · · · (M − i + 1)〉,
given by Fi ≡ ∂iG(y)

∂yi |y=1.
For the Poisson distribution

Fi = e−λ

∞∑
k=i

λk

(k − i)!
ε(k)i , (17)

for the binomial distribution

Fi =
∞∑
k=i

n!

(k − i)!(n − k)!
pk(1 − p)n−kε(k)i , (18)

and for the negative binomial distribution

Fi =
∞∑
k=i

(k + r − 1)!

(k − i)!(r − 1)!
(1 − p)kprε(k)i . (19)

With Eqs. (17), (18), and (19), Fi can be numerically calculated
with known ε(k), and the calculation is no more complicated
than that for the corresponding distributions with the perfect
detection. Note that in practice one only needs to perform the
summation over k to a value that is large enough, say, a few σ
above the mean value, so that Fi has little change with further
increase of k.1

The third and the fourth central moments are given by

〈(M − 〈M〉)3〉 = F1 + 2F 3
1 + 3F2 − 3F1(F1 + F2) + F3,

(20)

and

〈(M − 〈M〉)4〉 = F1 − 3F 4
1 + 7F2 + 6F 2

1 (F1 + F2) + 6F3

− 4F1(F1 + 3F2 + F3) + F4. (21)

With the mean, the variance, and the third and the fourth central
moments, the first few cumulants can be calculated as usual:

C1 = 〈(δM)〉 = 0 C2 = 〈(δM)2〉
(22)

C3 = 〈(δM)3〉 C4 = 〈(δM)4〉 − 3〈(δM)2〉2,

1To avoid the problem of the overflowing with large numerical
numbers, one may also calculate, for example, e−λ

∑∞
k=i

λk

(k−i)! ε(k)i

as exp{ln[
∑∞

k=i
λk

(k−i)! ε(k)i] − λ}.
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where δM = M − 〈M〉. One can further calculate skewness
and kurtosis based on cumulants, which is straightforward and
thus is not repeated here.

Note that although we addressed three specific multiplicity
distributions, the procedure discussed in this section can be
extended to other multiplicity distributions, as long as the
factorial moments can be conveniently calculated.

IV. DIFFERENCE DISTRIBUTION OF TWO
MULTIPLICITY DISTRIBUTIONS

The difference between two independent variables is useful
for studying the fluctuation of conserved quantities, e.g., the
net-charge and the net-baryon numbers. The difference be-
tween two variables, each following the Poisson distribution, is
called the Skellam distribution, and its probability-generating
function is given by

G(z; μ1, μ2) = e−(μ1+μ2)+μ1z+μ2/z. (23)

It follows from one of the properties of the probability-
generating function: for the difference of two independent
random variables S = X1 − X2, the generating function is
given by GS(z) = GX1 (z)GX2 (z−1). The generating function
for the difference between two binomial variables is

G(z; n1, p1, n2, p2) = (1 − p1 + p1z)n1 (1 − p2 + p2/z)n2 ,

(24)

and the generating function for the difference between two
negative binomial variables is

G(z; r1, p1, r2, p2)

=
(

p1

1 − (1 − p1)z

)r1
(

p2

1 − (1 − p2)/z

)r2

. (25)

When we take into account the finite detection efficiency, none
of the three generating functions above can recover the form
of the same type. Fortunately, they describe the difference
between two quantities, to both of which the argument on the
detection efficiency still applies. This facilitates the calculation
of cumulants of the three difference-distributions with the finite
detection efficiency under consideration. For example, for the
net-charge distribution, the additivity of cumulants directly
gives C�charge = C+ − C−, where C+ and C− are cumulants

for positively and negatively charged particles, respectively.
The C�charge with a finite detection efficiency can be calculated
this way as long as the distributions of separate charges are
independent of each other. Here we assume that the two under-
lying distributions are completely independent of each other,
to solely investigate how a nonphysics effect (finite detection
efficiency) disturbs the baseline distribution, when studying
cumulants of the difference of two variables. This treatment is
different from that in [14] where the derivation starts from the
cumulants of the difference distribution, with the correlation
between the two variables already taken into account.

V. CONCLUSION

We have shown that for the Poisson, the binomial, and
the negative binomial distributions, a multiplicity-independent
efficiency will modify the mean and the width of the original
distribution, but it does not change the distribution type. With a
known multiplicity-independent efficiency, the original distri-
bution can be completely reconstructed from the measured one,
and vice versa. However, a multiplicity-dependent efficiency
will distort the original distribution. In this case it is difficult
to recover the original distribution. Nevertheless, one can still
study how a finite, multiplicity-dependent detection efficiency
changes the original distribution. The procedure applies also
to the difference distribution of two independent distributions.
With a known form of ε(k), the deviation of moments and
their derivative quantities from the baseline distributions
can be estimated following the procedure presented in this
paper. Knowledge obtained in this work will help avoid the
misinterpretation of certain observables as signals of the
possible phase transition and/or the critical end point.
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