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We exactly solve the one-dimensional boost-invariant Boltzmann equation in the relaxation time approximation
for arbitrary shear viscosity. The results are compared with the predictions of viscous and anisotropic
hydrodynamics. Studying different nonequilibrium cases and comparing the exact kinetic-theory results to
the second-order viscous hydrodynamics results we find that recent formulations of second-order viscous
hydrodynamics agree better with the exact solution than the standard Israel-Stewart approach. Additionally,
we find that, given the appropriate connection between the kinetic and anisotropic hydrodynamics relaxation
times, anisotropic hydrodynamics provides a very good approximation to the exact relaxation time approximation
solution.
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I. INTRODUCTION

Since the seminal work of Israel and Stewart [1,2] there
has been a considerable amount of effort devoted to the
development and application of relativistic viscous hydro-
dynamics [3–24]. Although the original developments of
Israel and Stewart were primarily intended for application
to astrophysical systems, recent developments have focused
on the application of relativistic viscous hydrodynamics to the
modeling of the hot and dense matter created in ultrarelativistic
heavy-ion collisions. These systems are special in the sense
that the hot and dense matter created in this manner is subject to
rapid longitudinal expansion along the beam line direction. As
a result, the viscous corrections to the ideal energy-momentum
tensor can become large (particularly the corrections to the
longitudinal pressure).

Because of these large corrections, many groups have been
seeking methods to improve the description of the early-time
dynamics of the hot and dense matter created in heavy-ion col-
lisions. These methods include, for example, complete second-
order treatments [23], third-order treatments [11,25], and a
method dubbed anisotropic hydrodynamics which linearizes
instead around a momentum-space anisotropic background
[26–35]. In order to assess the efficacy of these different
approaches it would be nice to have an exactly solvable case
with which to compare the various approximation schemes.

In this paper we present details concerning the development
of ideas introduced in Ref. [36] in which we presented a
solution to the 0 + 1d Boltzmann equation in the relaxation
time approximation (RTA). We follow the method used in
[37,38] (see also [39,40]) to exactly solve the one-dimensional
boost-invariant kinetic equation with the collision term treated
in the relaxation-time approximation. We extend the exact
solution to the case that the relaxation time, τeq, depends
on proper time. Our results are then compared to second-
order viscous hydrodynamics approximations [1–11,13–24]
and the spheroidal anisotropic hydrodynamics approximation
[26–35].

The comparison of the exact kinetic theory result with
the viscous and anisotropic hydrodynamics approximations
allows us to characterize the effectiveness of various hy-
drodynamic approaches and to unambiguously establish the
correct value of the shear viscosity coefficient in RTA. We
find that the recent formulations of second-order viscous
hydrodynamics [23,24] better reproduce the results of the
kinetic theory than the standard second-order (Israel-Stewart)
approach. Additionally, we compare the predictions of the
kinetic theory with the results of anisotropic hydrodynamics.
We find very good agreement between the anisotropic hy-
drodynamics approximation and the exact solution, provided
that the relaxation times used in the kinetic equation and
anisotropic hydrodynamics are properly matched.

In Refs. [27,29,31] the equations of anisotropic hydrody-
namics were derived from the kinetic theory with the collision
term treated in RTA. This approach used the zeroth and the first
moments of the kinetic equation. In addition, the distribution
function was assumed to have the Romatschke-Strickland
form (RSF) [41]. If the system is close to equilibrium, this
formulation has a direct connection to the standard second-
order viscous hydrodynamics—the parameters of anisotropic
hydrodynamics are connected with the kinetic coefficients.
In this work, we reanalyze this connection and, compared
to the original Martinez and Strickland paper [27], find
a modified relation between the shear viscosity and the
relaxation time which leads to a better agreement between the
exact results of the exact kinetic theory solution and anisotropic
hydrodynamics.

In addition, we establish the relationship between the re-
laxation time in the anisotropic hydrodynamics approximation
and the exact case. By analyzing systems which are close to
equilibrium, we analytically prove that there is a factor of 2
difference between the relaxation time in these two cases. The
need for a modification of the relations between the parameters
of anisotropic hydrodynamics and the exact solution may be
traced back to the use of RSF which restricts the distribution
function to a spheroidal form. Once this factor of 2 is taken into
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account, we find that there is very good agreement between
the anisotropic hydrodynamics approximation and the exact
solution, with the agreement becoming better as the relaxation
time decreases. Additionally, for far-from-equilibrium systems
we demonstrate that the scale for the relaxation time is set by
the transverse-momentum scale, �.

We show that with the proper matching between the
relaxation times used in the kinetic theory and anisotropic
hydrodynamics approaches, one finds an excellent agreement
between the two approaches. It is somewhat surprising that
already at the leading order of the anisotropic hydrodynamics
approximation, one obtains agreement with the exact results
which is at the level achieved only in the second order of
viscous hydrodynamics. This observation is demonstrated for
a variety of different initial temperatures, initial momentum-
space anisotropies, and values of the shear viscosity to entropy
density ratio.

Our study is complementary to studies based on the
AdS/CFT correspondence [42–48]. In both cases one checks
how a system which is governed by specific nonequilibrium
dynamics approaches the viscous hydrodynamic limit. Al-
though the underlying model employed herein is rather simple
due to the restriction to 0 + 1d dynamics and RTA, it allows
one to easily study the system for different values of the shear
viscosity to entropy ratio. Additionally, due to the simplicity of
this toy model the exact solutions can be obtained to arbitrary
numerical accuracy allowing for precision tests.

The structure of the paper is as follows. In Sec. II we
introduce the kinetic equation to be solved and define a
convenient set of variables which can be used in studies of
the 0 + 1d Boltzmann equation. In Sec. III we demonstrate
how to compute moments of the Boltzmann equation using
these variables. In Sec. IV we write down an integral equation
which exactly solves the 0 + 1d RTA kinetic equations. We
then discuss how to numerically solve this equation and
extract the components of the energy momentum tensor, the
number density, and the entropy density. In Secs. V and VI
we compare the exact solution to the kinetic equations to
first- and second-order viscous hydrodynamics and anisotropic
hydrodynamics. In Sec. VII we derive the relationship between
the shear viscosity and relaxation time by making use of
asymptotic expansions of the dynamical equations. In Sec. VIII
we conclude and give an outlook for the future. We collect
some relations and properties of special functions which
appear in Appendix A. Finally, in Appendix B we assess the
effect of the inclusion of the full set of conformal terms in the
Israel-Stewart evolution equations.

II. KINETIC EQUATION

A. Relaxation-time approximation

Our approach is based on the simple form of the kinetic
equation

pμ∂μf (x, p) = C[f (x, p)]. (1)

Here f (x, p) is the parton phase-space distribution function
which depends on the parton space-time coordinates x and

momentum p, and C is the collision term treated in RTA,

C[f ] = p · u

τeq
(f eq − f ). (2)

The quantity τeq is the relaxation time which can depend on
proper time. The equilibrium distribution function f eq may
be taken to be a Bose-Einstein, Fermi-Dirac, or Boltzmann
distribution which depends on p · u and the isotropic tem-
perature T . In order to simplify some intermediate steps one
can, without loss of generality, assume that f is given by a
Boltzmann distribution

f eq = 2

(2π )3
exp

(
−p · u

T

)
. (3)

The factor of 2 above accounts for spin degeneracy.1 The
temperature T will be obtained via the Landau matching
condition which demands that the energy density calculated
from the distribution function f be equal to the energy
density determined from the equilibrium distribution, f eq. The
quantity uμ represents the four-velocity of the local rest frame
of the matter.

We emphasize that, except for the entropy density, all
results obtained are independent of the assumed form of the
underlying distribution function up to trivial rescalings. For
the entropy density, one need only change the relationship
between the entropy density and the underlying distribution
function. We also note that in the general case, the temperature
T above should be treated as an effective temperature related
to the fourth root of the energy density and, therefore, it can
be seen as an alternative measure of the energy density. Only
if the system is close to equilibrium does the definition of T
coincide with the standard concept of temperature.

The use of the simple form of the kinetic equation
given in Eq. (1) is motivated by the fact that there are
many results obtained within this approximation allowing us
to make comparisons with other approaches. In particular,
there exist several calculations of the kinetic coefficients
in RTA; for example, see [49–53]. In addition, as we will
demonstrate below, in this simple case it is possible to solve
the kinetic equation exactly to arbitrary numerical precision
using straightforward numerical algorithms.

In equilibrium, for massless particles obeying classical
statistics one may use the following expressions for particle
density, entropy density, energy density, and pressure:

neq = 2g0T
3

π2
, Seq = 8g0T

3

π2
,

(4)

Eeq = 6g0T
4

π2
, Peq = 2g0T

4

π2
,

where g0 is the degeneracy factor counting all internal degrees
of freedom except for spin (the spin degeneracy equals 2). In
what follows we make use of the relation Eeq = 3Peq when a
specification of the equilibrium equation of state is required.

1Degeneracies such as color will be taken into account with an
additional overall degeneracy factor g0.
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B. Boost-invariant variables

In the case of one-dimensional boost-invariant expansion,
all scalar functions of time and space depend only on the proper
time τ = √

t2 − z2. In addition, the hydrodynamic flow uμ has
the form [54]

uμ =
(

t

τ
, 0, 0,

z

τ

)
. (5)

The phase-space distribution function f (x, p) behaves like
a scalar under Lorentz transformations. The requirement of
boost invariance implies that in this case f (x, p) may depend
only on three variables: τ , w, and �pT [55,56]. The boost-
invariant variable w is defined by

w = tpL − zE. (6)

With the help of w and �pT we define

v(τ,w, pT ) = Et − pLz =
√

w2 + (
m2 + �p 2

T

)
τ 2. (7)

From (6) and (7) one can easily find the energy and the
longitudinal momentum of a particle:

E = p0 = vt + wz

τ 2
, pL = wt + vz

τ 2
. (8)

The momentum integration measure in phase space is

dP = 2 d4p δ(p2 − m2)θ (p0) = dpL

p0
d2pT = dw

v
d2pT .

(9)

In the following we shall consider massless partons and set
masses equal to zero, m = 0.

C. Boost-invariant form of the kinetic equation

Using the boost-invariant variables introduced in the previ-
ous section one finds

pμ∂μf = v

τ

∂f

∂τ
, p · u = v

τ
. (10)

Using Eq. (10) in Eq. (1) and simplifying, one finds

∂f

∂τ
= f eq − f

τeq
, (11)

where the equilibrium distribution function may be written as

f eq(τ,w, pT ) = 2

(2π )3
exp

[
−

√
w2 + p2

T τ 2

T (τ )τ

]
. (12)

In the following we assume that f (τ,w, �pT ) is an even
function of w and depends only on the magnitude of the
transverse momentum �pT ,

f (τ,w, pT ) = f (τ,−w,pT ). (13)

III. MOMENTS OF THE KINETIC EQUATION

In this section we detail how to calculate the moments of
the kinetic equation using the coordinates introduced in the
previous section. In addition, we discuss the application of dy-
namical Landau matching which results from the requirement
of energy conservation.

A. Zeroth moment: Parton number current

The zeroth moment of the kinetic equation (1) leads to the
equation

dn

dτ
+ n

τ
= neq − n

τeq
, (14)

where the parton density (measured in the local rest frame)
equals

n(τ ) = g0

∫
dP p · uf (τ,w, pT ),

(15)
= g0

τ

∫
dP v f (τ,w, pT ).

We note that the parton number is not conserved in RTA. This
is in agreement with the expectations that partons (gluons) are
produced at the early stages of the collisions. In the approaches
where the parton density is proportional to the entropy density,
the right-hand side of (14) is proportional to the entropy source
term. Note, however, that it is possible to enforce baryon
number conservation in the quark sector in the anisotropic
hydrodynamics framework [35].2 Herein we will ignore the
distinction between quarks and gluons and simply treat the
system as partons with the same relaxation time and bulk
properties.

B. First moment: Energy-momentum tensor

The first moment of the left-hand side of Eq. (1) defines the
divergence of the energy-momentum tensor

T μν(τ ) = g0

∫
dP pμpνf (τ,w, pT ). (16)

Using the symmetry properties (13) we may rewrite (16) in
the form [26,31]

T μν = (E + PT )uμuν − PT gμν + (PL − PT )zμzν, (17)

where

E(τ ) = g0

τ 2

∫
dP v2 f (τ,w, pT ),

PL(τ ) = g0

τ 2

∫
dP w2 f (τ,w, pT ), (18)

PT (τ ) = g0

2

∫
dP p2

T f (τ,w, pT ),

and

zμ =
(

z

τ
, 0, 0,

t

τ

)
(19)

is a four-vector orthogonal to uμ which, in the local rest frame,
is the z direction of the coordinate system.

The energy-momentum conservation law for the system of
partons has the form

∂μT μν(x) = 0. (20)

2To conserve parton number one may introduce an effective
chemical potential in a way analogous to the way in which one
introduces the effective temperature.
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For one-dimensional systems, the four equations implied by
Eq. (20) are reduced to the single equation

dE
dτ

= −E + PL

τ
. (21)

We note that the structure of the energy-momentum
tensor (17) with (18) and (19) is typical for an anisotropic
system. In the framework of anisotropic hydrodynamics one
solves Eqs. (14) and (21) with the assumption that all bulk
properties (such as n, E ,PL, andPT ) can be expressed in terms
of two independent variables. These variables can be chosen,
for example, to be the longitudinal and transverse pressures,
the entropy density S and the anisotropy parameter x which is
related to the momentum-space ellipticity of the distribution
function [26], or the transverse momentum scale � and the
anisotropy parameter ξ = x − 1 [27]. Within kinetic theory,
Eqs. (14) and (21) are automatically fulfilled if the distribution
function satisfies the kinetic equation (1).

C. Landau matching

Equation (20) is satisfied at any proper time if the energy
densities calculated with the distribution functions f and f eq

are equal, namely

E(τ ) = g0

τ 2

∫
dP v2 f (τ,w, pT )

= g0

τ 2

∫
dP v2 f eq(τ,w, pT )

= 6g0T
4(τ )

π2
. (22)

The last line above defines the effective temperature T (τ ) that
should be used in the background distribution function.

IV. SOLUTIONS OF THE KINETIC EQUATION

In this section we introduce the general structure of
solutions of the kinetic equation (1) and present numerical
solutions for different initial conditions. The latter are charac-
terized by the initial momentum anisotropy x0 = 1 + ξ0, the
initial effective temperature T0, and the initial proper time τ0.
The time dependence of the physical quantities such as energy
density or the two pressures depends on the specific form of
the relaxation time. The results presented in this section will
be used to make comparisons with viscous and anisotropic
hydrodynamics in the next sections.

A. Formal structure of solutions and damping function

The formal solution of the kinetic equation (1) has the form

f (τ,w, pT ) = D(τ, τ0)f0(w,pT )

+
∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′) f eq(τ ′, w, pT ), (23)

where we have introduced the damping function

D(τ2, τ1) = exp

[
−

∫ τ2

τ1

dτ ′′

τeq(τ ′′)

]
. (24)

For τ = τ0 the distribution function f is reduced to the initial
distribution function, f0.

The damping function D(τ2, τ1) has the following proper-
ties: D(τ, τ ) = 1, D(τ3, τ2)D(τ2, τ1) = D(τ3, τ1), and

∂D(τ2, τ1)

∂τ2
= −D(τ2, τ1)

τeq(τ2)
. (25)

The equilibration time in our approach may be an arbitrary
function of the proper time, τeq = τeq(τ ). For the exact solution
we use the relation

τeq(τ ) = 5η̄

T (τ )
, (26)

where η̄ ≡ η/S is the ratio of the shear viscosity to entropy
density. We will assume that η̄ is time independent in all results
that follow. We return to the discussion of the relationship
between η̄ and τeq in Secs. V A and VII C.

In the numerical calculations we use the values

η̄ ∈
{

1

4π
,

3

4π
,

10

4π

}
. (27)

The first two values on the right-hand side of (27) cover
the viscosity range extracted to date from the hydrodynamic
analyses of relativistic heavy-ion collisions studied at RHIC
and the LHC. The last value is on the order expected by
leading log perturbative results extrapolated to RHIC and LHC
energies.

Applying the Landau matching condition (22) directly to
the formal solution (23) one finds

T 4(τ ) = D(τ, τ0)
π2E0(τ )

6g0

+
∫ τ

τ0

dτ ′

2τeq(τ ′)
D(τ, τ ′) T 4(τ ′)H

(
τ ′

τ

)
. (28)

Here E0(τ ) denotes the weighted integral over the initial
distribution function f0,

E0(τ ) = g0

τ 2

∫
dP v2 f0(w,pT ). (29)

We stress that the time dependence of E0(τ ) is induced not
only by the term 1/τ 2 but by the time dependence of v as well.
The initial energy density is given by

E0 = E0(τ0) = 6g0T
4

0

π2
. (30)

The function H appearing in Eq. (28) may be expressed in
terms of the function R defined in Refs. [27,29,31], namely

H (y) = 2R
(

1

y2
− 1

)
, (31)

where R(z) = 1
2 [(1 + z)−1 + arctan(

√
z)/

√
z]. We give more

details concerning the H and R functions in Appendix A.
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B. Initial distributions

1. Romatschke-Strickland form

As our first option for the initial conditions we consider
the Romatschke-Strickland form [41] with a Boltzmann
distribution as the underlying isotropic distribution

f0(w,pT ) = 2

(2π )3
exp

[
−

√
(p · u)2 + ξ0(p · z)2

�0

]

= 1

4π3
exp

[
−

√
(1 + ξ0)w2 + p2

T τ 2
0

�0τ0

]
. (32)

This reduces to an isotropic Boltzmann distribution if the
anisotropy parameter ξ0 = ξ (τ0) vanishes. In this case, the
transverse momentum scale �0 is equal to the system’s initial
temperature T0. By direct calculation one obtains

E0(τ ) = 6g0T
4

0

π2

H(
τ0
τ

x
−1/2
0

)
H(

x
−1/2
0

) , (33)

where

x(τ ) = 1 + ξ (τ ), (34)

and x0 = x(τ0) denotes the initial value of the anisotropy
parameter x.

2. Gaussian distributions

As another option for the initial distribution function we
consider an anisotropic Gaussian distribution of the form

f0(w,pT ) = A exp

[
− w2

C2τ 2
0

− B2p2
T

]
, (35)

where the parameters C and B determine the width(s) of the
distribution in momentum space and A is an overall normal-
ization. In this case the integral over the initial distribution
function gives

E0(τ ) = 6g0T
4

0

π2

H (
τ0
τ
CB

)
H (CB)

. (36)

By comparing Eqs. (33) and (36) we see that the Romatschke-
Strickland and Gaussian initial conditions lead to the same
dynamic evolution equation for the effective temperature T (τ )
via Eq. (28) if one takes

CB = x
−1/2
0 = (1 + ξ0)−1/2. (37)

Consequently, in this work we will use the Romatschke-
Strickland form from this point forward with the understanding
that the evolution of the effective temperature is the same
assuming the initial widths are chosen as described above. As
a result, we can solve the following dynamical equation for
the effective temperature:

T 4(τ ) = D(τ, τ0)T 4
0

H(
τ0
τ

x
−1/2
0

)
H(

x
−1/2
0

)
+

∫ τ

τ0

dτ ′

2τeq(τ ′)
D(τ, τ ′) T 4(τ ′)H

(
τ ′

τ

)
. (38)

We note that in the limit C → 0 (at fixed B) or ξ0, x0 → ∞
the initial distribution is very narrow in w, and the initial
longitudinal pressure of the system vanishes, PL(τ0) → 0.
Such configurations naturally emerge in models of the very
early stages of heavy-ion collisions, for example, in the color
glass condensate theory. The situation where the transverse
pressure is larger than the longitudinal pressure corresponds
to an “oblate” momentum-space distribution.

C. Numerical method

Equation (38) can be solved by the iterative method. We
first use a trial function Ta(τ ) and substitute it into the right-
hand side of Eq. (38). In this way the left-hand side of (38)
defines the new temperature profile Tb(τ ) which, in the next
iteration, we treat as Ta(τ ) and substitute into the right-hand
side of (38). Repeating this procedure many times, we find
a stable temperature profile which is invariant under further
iterations. This method has been successfully used earlier, for
example, in Ref. [57].

In Fig. 1 we show the time dependence of the effective
temperature T (τ ) obtained from Eq. (38) for two different
values of the initial anisotropy: ξ0 = 0 (upper panel) and ξ0 =
10 (lower panel), and for two values of the initial effective
temperature: T0 = 300 MeV and T0 = 600 MeV. The initial
time τ0 = 0.25 fm/c. The dashed, dotted, and dashed-dotted
lines correspond to different values of viscosity: 4πη̄ = 1, 3,
and 10, respectively.
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ξ0 0
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4πη 1
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4 10 Bjorken

πη
πη

FIG. 1. (Color online) Time dependence of the effective temper-
ature T (τ ) for two different values of the initial anisotropy: ξ0 = 0
(upper panel) and ξ0 = 10 (lower panel), and for two values of the
initial temperature: T0 = 300 MeV and T0 = 600 MeV. The initial
time τ0 = 0.25 fm/c. The dashed, dotted, and dashed-dotted lines
correspond to different values of viscosity: 4πη̄ = 1, 3, and 10,
respectively. The solid black lines show the ideal Bjorken results
corresponding to the limit τeq → 0 and assuming that the initial
distribution is an equilibrium distribution.
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The solid black lines in Fig. 1 show the ideal Bjorken
results corresponding to the limit τeq → 0 and assuming that
the initial distribution is an equilibrium distribution. With
increasing viscosity we observe larger deviations from the
ideal Bjorken solution. This can be easily understood with
the help of Eq. (21) since larger values of viscosity imply
smaller longitudinal pressure and hence a smaller decrease of
the energy density with time.

D. Parton and entropy densities

Once the effective temperature T (τ ) is obtained, one
may use it to find other bulk properties by performing the
appropriate phase-space integrals. In particular, the parton
density can be obtained via

n(τ ) = 2g0

π2

[
D(τ, τ0) �3

0 x
−1/2
0

τ0

τ

+
∫ τ

τ0

dτ ′

τeq(τ ′)
D(τ, τ ′) T 3(τ ′)

τ ′

τ

]
. (39)

Using the Landau matching condition (22) at τ = τ0 one finds

T 4
0 = 1

2 �4
0 H

(
x

−1/2
0

)
, (40)

which relates the initial values of �0, T0, and x0 = 1 + ξ0.
Assuming classical statistics, the entropy density can be

calculated from the Boltzmann formula

S(τ ) = −g0

∫
dP p · u f (τ,w, pT )

× [ln(4π3 f (τ,w, pT )) − 1]. (41)

Here, the distribution function f (τ,w, pT ) is obtained from
Eq. (23). In equilibrium S = 4n and the equilibrium pressure
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FIG. 2. (Color online) Time dependence of the Parton number
(lower lines) and entropy (upper lines) densities rescaled by the
initial entropy density S0 for different values of viscosity. The solid
black line shows the ideal Bjorken result where n = n0τ0/τ and
S = S0τ0/τ = 4n0τ0/τ . The initial temperature T0 = 300 MeV.
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FIG. 3. (Color online) Same as Fig. 2 but for the initial effective
temperature T0 = 600 MeV.

Peq is connected with the parton density by the well-known
relation Peq = neqT .

The time dependence of the parton and entropy densities
extracted from the exact solution of Eq. (1) scaled by the initial
entropy density S0 is shown in Figs. 2 and 3 for T0 = 300 MeV
and T0 = 600 MeV, respectively. In this case one observes an
interesting behavior: The finally produced entropy is larger in
the cases with larger viscosity but this is only because entropy
is produced in longer time intervals in such cases—the initially
produced entropy is larger when the viscosity is smaller. This
nonmonotonic behavior is different from that observed in
the case of effective temperature (energy density) shown in
Fig. 1.

E. Longitudinal and transverse pressures

In a similar manner, one can obtain the longitudinal pressure

PL(τ ) = 6g0

π2

[
D(τ, τ0) T 4

0

HL

(
τ0
τ

x
−1/2
0

)
H(

x
−1/2
0

)
+

∫ τ

τ0

dτ ′

2τeq(τ ′)
D(τ, τ ′) T 4(τ ′)HL

(
τ ′

τ

) ]
, (42)

where HL is defined by the expression3

HL(y) = y2 d

dy

(H(y)

y

)
. (43)

Replacing the function HL by HT where

HT (y) = H(y) − HL(y), (44)

3For more information about the functions HT and HL see
Appendix A.
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and dividing by 2, one obtains the transverse pressure

PT (τ ) = 3g0

π2

[
D(τ, τ0) T 4

0

HT

(
τ0
τ

x
−1/2
0

)
H(

x
−1/2
0

)
+

∫ τ

τ0

dτ ′

2τeq(τ ′)
D(τ, τ ′) T 4(τ ′)HT

(
τ ′

τ

)]
. (45)

Equations (42) and (45) will be used below when comparing
the exact results obtained from the kinetic equation with the
results obtained from the second-order viscous and anisotropic
hydrodynamic approximations.

V. COMPARISON WITH VISCOUS HYDRODYNAMICS

Having obtained the exact solution of the Boltzmann
equation one can compare the results with those obtained
by first- and second-order viscous hydrodynamics approxi-
mations. It is well known that the first-order hydrodynamic
theory suffers from conceptual difficulties. Nevertheless, we
discuss this formulation below in order to analyze the system’s
behavior close to equilibrium and to empirically establish the
correct relation between the shear viscosity and relaxation
time. In Sec. V B we introduce and discuss the equations of
second-order viscous hydrodynamics.

A. First-order viscous hydrodynamics

At first-order the hydrodynamic equations for our simplified
physical system reduce to the following two equations (see,
for example, Eqs. (146) and (147) in Ref. [4]):

dE
dτ

= −E + Peq

τ
+ 4η

3τ 2
(46)

and

dSeq

dτ
+ Seq

τ
= 4η

3τ 2T
, (47)

where η is the shear viscosity. Since the value of the
equilibrium energy density Eeq is always equal to the nonequi-
librium value E by construction, we have identified these two
quantities. The equilibrium pressure and entropy density are
defined through the thermodynamic relations

Peq = 1
3Eeq, Eeq + Peq = T Seq, (48)

where we have made use of the fact that the system obeys
an ideal equation of state. Combining Eqs. (21) and (46) we
conclude that

PT = Peq + �

2
, PL = Peq − � (49)

and

� = 2

3
(PT − PL) = 4η

3τ
. (50)

The quantity � is the rapidity-rapidity component of the shear
tensor πμν [4] and its magnitude measures deviations of the

0.01

0.02

0.05

0.10

0.20

0.50

1.00

00

200

500

00

020

050

00
0 0, T0 300 MeV, Τ0 0.25 fm c

4 1

TΤeq 5

TΤeq 6

0.0

20.0

50.0

0.0

02.0

05.0

00.

0.01

0.02

0.05

0.10

0.20

0.50

1.00

ef
f

4 3

0.25 0.5 1 2 3 4 5 7 10 20
0.01

0.02

0.05

0.10

0.20

0.50

1.00

00

200

500

00

020

050

00

Τ fm c

4 10

ξ

πη

πη

πη

η

FIG. 4. (Color online) Time dependence of the effective shear
viscosity to entropy density ratio η̄eff (τ ) obtained from Eq. (52) with
T (τ ) calculated from the kinetic equation (red lines). For comparison
we show the two results for η̄ which are discussed in the literature:
η̄ = T τeq/5 (solid black lines) and η̄ = T τeq/6 (dashed blue lines)
[52]. One observes that for sufficiently large times our system is
described by first-order hydrodynamics with η̄ = T τeq/5. The initial
temperature is T0 = 300 MeV.

energy-momentum tensor from the perfect-fluid form

πμνπμν = 3

2
�2. (51)

Using Eq. (22) one finds that both (46) and (47) lead to the
same equation for the temperature, namely

dT

dτ
+ T

3τ
= 4η̄eff

9τ 2
, (52)

where η̄eff is the viscosity to entropy density ratio, η̄eff =
η/Seq. Equation (52) may be used to calculate η̄eff as a function
of the proper time. This result may be compared with the actual
value of η̄ used to solve the kinetic equation (28). In this way
one can check how much the first-order hydrodynamics is
consistent with the results of the kinetic theory. One expects
that it should only be reliable at large proper times and that in
this limit η̄eff obtained from (52) should converge to the true
shear viscosity of the system.

The results of this calculation are presented in Figs. 4 and 5.
We compare the result with the two results from the literature
(see, for example, Eqs. (8.78) and (8.89) from [52] and use

024903-7



FLORKOWSKI, RYBLEWSKI, AND STRICKLAND PHYSICAL REVIEW C 88, 024903 (2013)

0.01

0.02

0.05

0.10

0.20

0.50

1.00

00

200

500

00

020

050

00
0 0, T0 600 MeV, Τ0 0.25 fm c

4 1

TΤeq 5

TΤeq 6

00

200

500

00

020

050

00

0.01

0.02

0.05

0.10

0.20

0.50

1.00

ef
f

4 3

0.25 0.5 1 2 3 4 5 7 10 20
0.01

0.02

0.05

0.10

0.20

0.50

1.00

00

200

500

00

020

050

00

Τ fm c

4 10

ξ

πη

η

πη

πη

FIG. 5. (Color online) Same as Fig. 4 but for T0 = 600 MeV.

Peq/Seq = T/4):

η = 2

3
Peqτeq, η̄ = T τeq

6
, (53)

η = 4

5
Peqτeq, η̄ = T τeq

5
. (54)

Clearly, our numerical study favors Eq. (54). To the best of
our knowledge, Eq. (54) was first derived in Ref. [49] and
then reproduced in Ref. [50], where the complete set of the
kinetic coefficients for the quark-antiquark plasma, including
the color conductivity coefficient, has been derived.4 Recently,
the result (54) has been also obtained, among many other
results, in Ref. [53].

The numerical results shown in Figs. 4 and 5 empirically
demonstrate that the correct relationship between the shear
viscosity and the relaxation time is η̄ = T τeq/5. We note that
if one uses the Grad-Israel-Stewart approximation truncated
at second order in moments one erroneously obtains η̄ =
T τeq/6 [58]. If one instead uses the Chapman-Enskog method
[49,53], a complete second-order Grad expansion [23], or
asymptotic expansion without moment expansion, one obtains

4Note that [49,50] use the units where h = 1 and the calculations
are done for classical statistics. The result η = 4T 4τeq/(5π 2) (for one
internal degree of freedom) is obtained from Eq. (74) in Ref. [49]
by taking the ultrarelativistic limit and dividing by 8π 3. The same
result is obtained for η if Eq. (6.12) in Ref. [50] is divided by 16π 3.
The extra factor of 2 is needed, since both quarks and antiquarks are
considered in Ref. [50].

the correct value of η̄ = T τeq/5. Whether one obtains η̄ =
T τeq/6 or η̄ = T τeq/5 is not specific to second-order viscous
hydrodynamics, but instead is a result of the approximations
used when treating the collisional kernel itself. We return
to this issue in Sec. VII where we employ a late-time
expansion of the kinetic solution, viscous hydrodynamics, and
anisotropic hydrodynamics without moment expansion. In all
cases studied one finds η̄ = T τeq/5.

B. Second-order viscous hydrodynamics

In second-order viscous hydrodynamics the system’s dy-
namics is described by the energy evolution equation supple-
mented by the shear viscous stress evolution equation (see, for
example, Eqs. (175) and (178) in Ref. [4]):

∂τE = −E + P
τ

+ �

τ
,

(55)
∂τ� = − �

τπ

+ 4

3

η

τπτ
− β

�

τ
,

where τπ = 5η̄/T is the shear relaxation time. Viscous
hydrodynamics practitioners most often use β = 4/3 which
we will refer to as the Israel-Stewart (IS) prescription. We will
also compare the exact solutions with the complete second-
order treatment from Ref. [23] which, within RTA, gives
β = 38/21. We will refer to the second choice as the DNMR
prescription.5 In both cases one can compute the transverse
and longitudinal pressures using Eq. (49). To be consistent
with the exact solution and the anisotropic hydrodynamics
approximation we assume an ideal equation of state for the
viscous hydrodynamical approximations. The results obtained
from (55) will be compared with the exact solutions together
with anisotropic hydrodynamics results in the next section.6

VI. COMPARISON WITH ANISOTROPIC
HYDRODYNAMICS

We now turn to the comparison of our exact solutions of the
kinetic equation (1) with those obtained using the anisotropic
hydrodynamic approximation [26–35]. The anisotropic hydro-
dynamics framework is based on the analysis of the zeroth
and first moments of the kinetic equation [27,29,31]. In
this approximation one assumes that to leading order the
distribution function is given by a spheroidal Romatschke-
Strickland form (RSF) [41] defined by the two time-dependent
parameters: the transverse momentum scale �(τ ) and the
anisotropy parameter ξ (τ ) [27]. All physical quantities may
be expressed in terms of �(τ ) and ξ (τ ).

For the case of an RSF obtained by the modifica-
tion (stretching or squeezing) of an isotropic Boltzmann
distribution, the energy density can be expressed as

E = 6g0�
4

π2
R(ξ ), (56)

5Reference [24] has also obtained λ = 38/21 with a different
technique.

6We note that in the conformal limit, it is now standard to include
an additional term proportional to �2 in the dynamical equation for
� [59]. In Appendix B we assess the affect of such a term.
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FIG. 6. (Color online) Time dependence of the energy density, the longitudinal pressure, and the transverse pressure (panels from left to
right, respectively). The black solid, red dashed, blue dashed-dotted, and brown dotted lines describe the results obtained from the kinetic
equation, anisotropic hydrodynamics, Israel-Stewart theory, and DNMR approach, respectively. The initial conditions in this figure are
T0 = 300 MeV and ξ0 = 0.

and the parton number density is

n = 2g0�
3

π2
√

1 + ξ
. (57)

Similarly, the two pressures are obtained from the expressions

PT = 3g0�
4

π2
RT (ξ ), PL = 3g0�

4

π2
RL(ξ ), (58)

where the various R functions are defined in Appendix A. The
RSF entropy density in this case equals

S = 4n = 8g0�
3

π2
. (59)

We recall that g0 is the degeneracy factor accounting for all
internal degrees of freedom except for spin.

From the zeroth and first moment of the Boltzmann
equation one obtains two dynamical equations [27]

∂τ ξ

1 + ξ
= 2

τ
− 4R(ξ )

τAH
eq

R3/4(ξ )
√

1 + ξ − 1

2R(ξ ) + 3(1 + ξ )R′(ξ )
(60)

and

1

1 + ξ

∂τ�

�
= R′(ξ )

τAH
eq

R3/4(ξ )
√

1 + ξ − 1

2R(ξ ) + 3(1 + ξ )R′(ξ )
, (61)

where τAH
eq is the anisotropic hydrodynamics relaxation time.

We solve Eqs. (60) and (61) with initial conditions which are
exactly the same as in the numerical calculations of the kinetic
equation described in the previous sections. This is possible
since the initial conditions for the kinetic equation were chosen
to have the same functional form.

In Eqs. (60) and (61) we allow the relaxation time τAH
eq to

be different from the relaxation time τeq used in the original
kinetic equation (1). In fact, as we will demonstrate in Sec. VII,
by making asymptotic expansions of the anisotropic hydrody-
namics equations (60) and (61) and the kinetic equation (28)
one finds that

τAH
eq = τeq

2
, |ξ | 	 1. (62)

A simple argument why (62) should hold is the following: In
Ref. [27] the matching between anisotropic hydrodynamics
and the Israel-Stewart theory has been made in the case of
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FIG. 7. (Color online) Same as Fig. 6 but for T0 = 300 MeV and ξ0 = 10.

small anisotropies. This matching leads to the formula

� ≡ 1

τAH
eq

= 2

τπ

= 8Peq

5η
. (63)

In view of our results presented in Sec. V A we know that the
correct value of the viscosity is η = 4Peqτeq/5; see Eq. (54).
Hence, Eq. (63) leads to τeq = τπ and (62). If we kept the
relaxation times τAH

eq and τeq equal, the system described
by anisotropic hydrodynamics would have a shear viscosity
which is two times larger than the viscosity found in the exact
solution. Hence one must adjust τAH

eq by a factor of 2. A formal
proof of (62) is given in the next section.

If the system is off equilibrium, the proper matching
between τAH

eq and τeq is more difficult to find. The numerical
analysis of the solutions indicates that

τAH
eq = T

2�
τeq, (64)

or equivalently,

τAH
eq = 5η̄

2�
. (65)

In remainder of this section we use Eqs. (54) and (65) and
present comparisons between the exact solutions of the kinetic

equation, the results of the two second-order viscous hydrody-
namics approximations, and the results of the anisotropic hy-
drodynamics approximation. We note that the above prescrip-
tion is different from the original Martinez-Strickland prescrip-
tion [27] for the relaxation time, which results in τMS

eq = τeq/2.
We find in practice that the τAH

eq prescription given by Eq. (64)
[or equivalently Eq. (65)] results in much better agreement
between anisotropic hydrodynamics and the exact kinetic
solution.

In Figs. 6–9 we show the time dependence of the energy
density, the longitudinal pressure, and the transverse pressure
(three columns of panels from left to right, respectively)
obtained for three different values of the viscosity: 4πη̄ =
1, 3, 10 (three rows of panels from top to bottom, respectively).
The energy density is normalized to its initial value, while
the longitudinal and transverse pressures are normalized to
one-third of the initial energy density. In this way, the late-
time behavior of the displayed quantities becomes similar.
Figures 6–9 differ in the choice of initial conditions. We use
T0 = 300 MeV and ξ0 = 0 in Fig. 6. The consecutive figures
show the cases T0 = 300 MeV and ξ0 = 10, T0 = 600 MeV
and ξ0 = 0, and T0 = 600 MeV and ξ0 = 10. The black solid,
red dashed, blue dashed-dotted, and brown dotted lines in
Figs. 6–9 are the results obtained from the kinetic equation,
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FIG. 8. (Color online) Same as Fig. 6 but for T0 = 600 MeV and ξ0 = 0.

anisotropic hydrodynamics, Israel-Stewart theory, and the
DNMR approach, respectively.

In all cases considered one observes noticeable differences
between the exact results and the standard Israel-Stewart
approximation. If the shear viscosity becomes large, the Israel-
Stewart theory results in negative longitudinal pressure.7 In all
cases studied, the agreement between viscous hydrodynamics
and kinetic theory is dramatically improved if one uses the
DNMR approximation and is further improved if one uses the
anisotropic hydrodynamics approximation. We note, however,
that the problem of negative pressure, although lessened
somewhat, still exists in the DNMR approach, as can be seen
from the bottom middle panel of Fig. 7.

Once the evolution of the effective temperature is known
via Eq. (28) this can be used in Eq. (23) to determine the exact
evolution of the distribution function in momentum space. This
allows one to extract more detailed information than allowed
by the moments of the distribution alone. In Figs. 10–12 we

7In Figs. 6–9, in order to more precisely compare the various
approximations, we have used a logarithmic scale for the horizontal
and vertical axes. With this scaling for the vertical axis, negative
values of the longitudinal pressure lead to regions where the logarithm
is undefined.

compare contour plots of the distribution function obtained
with the exact kinetic solution (black lines) and the anisotropic
hydrodynamics approximation (red dashed lines). We see from
these figures that at early times corresponding to τ ∼ 1 fm/c
there is disagreement between anisotropic hydrodynamics and
the exact solution for the distribution function. One can see,
particularly in Fig. 12 which presents the case 4πη̄ = 10, that
the distribution function is not spheroidal. In fact, one can
see what appears to be a superposition of two spheroids, one
which is governed by pure free-streaming evolution coming
from the first term in Eq. (23) and the second coming from
an equilibrating component coming from the second term in
Eq. (23). This suggests that it may be more accurate to use
a form which is a linear superposition of two spheroids. We
leave this possibility for future work.

VII. LATE-TIME BEHAVIOR

In this section we analyze the late-time behavior of the
system described by anisotropic hydrodynamics, according
to Eqs. (60) and (61), by the kinetic equation (1), and by
the second-order viscous hydrodynamics equations (55). We
prove that the relation (62) should indeed be satisfied in order
to achieve the agreement between anisotropic hydrodynamics
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FIG. 9. (Color online) Same as Fig. 6 but for T0 = 600 MeV and ξ0 = 10.

and the kinetic theory and that η̄ = T τeq/5 is the correct
relationship between the shear viscosity and the relaxation
time in the near-equilibrium limit.

A. Asymptotic expansion of anisotropic hydrodynamics

We start with Eqs. (60) and (61). Since at late times ξ → 0,
we can linearize these two equations in ξ . Treating ξ and ∂τ ξ
as order ε we expand the first equation to order ε2 to obtain

∂τ ξ = 2

τ
+

(
2

τ
− �

2

)
ξ − 17

63
�ξ 2 + O(ξ 3). (66)

Here � is defined by (63). Similarly, we can expand the second
equation to obtain

∂τ� = − 1
12��ξ + 187

3780��ξ 2 + O(ξ 3). (67)

In the next step, we find the solution for ξ . One finds
empirically that ξ decays like

lim
τ→∞ ξ = A

τ
+ B

τ 2
+ O

(
1

τ 3

)
. (68)

Plugging this form into (66) and matching terms of order τ−1

and τ−2 on the left- and right-hand sides one finds

lim
τ→∞ ξ (τ ) = 4

�τ
+ 968

63(�τ )2
+ O

(
1

τ 3

)
. (69)

Inserting this solution on the right-hand side of (67) and
expanding through O(τ−2) one obtains

lim
τ→∞

1

�
∂τ� = −1

3
− 22

45

1

�τ 2
+ O(τ−3). (70)

Solving this differential equation and taking the limit �τ � 1
we obtain

lim
τ→∞ �(τ ) = C

τ 1/3

(
1 + 22

45

1

�τ
+ O(τ−2)

)
, (71)

where C is an undetermined constant. Having determined the
asymptotic behavior of ξ and � we can now determine the
asymptotic expansion of the energy density E = R(ξ )Eeq(�)

lim
τ→∞ E(τ ) = D

τ 4/3

(
1 − 32

45

1

�τ
+ O(τ−2)

)
. (72)
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FIG. 10. (Color online) Distribution function contours obtained
from the exact kinetic solution (black lines) and the anisotropic
hydrodynamics approximation (red dashed lines) for T0 = 600 MeV,
ξ0 = 10, and 4πη̄ = 1.

B. Asymptotic expansion of the relaxation-time-approximation
integral equation

The integral equation for the energy density is obtained
from (28)

E(τ ) = D(τ, τ0)E0
H(

τ0
τ
x

−1/2
o

)
H(

x
−1/2
o

)
+

∫ τ

τ0

dτ ′

2τeq(τ ′)
D(τ, τ ′)E(τ ′)H

(
τ ′

τ

)
. (73)

We seek the large-τ asymptotic solution of this equation and
once again search for a solution of the form

lim
τ→∞ E(τ ) = A

(
τeq

τ

)4/3(
1 + B

τeq

τ
+ O(τ−2)

)
. (74)

As τ → ∞ the first term in Eq. (73) goes to zero exponentially
fast, so we can ignore it. In order to evaluate the integral we
recognize that the integral is dominated by the end of the
integration region where τ ′ ∼ τ due to the damping function
D. As a result, we can proceed by expanding the H function in
a power series around τ ′ = τ from below. In order to extract
the asymptotic coefficients necessary, it suffices to expand H
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FIG. 11. (Color online) Distribution function contours obtained
from the exact kinetic solution (black lines) and the anisotropic
hydrodynamics approximation (red dashed lines) for T0 = 600 MeV,
ξ0 = 10, and 4πη̄ = 3.

to second order, see Appendix A,

lim
τ ′→τ

H
(
τ ′

τ

)
= 2 + 8(τ ′ − τ )

3τ
+ 4(τ ′ − τ )2

5τ 2
+O((τ ′ − τ )3).

(75)

Inserting the asymptotic expansion above on the left- and right-
hand sides of Eq. (73), performing the integral on the right-
hand side, and discarding terms which go to zero exponentially
in τ − τ0, one obtains

A

(
τeq

τ

)4/3(
1 + B

τeq

τ

)

= A

(
τeq

τ

)4/3(
1 + B

τeq

τ

)
− A

45

(
τeq

τ

)10/3

× (16 + 45B) + O(τ−13/3). (76)

Requiring equivalence between the left and right we obtain
B = −16/45 giving

lim
τ→∞ E(τ ) = A

(
τeq

τ

)4/3 (
1 − 16

45

τeq

τ
+ O(τ−2)

)
. (77)

Comparing (77) with (72) one obtains (62). We note that one
can find this result derived in a different manner in Ref. [37].
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FIG. 12. (Color online) Distribution function contours obtained
from the exact kinetic solution (black lines) and the anisotropic
hydrodynamics approximation (red dashed lines) for T0 = 600 MeV,
ξ0 = 10, and 4πη̄ = 10.

C. Asymptotic expansion of the second-order viscous
hydrodynamics equations

We start with the viscous hydrodynamical equations (55).
To proceed, we assume that τeq = τπ is held constant. The
shear viscosity and the relaxation time are related via

η = ατeqT S = 4
3ατeqE, (78)

where α will be determined via asymptotic expansion and
matching. Note that we have assumed an ideal equation of
state in the last equality. With these assumptions one finds that
the energy density and shear � have the following asymptotic
expansions:

lim
τ→∞ E(τ ) = A

(
τeq

τ

)4/3

+ B

(
τeq

τ

)7/3

+ O(τ−10/3),

(79)
lim

τ→∞ �(τ ) = Cτ−7/3 + O(τ−10/3).

Inserting these expansions and requiring that in the limit
τ → ∞ the coefficient of the leading O(τ−10/3) term in the
first equation vanishes gives B = −C. Requiring that the
coefficient of the leading O(τ−7/3) term in the second equation
vanishes gives C = 16Aα/9. Putting these results together one

obtains

lim
τ→∞ E(τ ) = A

(
τeq

τ

)4/3 (
1 − 16α

9

τeq

τ
+ O(τ−2)

)
. (80)

Matching Eqs. (77) and (80) one obtains α = 1/5 indepen-
dently of the coefficient β which appears in the second-order
equations. This gives the desired relation η̄ = T τeq/5.

VIII. CONCLUSIONS

In this paper we presented an exact solution to the
0 + 1d Boltzmann equation in the relaxation time approxi-
mation. Our solution is appropriate for systems with time-
independent or time-dependent relaxation times. From this
solution we were able to obtain to arbitrary numerical
accuracy the proper-time evolution of all relevant bulk
properties of the system: the energy density, transverse and
longitudinal pressures, number density, and entropy density.
We then compared the exact kinetic theory solution to the
standard Israel-Stewart second-order viscous hydrodynamics
approximation (IS), a complete second-order viscous hy-
drodynamics approximations (DNMR), and the anisotropic
hydrodynamics approximation. We performed comparisons
of the energy density and pressures for two different initial
temperatures, two different initial anisotropies, and three
different values for the shear viscosity to entropy density
ratio.

Our results show that, among the different approximations
considered, the standard IS approximation was the poorest
approximation to the exact RTA solution. Comparatively, the
DNMR second-order viscous hydrodynamics approximation
represented a significant improvement over the IS approx-
imation; however, like the standard IS approximation the
DNMR approximation can result in predictions of negative
longitudinal pressure. Finally, in all cases tested the anisotropic
hydrodynamics approximation most accurately reproduced
the exact RTA solution. The relative success of anisotropic
hydrodynamics in reproducing the exact results is somewhat
surprising since the equations used were derived at LO
in the anisotropic expansion, only taking into account a
spheroidal functional form for the one-particle distribution
function.

In the process we were able to establish that there
exists a factor of 2 difference between the relaxation time
in the anisotropic hydrodynamics approximation and the
exact relaxation time. Additionally, we determined that for
best agreement with the exact kinetic solution, the scale
in the far-from-equilibrium anisotropic dynamics relaxation
time should be set by the transverse temperature �. In the
context of second-order viscous hydrodynamics we deter-
mined empirically and analytically that the correct relation-
ship between the shear viscosity and the relaxation time
is η̄ = T τeq/5.

Of course, our exact solution is restricted to the 0 + 1d
Boltzmann equation in RTA. As a consequence, the con-
clusions stated above are strictly applicable only in this
context. It is not currently possible to make a general
statement about the ranking of the relative errors of the various
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approximations. That being said it is certainly nice to have
one exactly solvable case that can be used to assess different
approximation schemes. Since the exact solution obtained is
applicable for arbitrary shear viscosity to entropy ratio it can
be used to assess the efficacy of different far-from-equilibrium
approaches. Looking forward, knowledge of the exact solution
in this simple situation could prove useful in the development
of more comprehensive far-from-equilibrium approximation
schemes.
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APPENDIX A: THE H AND R FUNCTIONS

The functions H, HL, and HT are defined by the integrals

H(y) = y

∫ π

0
dφ sin φ

√
y2 cos2 φ + sin2 φ,

HL(y) = y3
∫ π

0
dφ

sin φ cos2 φ√
y2 cos2 φ + sin2 φ

, (A1)

HT (y) = y

∫ π

0
dφ

sin3 φ√
y2 cos2 φ + sin2 φ

.

There are simple relations connecting H, HL, and HT

with the functions R, RL, and RT defined in Ref. [27],
namely

H
(

1√
1 + ξ

)
= 2R(ξ ),

HL

(
1√

1 + ξ

)
= 2

3
RL(ξ ), (A2)

HT

(
1√

1 + ξ

)
= 4

3
RT (ξ ).

In the region 0.5 � y � 1 the functions H(y) are very well
approximated by the expressions

H (y) � 2 + 8
3 (y − 1) + 4

5 (y − 1)2 + O((y − 1)3),

HL (y) � 2
3 + 8

5 (y − 1) + 36
35 (y − 1)2

+ 8
315 (y − 1)3 + O((y − 1)4), (A3)

HT (y) � 4
3 + 16

15 (y − 1) − 8
35 (y − 1)2

+ 16
315 (y − 1)3 + O((y − 1)4).

APPENDIX B: INCLUDING THE λ1 CONFORMAL TERM

In this Appendix we discuss the impact of including the
full set of “conformal” second-order terms in the viscous
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FIG. 13. (Color online) Time dependence of the ratio of the
longitudinal and transverse pressures for T0 = 300 MeV and ξ0 = 0
at τ0 = 0.25 fm/c. Shown in the plot are the exact kinetic theory
solution (black), the anisotropic hydrodynamics approximation (red
dashed), the Israel-Stewart equation without the conformal �2 term
(blue dot-dashed), and the Israel-Stewart equation with the conformal
�2 term (brown dotted). Panels (top to bottom) show the cases 4πη̄ =
1, 3, and 10, respectively. In all cases we used η̄ = T τeq/5.

hydrodynamical evolution. In the conformal limit one finds
that an additional term is required in the second-order viscous
hydrodynamical equations which is proportional to �2 [59]:

∂τE = −E + P
τ

+ �

τ
,

(B1)

∂τ� = − �

τπ

+ 4

3

η

τπτ
− 4�

3τ
− λ1

2τπη2
�2,

where, in RTA, the coefficient λ1 = 5ητπ/7 [53,60].
In Fig. 13 we compare the solution of (B1) with and

without the term proportional to �2 to the exact kinetic
solution obtained via (28) and the anisotropic hydrodynamics
approximation obtained via Eqs. (60) and (61). As one can see
from this figure, while the inclusion of the �2 does somewhat
improve the agreement of the Israel-Stewart approximation
with the exact solution, it still has a larger error associated
with it than the anisotropic hydrodynamics approximation.
In addition, we see in the bottom panel of Fig. 13 that
the longitudinal pressure can become negative even when
including the �2 term.
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[56] A. Białas and W. Czyż, Nucl. Phys. B 296, 611 (1988).
[57] B. Banerjee, R. Bhalerao, and V. Ravishankar, Phys. Lett. B 224,

16 (1989).
[58] P. Romatschke (private communication).
[59] P. Romatschke, Int. J. Mod. Phys. E 19, 1 (2010).
[60] B. Ling (private communication).

024903-16

http://dx.doi.org/10.1016/0003-4916(76)90064-6
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1103/PhysRevLett.88.062302
http://dx.doi.org/10.1103/PhysRevC.69.034903
http://dx.doi.org/10.1103/PhysRevC.73.064903
http://dx.doi.org/10.1103/PhysRevC.73.064903
http://dx.doi.org/10.1103/PhysRevLett.99.172301
http://dx.doi.org/10.1103/PhysRevLett.99.172301
http://dx.doi.org/10.1088/1126-6708/2008/04/100
http://dx.doi.org/10.1103/PhysRevC.77.034905
http://dx.doi.org/10.1103/PhysRevC.78.034915
http://dx.doi.org/10.1103/PhysRevC.78.034915
http://dx.doi.org/10.1088/0954-3899/36/6/064033
http://dx.doi.org/10.1103/PhysRevC.81.041901
http://dx.doi.org/10.1103/PhysRevC.79.044903
http://dx.doi.org/10.1103/PhysRevC.79.044903
http://dx.doi.org/10.1103/PhysRevC.82.054905
http://dx.doi.org/10.1103/PhysRevC.82.054905
http://dx.doi.org/10.1088/0954-3899/37/9/094040
http://dx.doi.org/10.1088/0954-3899/37/9/094040
http://dx.doi.org/10.1103/PhysRevLett.105.162501
http://dx.doi.org/10.1103/PhysRevLett.105.162501
http://dx.doi.org/10.1103/PhysRevLett.106.042301
http://dx.doi.org/10.1103/PhysRevLett.106.042301
http://dx.doi.org/10.1016/j.physletb.2011.06.065
http://dx.doi.org/10.1016/j.physletb.2011.04.020
http://dx.doi.org/10.1103/PhysRevLett.106.212302
http://dx.doi.org/10.1103/PhysRevC.86.014909
http://dx.doi.org/10.1103/PhysRevC.81.034909
http://dx.doi.org/10.1103/PhysRevC.85.064915
http://dx.doi.org/10.1103/PhysRevC.85.064915
http://dx.doi.org/10.1103/PhysRevD.85.114047
http://dx.doi.org/10.1103/PhysRevD.85.114047
http://dx.doi.org/10.1103/PhysRevC.87.051901
http://arXiv.org/abs/1305.3480
http://dx.doi.org/10.1103/PhysRevC.83.034907
http://dx.doi.org/10.1103/PhysRevC.83.034907
http://dx.doi.org/10.1016/j.nuclphysa.2010.08.011
http://dx.doi.org/10.1088/0954-3899/38/1/015104
http://dx.doi.org/10.1088/0954-3899/38/1/015104
http://dx.doi.org/10.1016/j.nuclphysa.2011.02.003
http://dx.doi.org/10.1140/epjc/s10052-011-1761-8
http://dx.doi.org/10.1140/epjc/s10052-011-1761-8
http://dx.doi.org/10.1103/PhysRevC.85.064913
http://dx.doi.org/10.1103/PhysRevC.85.064913
http://dx.doi.org/10.1103/PhysRevC.85.064901
http://dx.doi.org/10.1103/PhysRevC.85.064901
http://dx.doi.org/10.1088/0954-3899/40/9/093101
http://dx.doi.org/10.1103/PhysRevD.86.085023
http://dx.doi.org/10.1103/PhysRevD.86.085023
http://dx.doi.org/10.1103/PhysRevC.87.034914
http://dx.doi.org/10.1103/PhysRevC.87.034914
http://arXiv.org/abs/1304.0665
http://dx.doi.org/10.1016/0370-2693(84)91863-X
http://dx.doi.org/10.1016/0375-9474(84)90573-6
http://dx.doi.org/10.1103/PhysRevC.53.1892
http://dx.doi.org/10.1103/PhysRevC.54.2588
http://dx.doi.org/10.1103/PhysRevD.68.036004
http://dx.doi.org/10.1103/PhysRevD.68.036004
http://dx.doi.org/10.1103/PhysRevLett.107.101601
http://dx.doi.org/10.1103/PhysRevLett.107.101601
http://dx.doi.org/10.1007/JHEP07(2011)054
http://dx.doi.org/10.1007/JHEP07(2011)054
http://dx.doi.org/10.1007/JHEP08(2012)100
http://dx.doi.org/10.1007/JHEP08(2012)041
http://dx.doi.org/10.1103/PhysRevD.85.126013
http://dx.doi.org/10.1103/PhysRevD.85.126013
http://dx.doi.org/10.1103/PhysRevLett.108.201602
http://dx.doi.org/10.1103/PhysRevLett.108.201602
http://dx.doi.org/10.1103/PhysRevD.85.126002
http://dx.doi.org/10.1103/PhysRevD.85.126002
http://dx.doi.org/10.1016/0031-8914(74)90355-3
http://dx.doi.org/10.1103/PhysRevD.36.2172
http://dx.doi.org/10.1103/PhysRevD.85.065012
http://dx.doi.org/10.1103/PhysRevD.27.140
http://dx.doi.org/10.1103/PhysRevD.30.2371
http://dx.doi.org/10.1016/0550-3213(88)90035-1
http://dx.doi.org/10.1016/0370-2693(89)91041-1
http://dx.doi.org/10.1016/0370-2693(89)91041-1
http://dx.doi.org/10.1142/S0218301310014613



