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Hadron-resonance gas at freeze-out: Reminder on the importance of repulsive interactions
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An influence of the repulsive interactions on matter properties is considered within the excluded volume van
der Waals hadron-resonance gas model. Quantitative results are presented for matter at the chemical freeze-out
in central nucleus-nucleus collisions at relativistic energies. In particular, it is shown that repulsive interactions
connected to the nonzero size of created particles lead to a significant decrease of the collision energy at which the
net-baryon density has a maximum. A position of the transition point from baryon-to-meson dominated matter
depends on the difference between baryon and meson hard-core radiuses.
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I. INTRODUCTION

Statistical models of the hadron gas are an important tool to
extract the properties of matter created in relativistic nucleus-
nucleus collisions (see, e.g., Refs. [1–7]). Basic parameters of
these models are the matter temperature T , baryon chemical
potential μB , and volume V . If supplemented by additional
model parameters monitoring deviations from the chemical
equilibrium [8], they approximately fit rich data on mean
hadron multiplicities in a broad range of reactions, from
e+ + e−, p + p, and p + p̄ [9] at low energies to central
Pb + Pb collisions at the highest energy of the Large Hadron
Collider (LHC) [10].

The most popular version of the statistical models of hadron
matter is the ideal hadron-resonance gas (I-HRG), i.e., a
statistical system of noninteracting hadrons and resonances.
It is argued, based on the Dashen, Ma, and Bernstein theorem
[11], that resonances introduced to the ideal hadron gas
take into account attractive interactions between hadrons.
The repulsive part of the interactions between hadrons is
usually accounted for by the van der Waals excluded volume
procedure generalized to the relativistic case of a variable
number of hadrons [12]. The resulting excluded volume model
is no longer an ideal gas model, and in this paper it will be
denoted as the EV-HRG model. Another popular example of
modeling attractive and repulsive interactions between hadrons
is the relativistic mean field theory in a form of the Walecka
model [13] and its different modifications (see, e.g., the recent
paper [14] and references therein). In this approach, scalar and
vector meson fields describe, respectively, the attractive and
repulsive forces between baryons.

Both the attractive and repulsive interactions are important
for the qualitative as well as quantitative description of the
properties of strongly interacting matter. For example, the
nucleon-nucleon potential includes both parts—attractive at
large and repulsive at small distances. The presence of both
attractive and repulsive interactions between nucleons is cru-
cial for the existence of stable nuclei. Moreover, an important
undesired feature of the I-HRG model at high temperatures
was noted by the authors of Refs. [15,16]. Due to the large

number of different types of baryons and mesons, the point-like
hadrons would always become the dominant phase at very
high energy density. Just the excluded volume effects ensure a
transition from a gas of hadrons and resonances to the quark-
gluon plasma. Thus, one needs the EV-HRG equation of state
for hydrodynamic models of nucleus-nucleus collisions (see,
e.g., Refs. [17–19]). Note that the lattice QCD calculations
also indicate a presence of excluded volume corrections [20].

The aim of this paper is to recall the role of repulsive inter-
actions between hadrons. It is shown that the excluded volume
hadron-resonance gas model yields different properties of mat-
ter at the freeze-out than the ideal hadron-resonance gas if the
densities and their collision energy dependence are considered.
Quantitative results are presented for two examples, namely
collision energy dependence of the net-baryon density [21] as
well as the ratio of baryon and meson entropy density [22–24].
They are selected because of conjectures that the maximum
of net-baryon density as well as the transition between baryon
and meson dominated matter may be related to the onset of
deconfinement observed in central Pb + Pb collisions at the
CERN Super Proton Synchrotron (SPS) energies [25]. Note
that chemical freeze-out parameters T and μB in nucleus-
nucleus collisions are straightforwardly connected to the data
on hadron multiplicities. The energy range considered in this
paper is presently studied experimentally at the CERN SPS
[26] and the Brookhaven National Laboratory’s Relativistic
Heavy Ion Collider (RHIC), based on Alternating Gradient
Synchrotron (AGS) [27]. In future this effort will be extended
by experiments at new accelerators, at the Joint Institute
for Nuclear Research (JINR) Nuclotron-based Ion Collider
Facility (NICA) [28] and the Facility for Antiproton and Ion
Research (FAIR), based on Schwerionensynchrotron (SIS)
[29–31].

The paper is organized as follows. In Sec. II the ideal
hadron-resonance gas model is introduced. The excluded
volume hadron-resonance gas model is presented in Sec. III,
where also quantitative results for densities at the chemical
freeze-out in central Pb + Pb collisions are given and
discussed. A summary given in Sec. IV closes the paper.
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II. IDEAL HADRON-RESONANCE GAS

In the grand canonical ensemble the pressure of the I-HRG
is given by

pid =
∑

i

pid
i (T ,μi) =

∑
i

di

6π2

∫ ∞

0

k4 dk(
k2 + m2

i

)1/2

×
[

exp

(√
k2 + m2

i − μi

T

)
+ η

]−1

, (1)

where T is the system temperature, η = −1 and η = 1 for
bosons and fermions, respectively, while η = 0 corresponds
to the Boltzmann approximation. For a hadron i, mi is its
mass and di is the spin degeneracy. The chemical potential is
given by

μi = biμB + siμS + qiμQ, (2)

with bi = 0,±1, si = 0,∓1,∓2,∓3, and qi = 0,±1,±2 for
hadrons. The number density of a hadron i reads

nid
i (T ,μi) = T

∂pid

∂μi

= di

2π2

∫ ∞

0
k2 dk

×
[

exp

(√
k2 + m2

i − μi

T

)
± 1

]−1

. (3)

Considering the temperature T , baryon chemical potential μB ,
and volume V as free parameters one can fit mean hadron mul-
tiplicities 〈Ni〉 = V ni measured in relativistic nucleus-nucleus
collisions at each collision energy. In this analysis, μS and μQ

are expressed as functions of T and μB when the conditions
on strangeness 〈S〉 = 0 and electric to baryon charge ratio
〈Q〉/〈B〉 = Z/A are taken into account. Most of experimental
data on nucleus-nucleus collisions concern yields of long-lived
hadrons, which include products of resonance decays. This
requires a proper treatment of short-lived resonances, namely
the products of their strong and electromagnetic decays should
be added to the mean multiplicities of stable hadrons. In this
paper the numerical implementation of the hadron-resonance
gas model provided by the THERMUS package [32] is used
to calculate the relevant quantities according to Eqs. (4) to

(6). Particles and resonances [all mesons up to K∗
4 (2045)] and

baryons (up to �−), quantum statistics, as well as the width of
resonances are included.

The analysis of central Pb + Pb (Au + Au) collisions
registered by experiments at SIS, AGS, SPS, and RHIC allows
to establish the collision energy dependence of T and μB

which can be parameterized as [23]

T = 0.166 GeV − 0.139 GeV−1μ2
B − 0.053 GeV−3μ4

B,

μB = 1.308 GeV

1 + 0.273 GeV−1 √
sNN

, (4)

where
√

sNN is the center-of-mass energy of a nucleon pair.
The chemical freeze-out line T = T (μB) as well as the energy
dependence of the T and μB parameters are shown in Figs. 1(a)
and 1(b), respectively.

The net-baryon density ρB , entropy density s, and energy
density ε can be found from the system pressure p using the
thermodynamical relations

ρB = ∂p

∂μB

, s = ∂p

∂T
, ε = T

∂p

∂T
+ μ

∂p

∂μ
− p. (5)

With the chemical freeze-out parameters given by Eq. (4) and
the ideal gas expression Eq. (1) for the system pressure, one
finds the quantities in Eq. (5) as functions of the collision
energy. The I-HRG model is based on the assumption of
complete thermal and chemical equilibrium. An additional
I-HRG parameter, the strangeness suppression factor γS , has
to be introduced to account for deviations of strange hadron
multiplicities from chemical equilibrium [8]. Its dependence
on T and μB obtained by fitting hadron yields measured in the
full phase space can be parameterized as [7]

γS = 1 − 0.396 exp

(
−1.23

T

μB

)
. (6)

At the AGS and SPS energies the γS parameter is sig-
nificantly smaller than 1, which means the undersaturation of
strange hadron yields with respect to the chemical equilibrium.
The γS parameter should be included in the model if a proper
description of strange hadron yields is required. However, the

FIG. 1. (a) The chemical freeze-out line T = T (μB ). (b) The T and μB along the chemical freeze-out as a function of
√

sNN .
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FIG. 2. (Color online) The (a) net-baryon density ρB and (b) the ratio s/T 3 (b) along the chemical freeze-out line Eq. (4) and γS according
to Eq. (6) are shown by the solid lines. The dashed lines correspond to γS = 1 for (a) ρB and (b) s/T 3. The dotted line corresponds to the
Boltzmann approximation in s/T 3.

relation between T and μB as well as the chemical freeze-out
line Eq. (4), obtained within the models with and without the
γS parameter, is similar.

The net-baryon density ρid
B as a function of collision

energy calculated following the freeze-out line (4) is shown
in Fig. 2(a). In this and the following figures the laboratory
collision energy per projectile nucleon Elab is used to present
the dependence on collision energy. Its connection to the
center-of-mass energy per nucleon pair

√
sNN is given by

√
sNN = √

2mN Elab + 2m2
N , where mN is the nucleon mass.

As seen in Fig. 2(a), the net-baryon density has a maximum
[21] at Elab

∼= 34A GeV. This is the collision energy at
which the NA49 Collaboration observed the maximum of the
K+/π+ ratio (the horn) and other signals of the onset of
deconfinement [25].

The total entropy density as a function of collision energy
following the freeze-out line Eq. (4) is shown in Fig. 2(b).
Meson sM and baryon sB entropy densities are also presented
in the figure. With increasing collision energy the baryon
dominated (sB > sM ) matter changes to meson dominated
(sM > sB) matter. For the I-HRG model this transition is
located at Elab

∼= 46A GeV.
For the T -μB values at the chemical freeze-out line Eq. (4)

the role of quantum statistics is small. For baryons the Fermi
statistics changes their densities by less than 1%. The largest
density change due to the Bose statistics is for pions. It is,
however, still smaller than 10%. The ratio s/T 3 calculated
within the Boltzmann approximation, i.e., η = 0 in Eq. (1),
is shown in Fig. 2(b) by the dotted line. The deviations from
the results with quantum statistics included are hardly visible.
They are even smaller for ρB and thus the corresponding
dotted line calculated with the Boltzmann approximation is
not plotted. The collision energy dependence of ρB and s/T 3

calculated for the γS parametrization Eq. (6) and for γS = 1 is
also shown in Fig. 2. One concludes that the energy at which
ρB has the maximum as well as the energy of the transition
between baryon dominated and meson dominated matter are

approximately independent of the quantum statistics and the
degree of strangeness equilibration.

It was suggested [22] that the maximum of the net-baryon
density and/or the transition from baryon to meson dominance
may be related to the anomalous behavior of the K+/π+ ratio
[25]. In the next section these phenomena are examined by
taking into account the repulsive interactions between hadrons.

III. EXCLUDED VOLUME HADRON-RESONANCE GAS

The results presented in Sec. II have been obtained within
the ideal hadron-resonance gas model in which only attractive
interactions between hadrons are taken into account by the
inclusion of resonances. In this section the role of repulsive
interactions is considered within the excluded volume hadron-
resonance gas model.

The van der Waals excluded volume procedure corresponds
to a substitution of the system volume V by the available
volume Vav,

V → Vav = V −
∑

i

viNi, (7)

where vi = 4 · (4πr3
i /3) is the excluded volume parameter

and ri is the corresponding hard sphere radius of a particle
i. This result, in particular, the presence of a factor of 4 in
the expression for vi , can be rigorously obtained for a low
density gas of particles of a single type (see, e.g., Ref. [33]).
In the grand canonical ensemble, the substitution (7) leads to
a transcendental equation for the pressure of the EV-HRG1

[12,15]

p =
∑

i

pid
i (T , μ̃i); μ̃i = μi − vi p. (8)

1A discussion of other excluded volume formulations can be found
in Ref. [34].
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Using Eq. (5) one finds the net-baryon, entropy, and energy
densities

ρB =
∑

i bi nid
i (T , μ̃i)

1 + ∑
j vjn

id
j (T , μ̃j )

,

s =
∑

i s
id
i (T , μ̃i)

1 + ∑
j vjn

id
j (T , μ̃j )

, ε =
∑

i ε
id
i (T , μ̃i)

1 + ∑
j vjn

id
j (T , μ̃j )

.

(9)

In comparison to the corresponding densities calculated within
the I-HRG model the densities in the EV-HRG model Eq. (9)
are lower because of two reasons:

(i) due to the suppression factor [1 + ∑
j vjn

id
j (T , μ̃j )]−1

and
(ii) due to the shift in chemical potential μi → μ̃i which in

the Boltzmann approximation leads to the suppression
factor exp(−vip/T ) < 1.

The shift of the chemical potential makes the Boltzmann
approximation even more accurate than in the case of the
ideal gas. If all proper volume parameters are the same vi =
v (i.e., ri = r), the Boltzmann approximation gives the total
suppression factor R

R(T ,μB ; r) = exp (−v p/T )

1 + v
∑

j nid
j (T , μ̃j )

, (10)

the same for all densities of Eq. (9)

ρB(T ,μB) = R ρid
B (T ,μB ), s(T ,μB ) = R sid (T ,μB),

ε(T ,μB ) = R εid (T ,μB ) (11)

and ni(T ,μB ) = R nid
i (T ,μB ). Typical values of the hard-

core radii considered in the literature [2,17,18,20,35] are r =
(0.3–0.8) fm.

The energy dependence of the suppression factor Eq. (10)
calculated along the chemical freeze-out line for r = 0.5 fm

and r = 1 fm is shown in Fig. 3(a). The R factor (10) decreases
monotonously with increasing collision energy. For example,
for r = 0.5 fm one finds R ∼= 0.9 and R ∼= 0.4 at small and
large Elab, respectively. One may therefore expect a decrease
of the value of ρB at its maximum by a factor of 0.5 (for
r = 0.5 fm), and a shift of the position of the maximum to a
smaller collision energy. In fact, in Fig. 4(a) one observes
that the maximum of the net-baryon density is located at
Elab

∼= 17A GeV for r = 0.5 fm and at Elab
∼= 7A GeV for

r = 1 fm, instead of Elab
∼= 34A GeV for the I-HRG model.

It is also seen that the value of ρB at the maximum decreases
strongly with the increasing value of the hard-core radius.
The entropy density shown in Fig. 4(b) is reduced by the
same suppression factor. The collision energy at which the
baryon and meson entropy densities are equal is, however,
independent of R and is located at Elab

∼= 46A GeV. This is,
however, true only if the hard-core radius r is the same for all
hadrons.

A fraction of the total volume κ ≡ Vav/V , which is
available for the extended hadrons, can be estimated as follows
for equal baryon and meson radiuses:

κ = V − v
∑

i Ni

V
= 1 − v

∑
i

ni(T , μ̃i)

= 1 − v
∑

i n
id
i (T , μ̃i)

1 + v
∑

j nid
j (T , μ̃j )

= exp
(v p

T

)
R. (12)

The parameter κ is shown in Fig. 3(b) for r = 0.5 and r =
1 fm. One can see that κ is always larger than the dense packing
limit for hard spheres: 1 − π/(3

√
2) ∼= 0.26 [33]. This ensures

a consistency of the excluded volume approach at all collision
energies even for the largest considered radius r = 1 fm. We
also remind that the excluded volume parameter v is assumed
to be four times larger than the hadron volume 4πr3/3.

It is interesting to consider the role of the excluded volume
effects for different hard-core radii of baryons rB and mesons

FIG. 3. (Color online) (a) The excluded volume suppression factor R Eq. (10) and (b) the fraction of the available volume κ Eq. (12)
as functions of Elab along the chemical freeze-out line Eqs. (4) and (6). The solid and dotted lines correspond to r = 0.5 fm and r = 1 fm,
respectively. The dashed line in (b) corresponds to the dense packing limit 0.26 for hard spheres.
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FIG. 4. (Color online) (a) The net-baryon density along the chemical freeze-out line from Eqs. (4) and (6). Dashed-dotted line corresponds
to the model with r = 0, dashed line to rB = 0.5 fm and rM = 0, solid line to rB = rM = r = 0.5 fm, and dotted line to rB = rM = r = 1 fm.
(b) The ratios sB/T 3 and sM/T 3 along the chemical freeze-out line Eqs. (4) and (6). Dashed-dotted lines correspond to the model with r = 0,
solid lines to rB = rM = r = 0.5 fm, and dashed-dotted lines to rB = 0.5 fm and rM = 0.

rM . As an example, the results for rB = 0.5 fm and rM = 0
are presented in Fig. 4. In a comparison to the results for
r = 0.5 fm for all hadrons one observes small changes of
ρB , but a significant shift of the transition point between the
baryon and meson dominated matter. Its position decreases
from Elab

∼= 46A GeV to Elab
∼= 23A GeV.

The model with nonequal hard-core radii (rB = 0.7 fm and
rM = 0) was already used in Ref. [17]. The EV-HRG models
with nonequal radii for different hadron species need, however,
further detailed studies. This is because fits to the hadron yields
performed with the EV-HRG model with nonequal radii give
different freeze-out parameters T and μB than those in Eq. (4)
obtained within the I-HRG model.

As an illustration, we estimate the possible changes of T
and μB freeze-out parameters due to the excluded volume
effects with rB �= rM . At least two particle ratios are required
to determine T and μB . In the presented examples these ratios
are calculated using the parameters at the freeze-out line (4)
obtained for rB = rM . Then using these ratios new freeze-
out parameters T and μB are calculated within the EV-HRG
model with rB = 0.5 fm and rM = 0. First, the pion to proton
π+/p and kaon to lambda K+/
 ratios are selected. These
mesons and baryons are the most abundant particles. Second
the π+/p and K−/
 ratios, which includes antibaryon, are
considered. The results are shown in Fig. 5.

The new “freeze-out lines” significantly deviate from
the one obtained within the I-HRG model, Eq. (4). These
deviations are also strongly dependent on the ratios or
multiplicities selected for the analysis. For different reactions
different hadron sets are measured with different precision.
Therefore, accurate estimates of rB and rM from the data
on hadron multiplicities would require a significant dedicated
effort.

The baryon number density and baryon/meson entropy
densities along the new freeze-out lines from Fig. 5 are shown
in Fig. 6. The new fits with rB = 0.5 fm and rM = 0 change
the details but preserve the main features of the system with

rB = rM = 0.5 fm. In particular, the position of the net-baryon
density maximum depends basically on the rB parameter while
the position of the baryon/meson transition point is sensitive
to the difference between the rB and rM parameters.

Particle number fluctuations are straightforwardly sensitive
to the hard-core hadron radius rB = rM [36]. In a recent paper
[37] the same freeze-out line as well as the THERMUS program
has been used for the analysis of the event-by-event parti-
cle number fluctuations. Higher moments of the net-proton
multiplicity distribution were calculated and compared with
the STAR data. The results suggest that the hadron hard-core
radius rB = rM is in the range from 0.3 to 0.5 fm. However, for
the final conclusion the important effects of the exact charge

FIG. 5. (Color online) Comparison of the freeze-out line (4) (solid
line), and the lines obtained using the π+/p, K+/
 (dotted line), and
π+/p, K−/
 ratios (dash-dotted line) within the EV-HRG model
with rB = 0.5 > rM = 0 fm. The ratios are calculated within I-HRG
along the freeze-out line, Eq. (4), see text for details.
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FIG. 6. (Color online) The same as in Fig. 4 for EV-HRG with rB = 0.5 > rM = 0 fm. Dotted line corresponds to the fit of π+/p, K+/


and dash-dotted line to the fit of the π+/p, K−/
 ratios. Dashed line, vertical, and horizontal dotted lines are the same as in Fig. 4.

conservation [38] and the experimental acceptance [39] should
be also included and their consequences within the EV-HRG
model should be studied.

IV. SUMMARY

The ideal hadron-resonance gas model is simple and has
only a few free parameters. In spite of this it is successful in
describing the bulk properties of mean hadron multiplicities in
high energy collisions. The model takes into account attractive
interactions between hadrons via a presence of resonances,
but ignores repulsive interactions. The repulsive interactions
are, however, needed to catch the basic qualitative features of
strong interactions, e.g, the phase transition between hadron-
resonance gas and the quark-gluon plasma: point-like hadrons
and resonances would be a dominant phase at very high energy
densities as their total degeneracy factor is much larger than
that of quarks and gluons. Moreover, the repulsive interactions
strongly modify the properties of the hadron-resonance gas.
The most common way to include repulsive interactions in the
hadron-resonance gas model is to follow the van der Waals
excluded volume procedure and introduce the hard-core radii
of hadrons.

If radii of all hadrons are assumed to be the same,
the chemical freeze-out parameters, temperature, and baryon
chemical potential, fitted to data on mean hadron multi-
plicities, are identical to those obtained within the ideal
hadron-resonance gas model. However, all densities calculated
within the van der Waals model are lower than the corre-
sponding densities obtained within the ideal gas model and
thus the fitted volume parameter in the van der Waals gas
formulation is significantly larger. The density suppression
factor R depends on the T and μB parameters, which in
turn depend on collision energy. Consequently, the collision
energy dependence of densities is sensitive to the assumed
hard-core radius of hadrons. In particular, the energy at
which net-baryon density has a maximum decreases from

about Elab
∼= 34A GeV for the ideal gas model to about

Elab
∼= 7A GeV for the excluded volume model with r = 1 fm.

If the radii of hadrons are assumed to be different, the
densities of different hadrons are modified differently. Clearly,
the excluded volume effects are even larger for the hadron
matter at stages preceding the chemical freeze-out in nucleus-
nucleus collisions, i.e., at larger values of the energy den-
sity.

In view of these studies, the estimates of collision energies
at which the net-baryon density at the chemical freeze-out
reaches its maximum and/or the transition between baryon and
meson dominated matter takes place are premature. One needs
to renew a search for a suitable set of the excluded volume
parameters. Experimental and/or theoretical methods to better
estimate hard-core radii of hadrons within the excluded
volume model are needed to improve our understanding of
the properties of hadron-resonance matter. If all hard-core
radiuses are equal to each other, the particle number ratios
are not sensitive to their numerical value. Thus, the data
on average multiplicities are not enough and independent
measurements of the total system volume is needed. However,
the particle number fluctuations depend straightforwardly on
the hard-core hadron radius [36]. Precise measurements of
higher moments of hadron multiplicity distribution in nucleus-
nucleus collisions are now in progress. An interpretation of
these data within EV-HRG opens the way to estimate the value
of hard-core radius r from the data.
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[25] M. Gaździcki and M. I. Gorenstein, Acta Phys. Polon. B 30, 2705

(1999); S. V. Afanasiev et al. (The NA49 Collaboration), Phys.
Rev. C 66, 054902 (2002); C. Alt et al. (NA49 Collaboration),
ibid. 77, 024903 (2008); M. Gaździcki, M. Gorenstein, and
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