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Sub-barrier fusion of stable and unstable nuclei with a microscopic interaction
and Skyrme-Hartree-Fock densities
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The fusion cross sections, barrier, and spin distributions of stable and unstable nuclei are investigated through
a coupled-channel approach using a density and energy-dependent effective Brueckner G-matrix interaction.
Calculations are carried out for the fusion reactions 16,18,20,22,24O + 58Ni and 28Si + 58,62,64Ni. Microscopic
Skyrme-Hartree-Fock proton and neutron density distributions are used in the calculations. It is found that the
energy dependence of the interaction potential enhances the fusion cross section, where it increases with increasing
energy due to the decrease in the interaction barrier. The density dependence of the interaction is found to be of
great importance, especially for unstable nuclei, since it directly relates the fusion cross section with the nuclear
structure. The effect of the neutron skin is found to largely increase the fusion cross section and spin distribution
due to the increase in the overlap region. The coupling to the inelastic excited states strongly enhances the fusion
cross sections. The effect of the difference between the nuclear and charge deformations is also investigated.
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I. INTRODUCTION

The study of the structure and reactions of stable and un-
stable nuclei is one of the interesting aspects of nuclear theory.
Nuclei near the neutron or proton drip lines are expected to
have unusual extended density distributions or halo structures,
which are expected to influence the scattering, reactions, and
fusion cross sections of the colliding nuclei [1–18].

Many different mechanisms have been discussed for the
description of sub-barrier fusion reactions as coupling to the
low-energy excited states, nucleons transfer, deformation of
ions, or neck formation during barrier penetration. Fusion cross
sections are strongly enhanced at energies below the barrier by
the coupling to both the low-energy surface vibrational states
and the few-nucleon transfer channels [17,18].

The main part in calculating the cross section for a heavy-
ion fusion reaction is the nucleus-nucleus interaction potential.
The total interaction potential is the sum of the long-range
repulsive force and the short-range nuclear attractive force.
The Coulomb part of the interaction potential is well known,
whereas the nuclear part is not clearly understood. Many con-
cepts have been put forward to give a simple form of the nuclear
potential. Among such concepts, proximity potential is well
known for its simplicity and numerous applications in different
fields. For example, a detailed study of the isotopic dependence
of fusion dynamics was made in [19,20] using proximity
potentials and a one-dimensional potential model. Similar
calculations were carried out in [21] using proximity potentials
as well as other different phenomenological potentials, such as
the Akyuz-Winther [22,23], KNS [24], and Bass [25] poten-
tials. However, a one-dimensional potential model was found
to underestimate the fusion cross sections at lower energies.
Moreover, proximity potentials are not unique, and they do not
depend explicitly on the structure of the colliding nuclei.

The aim of this work is to investigate fusion reactions
of stable and unstable nuclei through a microscopic density
and energy-dependent nucleon-nucleon interaction, where the
energy-density functional of the interacting nuclei is derived
from effective Brueckner G-matrix interaction, which is the

solution of the Bethe-Goldstone equation [26]. The energy
density is an explicit functional of the proton and neutron
density distributions, which is very important in describing
and extracting information about the structure of stable and
unstable nuclei. The effects of the coupling on the low-
lying inelastic excitations are taken into account through the
coupled-channels CCFULL code [27]. The proton and neutron
density distributions of target and projectile are calculated
from Skyrme-Hartree-Fock (SHF) calculations adopting the
SKRA interaction [28]. Section II presents the theoretical
description; calculations are presented and discussed in
Sec. III. Summary and conclusions are presented in Sec. IV.

II. THEORETICAL DESCRIPTION

The interaction potential between two colliding nuclei
separated by a distance R can be written as [26]

V (R; Kr ) = E(R; Kr ) − E(∞; Kr ), (1)

where

Kr =
√

2m

h̄2

Elab

AP

(2)

is the relative momentum per nucleon. The relation between
the laboratory and c.m. energies is

Elab = AT + AP

AT

Ec.m., (3)

where AP and AT are the projectile and target mass numbers.
The interaction potential V (R; Kr ) can be calculated as a
function of Kr or Elab or Ec.m. using relations (2) and (3).
The total energy of the system, E, is obtained from the
energy-density functional H through the relation

E(R; Kr ) =
∫

d3rH(r, R; Kr), (4)
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where

H (r, R; Kr) = τ (ρP , ρT ; Kr) + �(ρP , ρT ; Kr)

+ Hcor(ρp, ρn), (5)

where ρP and ρT are the projectile and target densities. The
first term in Eq. (5) is the kinetic energy density, which is
calculated, in momentum space, from [26]

τ (ρP , ρT ; Kr ) = h̄2

2m

[
τ (2) + K2

Gρ
]
, (6)

τ (2) = h̄2

2m
g

∫
F

d3k

(2π )3
(k − KG)2, (7)

where g is a spin-isospin degeneracy factor and KG is a
reference c.m. momentum (KG = ρP

ρ
Kr , where ρ is the total

density of the system).
∫
F

stands for the integration over the
occupied states for two colliding nuclear matters. A surface
correction term is added to the intrinsic kinetic energy density
τ (2) of the form

δτ (2) = λ|∇(ρ)|2/ρ, (8)

where the parameter λ takes values between 1/36 and 9/36
[29]. In this work, we consider λ = 1.8/36.

The second term in Eq. (5) is the potential energy density
�(ρP , ρT ; Kr ), which is calculated, also in momentum space,
from the G matrix [26],

�(ρP , ρT ; Kr )

= 1

2

∑
spin

∑
isospin

∫
F

d3k

(2π )3

∫
F

d3k′

(2π )3
〈kk′|G|kk′〉a. (9)

The reaction matrix G is the solution of the Bethe-Goldstone
equation,

G(W ) = V + V
Q

W − H0 + iε
G(W ), (10)

where W is the starting energy and Q is the Pauli projection
operator restricting the two nucleon intermediate states to be
outside the Fermi sea. V denotes the bare nucleon-nucleon
interaction taken to be the Reid soft core potential. This
equation is solved in the momentum space configuration of
two colliding nuclear matters (two Fermi spheres), using the
generalized local density approximation [26].

The single-particle Hamiltonian H0, when acting on a two-
nucleon state, gives

H0|kk′〉 = (ε(k) + ε(k′))|kk′〉, (11)

where the single-particle energies ε(k) and ε(k′), including
both the kinetic energy and the real part of the single-particle
potential U (k), which is calculated from the reaction matrix G,

U (k)= 1

4

∑
spin

∑
isospin

∫
F

d3k′

(2π )3
〈kk′|G(W =ε(k) + ε(k′))|kk′〉a.

(12)

The last term in Eq. (5) is a correction term due to three-body,
relativistic, and symmetry energy corrections.

Hcor(ρp, ρn) = δH3−body (ρ) + δHrel (ρ) + Hsym(ρ, β). (13)

The three-body and relativistic corrections were added in [28]
in order to get the correct saturation properties of nuclear
matter,

δH3−body (ρ) � −2.4ρ

(
ρ

ρnm

)1.1

, (14)

δHrel (ρ) � 2.4ρ

(
ρ

ρnm

)8/3

, (15)

where ρnm = 0.17 fm−3.
For the symmetry energy coefficient we used a more

realistic expression that is derived from Brueckner-Hartree-
Fock (BHF) calculations of asymmetric nuclear matter, where
the symmetry energy per particle can be written as [30]

Hsym(ρ, β) = hsym(ρ)β2, β = (ρn − ρp)/ρ, (16)

where hsym(ρ = ρn + ρp) for ρ � 0.5 fm−3 is parametrized
by the expression

hsym

=
{

278ρ − 643ρ2 for ρ � 0.1 fm−3,

11.1 + 116.7ρ − 82.43ρ2 for 0.1 < ρ � 0.5 fm−3,

(17)

where the proton and neutron densities of the combined system
are given by the sum of target and projectile densities, i.e.,

ρp,n = ρT
p,n(r) + ρP

p,n(r − R). (18)

III. NUMERICAL CALCULATIONS AND DISCUSSION

The proton and neutron density distributions of target and
projectile are calculated from Skyrme-Hartree-Fock calcula-
tions using the Skyrme interaction SKRA [28]. This interaction
was designed to describe both finite nuclei and nuclear matter

FIG. 1. Proton density distribution of 16O and neutron densities
of 16−24O calculated from SHF approach using SKRA interac-
tion. The bold dots show the experimental density taken from
De Vries et al. [31].
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FIG. 2. Interaction potentials for 16−24O + 58Ni against separa-
tion distance R derived from the G-matrix effective interaction and
SHF densities at energies corresponding to the fusion barrier.

saturation, as derived from BHF calculations that include
corrections due to many-body and relativistic effects [28].

Figure 1 shows the proton density distribution of 16O,
and the neutron densities of 16−24O, as calculated from the
SHF calculation, using the SKRA interaction. As shown from
this figure, the SHF proton density well fit the experimental
one [31] in the surface and tail regions, which are the
most important regions for scattering and fusion reactions.
The nucleus 24O is found to be a doubly-magic nucleus in
the present approach, and this agrees with experiment [32].
Figure 1 shows also that when the neutron number increases,
the neutron density increases. This causes a neutron skin,
which is expected to increase the interaction potential,
especially in the surface and tail regions.

Figure 2 shows the real part of the G-matrix interaction
potential of 16−24O + 58Ni against the separation distance R
calculated using SHF densities, using the SKRA interaction, at
energies corresponding to the interaction barrier. As shown in
this figure at the surface and tail regions, the nuclear potential
becomes deeper and more extended to larger distances when
the neutron number is increased. This is because the interaction
region is increased by increasing the neutron number due to
the increases in the neutron density, as shown in Fig. 1. The
neutron skin, appearing in the neutron density of 24O, increases

FIG. 3. Potentials calculated from G matrix, 16O + 58Ni, are
plotted at different values of the relative momentum per nucleon
Kr = 0, 0.35, 0.5, 1 fm−1.

the nuclear potential in the surface and tail regions, as shown
in Fig. 2. The increase in the nuclear potential around the
barrier is expected to reduce the fusion barrier height and
thus to enhance the fusion cross section. Figure 3 shows the
energy dependence of the interaction potential where at low
and intermediate energies, the potential becomes deeper with
increasing energy, due to the decrease in the Pauli blocking
effects with increasing energy.

We studied the energy dependence of fusion cross sections,
spin, and barrier distributions calculated using the G-matrix
interaction potential. We found that the energy dependence of
the interaction potential affects the fusion cross section where
it is enhanced with increasing energy, due to the decrease in
the interaction barrier with increasing energy. We also found
that around the barrier, the potential calculated at the incident
center-of-mass energy equals the potential barrier predicted
the same results for the fusion cross section and the barrier
distribution as those calculated at each incident energy. Thus it
is a very good approximation to use in fusion reactions around
the barrier potentials which are calculated at the incident c.m.
energy equaling the interaction barrier. This approximation
will be used in all our calculations.

Table I presents the fusion barrier heights VB and position
RB calculated using the G-matrix potential in a comparison

TABLE I. Fusion barrier heights V B (MeV) and position RB (fm) using G-matrix (present work), Akyuz-Winther (AW) [22,23] and
KNS [24] interactions with empirical values [33,34].

Reaction VG RG VKNS RKNS VAW RAW Vemp Remp

16O + 58Ni 32.21 9.3 31.14 9.48 31.78 9.45 31.67 9.3
18O + 58Ni 31.56 9.5 30.63 9.65 31.25 9.62
20O + 58Ni 31.11 9.61 30.25 9.76 30.78 9.77
28Si + 58Ni 54.7 9.5 52.6 9.82 53.29 9.85 53.8 ± 0.8 9 ± 0.9
28Si + 62Ni 53.47 9.43 51.97 9.95 52.6 9.99 52.89 9.89
28Si + 64Ni 52.9 10 51.68 10.01 52.3 10.05 52.4 ± 1.1 9.2 ± 1
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FIG. 4. Fusion cross section of 16O + 58Ni calculated using G-
matrix potentials in the coupled channels using CCFULL code. The
filled stars show the experimental data taken from Keeley et al. [37].

with the popular phenomenological Akyuz-Winther [22,23]
and KNS [24] potentials. The Akyuz-Winther potential is
based on the proximity formalism and the fitting to the densi-
ties of a variety of stable nuclei. The last two columns give the
empirical values [33,34]. As seen from this table, the barriers
decrease and the positions increase with increasing neutron
numbers, which are consistent with the phenomenological
potentials and the empirical values. Also noticed is that the
barriers and positions are reproduced well by the G-matrix
interaction in comparison with the phenomenological and the
empirical predictions.

Figures 4–6 show the fusion cross section, spin, and barrier
distributions for 16O + 58Ni calculated using the G-matrix
interaction potential taking into account the effect of the cou-
pling to the inelastic vibrational excited states 2+, E2 = 1.454

FIG. 5. Same as Fig. 4 but for the spin distribution.

FIG. 6. Same as Fig. 4 but for the barrier distribution.

MeV, β2 = 0.183, and 3−, E3 = 4.475 MeV, β3 = 0.22 of the
target; and 2+, E2 = 6.92 MeV, β2 = 0.36, and 3−, E3 = 6.19
MeV, β3 = 0.6 of the projectile. All the data of the vibrational
excited states are taken from [35,36]. The experimental data
for the 16O + 58Ni fusion cross section are taken from [37].
The coupling to the inelastic vibrational excited states are
calculated using the coupled-channels CCFULL program [27].
As shown from these figures, the coupling to the low-lying
excited states of target and projectile enhanced the fusion
cross section, especially below the barrier, in agreement with
the experimental data. For the case of angular momentum
distribution, Fig. 5 shows that the coupling to inelastic excited
states of target and projectile increases the angular momentum.
The barrier distribution is shifted to lower c.m. energies, where
it increases at lower energies, while increasing the coupling to
inelastic excitation, as shown in Fig. 6.

Figure 7 shows the fusion cross section of 18O + 58Ni
calculated using G-matrix interaction taken into account the
effect of coupling to the 2+ and 3− of the target 58Ni, and the
2+, E2 = 1.982 MeV, β2 = 0.355 [35,36] (two-phonon) of the
projectile 18O. The experimental data for 18O + 58Ni fusion
cross section are taken from [18,38,39]. As shown from Fig. 7,
the experimental data are generally described by the interaction
potential. However, the cross sections at lowest energies are
not well described by the calculations. This could be due to the
neutron transfer and/or the deformation of 18O. Since the 18O
ground state exhibits an intrinsic deformation [40], one of the
possible distortion effects is the alignment of deformed 18O.
The effect of the distortion of valence neutrons in 18O has been
investigated recently in [40]. They found that an analysis of
the alignment effects and dipole polarization reveals that the
alignment effect contributes significantly to the enhancement
of the sub-barrier fusion cross sections.

Figures 8–10 show the cross sections and spin and bar-
rier distributions, calculated for different projectile oxygen
isotopes without including coupling to inelastic excitation.
As shown from these figures, the fusion cross sections and
spin and barrier distributions increase when increasing the
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FIG. 7. Same as Fig. 4 but for 18O + 58Ni. The filled stars and
open circles show the experimental fusion cross sections taken from
Silva et al. [38] and Borges et al. [39].

neutron number. The heights of the barrier distributions also
increase and shift to lower energies when increasing the
neutron number. The larger increases are for 24O, since it
has the largest neutron skin. The reason for the increases in
the cross sections and spin and barrier distributions when
increasing the neutron number is that the negative nuclear
potential increases with increasing neutron number, as shown
in Fig. 2, which decreases the fusion barriers and thus enhances
the probability of fusion. In fact, the increases in the negative
nuclear potentials (in the surface and tail regions) are due to
the increases in the neutron densities with increasing neutron
number, as shown in Fig. 1. Hence, the present microscopic
approach for calculating sub-barrier fusion directly relates the

FIG. 8. Fusion cross sections of 16,18,20,22,24O + 58Ni calculated
using G-matrix potentials without including coupling to inelastic
excitation.

FIG. 9. Same as Fig. 8 but for the spin distributions.

structure of nuclei with the fusion cross sections, which, on
the other hand, is of great importance in extracting information
about the structure of exotic nuclei.

Figure 11 shows the fusion cross section for 28Si + 58Ni
calculated using the G-matrix interaction potential with SHF
densities. The experimental data are taken from [34]. The
experimental values of the deformation parameters of the 2+
and 3− vibrational states are taken from [35,36]. As shown
in these figures, the experimental fusion cross sections are
well described when the coupling to the low-energy 2+ and
3− surface excited states are considered with the two-neutron
transfer channel, where the neutron transfer enhances the
fusion cross section at lower energies (Q2n = −3.24 MeV).
The pair neutron transfer is considered in the CCFULL code by a
phenomenological form factor which works well for negative
Q values [27].

FIG. 10. Same as Fig. 8 but for the barrier distributions.
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FIG. 11. Same as Fig. 4 but for 28Si + 58Ni.

Figure 12 shows the fusion cross section for 28Si + 62Ni
calculated using a G-matrix interaction. The experimental
data are taken from [34]. Figure 13 is the same as Fig. 12
but for 28Si + 64Ni. The experimental data are taken from
[41]. The experimental values of the excitation energies and
deformation parameters of the 2+ and 3− vibration states are
taken from [35,36]. As shown in these figures, the experimental
fusion cross sections are well described when the couplings
to the low-energy 2+ and 3− surface excitation states are
considered, especially for the reaction 28Si + 62Ni. For the
case of 28Si + 64Ni, the calculated fusion cross section is
slightly smaller than the data below the barrier after including
the coupling to the inelastic excited states. Therefore, including
the neutron transfer channels should enhance the fusion cross
section below the barrier. However, the neutron transfer Q
value for this reaction is positive and the CCFULL code probably

FIG. 12. Same as Fig. 4 but for 28Si + 62Ni.

FIG. 13. Same as Fig. 4 but for 28Si + 64Ni.

does not work well for systems with positive Q values.
In [18], the coupling to the low-energy surface oscillations
during the fusion process have been considered in the simple
CCFULL model, while the coupling to the transfer channels,
with positive Q values, has been treated in the DWBA
approximation. Recently, the effect of multineutron couplings
has been considered through the NTFUS code for systems with
large positive Q values, where a large enhancement of the
fusion cross section below the barrier has been obtained that
fairly describes the data [42]. However, as concluded in [42],
it will be necessary to measure the neutron transfer cross
sections to provide more information on the coupling strength
of neutron transfer because its connection with fusion is not
yet fully understood.

On the other hand, different nuclear and Coulomb de-
formation parameters for the excited states, for nuclei with
large positive Q values, could further increase the fusion
cross section. We found that any increase in the nuclear
deformation parameter other than the Coulomb one, enhanced
the fusion cross section around and below the barrier. As a
result, we considered βP

N �= βP
C for the reaction 28Si + 64Ni,

where we took βP
N = 1.1βP

C . This slight increase in the nuclear
deformation parameter fits the fusion cross section well, as
shown in Fig. 13. This is consistent with [43], where they
considered nuclear deformation β3n about 1.5 of Coulomb
deformation β3C for the 19F + 208Pb fusion reaction.

IV. SUMMARY AND CONCLUSION

We have studied sub-barrier fusion reactions microscopi-
cally using a density- and energy-dependent effective G-matrix
interaction and using Skyrme-Hartree-Fock densities. These
interaction potentials are then used in a coupled-channels
calculation for calculating the fusion reactions of the systems
16,18,20,22,24O + 58Ni and 28Si + 58,62,64Ni.

It was found that the energy dependence of the interaction
enhances the fusion cross section due to the decrease in the
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interaction barrier. The density dependence of the interaction
is of great importance, since it directly relates the fusion cross
sections with the structure of the interacting nuclei. The effect
of neutron skin has been found to largely increase the fusion
cross section and spin distribution, due to the increase in the
overlap region with increasing neutron density. The coupling to
the inelastic excited states enhanced the fusion cross section, as

expected. The effect of the difference between the nuclear and
charge deformations was investigated for the system 28Si +
64Ni, where the increase in the nuclear deformation parameter
other than the Coulomb one enhanced the fusion cross section.
The interaction potentials successfully described the barriers
as well as fusion cross sections for the stable and unstable
nuclei considered in this work.
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