
PHYSICAL REVIEW C 88, 024614 (2013)

Microscopic optical potential from chiral nuclear forces
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The energy- and density-dependent single-particle potential for nucleons is constructed in a medium of infinite
isospin-symmetric nuclear matter starting from realistic nuclear interactions derived within the framework of
chiral effective field theory. The leading-order terms from both two- and three-nucleon forces give rise to real,
energy-independent contributions to the nucleon self-energy. The Hartree-Fock contribution from the two-nucleon
force is attractive and strongly momentum dependent, in contrast to the contribution from the three-nucleon force
which provides a nearly constant repulsive mean field that grows approximately linearly with the nuclear density.
Together, the leading-order perturbative contributions yield an attractive single-particle potential that is however
too weak compared to phenomenology. Second-order contributions from two- and three-body forces then provide
the additional attraction required to reach the phenomenological depth. The imaginary part of the optical potential,
which is positive (negative) for momenta below (above) the Fermi momentum, arises at second order and is nearly
inversion-symmetric about the Fermi surface when two-nucleon interactions alone are present. The imaginary
part is strongly absorptive and requires the inclusion of an effective mass correction as well as self-consistent
single-particle energies to improve agreement with phenomenology.
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I. INTRODUCTION

Nuclear optical model potentials provide a highly suc-
cessful framework for describing nucleon-nucleus scattering
across extended regions of the nuclear chart. While local
and global phenomenological optical potentials [1–3] have
been used to describe total cross sections, elastic scattering
angular distributions, and analyzing powers for reactions on
target nuclei close to the valley of stability, microscopic
optical potentials have no adjustable parameters and may
therefore provide the best means for extrapolating to rare
isotope reactions that will be studied at the next generation of
radioactive beam facilities. Neutron-capture cross sections on
exotic, neutron-rich isotopes are particularly relevant for a de-
tailed understanding of heavy-element formation in r-process
nucleosynthesis. Although such reactions are experimentally
unfeasible in the near future, neutron capture on rare isotopes
can be probed indirectly in current and future rare isotope
experiments through the (d, p) stripping reaction, a process
that is most easily modeled as a three-body problem requiring
the nucleon-nucleon potential as well as the nucleon-nucleus
optical potential [4] as input.

Phenomenological optical potentials possess several ad-
justable parameters that characterize the shape of the nuclear
density distribution of the target nucleus and vary smoothly
with the energy of the projectile and mass number of the target.
Microscopic optical potentials, on the other hand, are derived
from an underlying model of the nuclear interaction fit to
elastic nucleon-nucleon scattering data as well as properties
of the lightest nuclei. Within such a microscopic treatment,
the optical potential is identified with the nucleon self-energy,
a density-dependent complex-valued function given in terms
of the nucleon energy and momentum. The nucleon self-
energy has been constructed within numerous theoretical

frameworks, including Brueckner-Hartree-Fock (BHF) the-
ory [5–11], Dirac-Brueckner-Hartree-Fock (DBHF) theory
[12–16], the Green’s function formalism [17,18], and chiral
perturbation theory [19,20]. The inclusion of three-nucleon
forces, while often neglected in microscopic calculations
of the optical potential, would seem highly relevant given
their importance in achieving nuclear matter saturation at
the correct density and binding energy per particle. Recent
BHF calculations [21] included effects of the Urbana IX
three-nucleon force [22] in a simplified manner [23] and
found only a modest improvement in the comparison to elastic
scattering data for intermediate-energy scattering of protons
from 40C and 208Pb, despite a sizable reduction of the central
potential in the dense interior. A more accurate investigation
of three-body forces is, however, desirable.

In the present work we make use of the progress that has
been achieved in the last decade in constructing high-precision
nuclear interactions within the framework of chiral effective
field theory. As a first step in the development of microscopic
optical potentials capable of describing reactions on rare
isotopes, we compute the first- and second-order perturbative
contributions to the nucleon self-energy in a medium of
isospin-symmetric nuclear matter employing realistic chiral
two- and three-nucleon interactions. Extensions to finite nuclei
and isospin-asymmetric systems relevant for reactions on
nuclei far from the valley of stability will be presented
in future work. The resulting optical potentials for infinite
nuclear matter can be benchmarked against properties of
well-established phenomenological potentials, such as their
depth and energy dependence.

We will show that at nuclear matter saturation density
ρ0 � 0.16 fm−3, the leading-order Hartree-Fock contributions
from two- and three-nucleon forces are strongly competitive,
with the two-body component significantly attractive and the
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three-body component mildly repulsive. Alone they would
give rise to a mean field whose depth for a nucleon at
vanishing energy (with respect to the Fermi energy) would
be U � −26 MeV, much smaller than the empirical value of
U � −52 MeV determined from phenomenological optical
model fits to reactions on heavy stable nuclei [3]. Second-
order perturbative contributions from two- and three-nucleon
forces yield considerable additional attraction of approxi-
mately 30 MeV, leading to overall reasonable agreement with
phenomenology. The imaginary part, however, turns out to be
nearly twice as strong as phenomenological optical potentials
at intermediate scattering energies.

The paper is organized as follows. In Sec. II we introduce
the relevant formalism and make a connection between the in-
medium nucleon self-energy and the nucleon-nucleus optical
potential. Explicit formulas are given without any simplifying
approximations for the first and second-order perturbative
contributions in terms of a partial-wave decomposition of
the nucleon-nucleon interaction. We present as well the
formulas for the Hartree-Fock contribution to the single-
particle potential from the N2LO chiral three-nucleon force.
Section III presents the numerical results for the momentum-
dependent self-energy associated with negative-energy hole
states as well as positive-energy particle states. The impact of
second-order three-body forces is then studied by employing
a density-dependent nucleon-nucleon potential constructed by
summing one nucleon over the filled Fermi sea. Our results
for the real and imaginary potential depths as well as their
energy dependence is compared to those of phenomenological
optical potentials fit to reactions on stable nuclei. We end with
a summary and conclusions.

II. MICROSCOPIC OPTICAL MODEL POTENTIALS

A. First- and second-order contributions from two-body forces

In the nuclear optical model, the complicated many-body
problem associated with the elastic scattering of a nucleon off
a target nucleus is replaced by the more practicable problem
of a single nucleon scattering from an equivalent complex
mean-field potential:

V (�r, �r ′; E) = U (�r, �r ′; E) + iW (�r, �r ′; E), (1)

which in general is both nonlocal and energy-dependent. The
imaginary part in Eq. (1) accounts for the presence of inelastic
scattering, which reduces the total reaction flux in the elastic
scattering channel. The simplest phenomenological optical
potentials are taken to be local and of Woods-Saxon form
in both the real and imaginary components:

U (r; E) = −U0(E)

1 + e(r−Rr )/ar
, W (r; E) = −W0(E)

1 + e(r−Ri )/ai
, (2)

where the parameters U0(E),W0(E), Rr,i , and ar,i vary
smoothly with the mass number A of the nucleus and, in
the case of the well-depth parameters U0 and W0, also the
projectile energy E.

Beyond energies of E ∼ 200 MeV, this Woods-Saxon form
is no longer sufficient, and the real part of the central potential
develops a “wine-bottle” shape [3]. Although not relevant for

the present calculations in homogeneous isospin-symmetric
nuclear matter, phenomenological optical potentials possess
real and imaginary spin-orbit terms as well as an imaginary
surface term, all of which are proportional to the gradient of
the Woods-Saxon distribution [3]. Extensive analysis of the
available experimental scattering data yields a real potential
well depth U0 � 50–55 MeV for projectile nucleons with very
low energies incident on heavy target nuclei. The depth of the
imaginary potential vanishes at the Fermi energy and grows
to typical values of W0 � 10–12 MeV for projectile energies
close to 100 MeV.

Microscopically the optical model potential can be identi-
fied with the nucleon self-energy �(�r, �r ′, E) in a nucleus [24].
For scattering states with E > 0, �(�r, �r ′, E) is the nuclear
optical potential, while for bound states with E < 0, the
real part of �(�r, �r ′, E) represents the shell model potential.
In the present work we consider isospin-symmetric nuclear
matter at uniform density ρ = 2k3

f /3π2, in which case it is
more appropriate to compute the resulting spin- and isospin-
independent self-energy in momentum-space �(q, ω; kf ). A
local optical model potential for nucleon-nucleus scattering
can then be obtained by solving the self-consistent equation for
the on-shell energy in terms of the momentum and then folding
the resulting density-dependent mean field with a realistic
point-nucleon density distribution of the target nucleus. The
off-shell dependence of the self-energy �(q, ω; kf ) on both q
and ω is necessary to describe the nucleon spectral function
and nucleon momentum distribution. A complementary work
studying the off-shell self-energy, including the effects of
three-nucleon forces, is given in Ref. [25].

The first-order Hartree-Fock contribution �(1)(q, ω; kf ) to
the self-energy from two-body forces is shown diagrammati-
cally in Fig. 1 for states above (1a) and below (1b) the Fermi
surface. The Hartree-Fock contribution

�
(1)
2N (q, ω; kf ) =

∑
1

〈�q �h1ss1t t1|V̄2N |�q �h1ss1t t1〉n1, (3)

is real, ω independent, and changes smoothly as the external
momentum q crosses the Fermi surface. In Eq. (3), V̄2N

denotes the antisymmetrized potential, n1 = θ (kf − |�h1|) is
the zero-temperature occupation probability, and the sum is
taken over the momentum, spin, and isospin of the intermediate
hole state |�h1, s1, t1〉. The decomposition of the Hartree-Fock
contribution in terms of partial-wave matrix elements of the
interaction can be simplified by noting that �(q, ω; kf ) is spin
and isospin independent when computed for a background
medium of isospin-symmetric nuclear matter. Averaging over
s and t in Eq. (3) then yields the single-particle potential

U (q, kf )

= 1

2π2

∑
lSJT

(2T + 1)(2J + 1)

×
∫ (q+kf )/2

max{0,(q−kf )/2}
dp p2 min

{
2,

(
k2
f − (q − 2p)2)/4pq

}
×〈plSJT |V̄2N |plSJT 〉, (4)

where �p = (�q − �h1)/2 is the relative momentum of the
interacting particles.
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(1a) (1b) (2a) (2b) (2c)  (2d)

FIG. 1. Diagrams contributing to the nucleon self-energy �(q, ω; kf ) at first and second order in perturbation theory from two-body forces.
The first-order Hartree-Fock contributions are labeled (1a) and (1b) for particles (q > kf ) and holes (q < kf ), respectively. The second-order
contributions to the particle self-energy are labeled (2a) and (2b), while the two contributions to the hole self-energy are labeled (2c) and (2d).
The wavy line represents the antisymmetrized two-nucleon interaction V̄2N , including direct and exchange terms.

At second order in perturbation theory, �(q, ω; kf ) develops both a real and imaginary part. For particle states above the Fermi
surface, there are two distinct contributions labeled (2a) and (2b) in Fig. 1. The contribution (2a) arises from the external particle
coupling to a hole state inside the Fermi sea and reads

�
(2a)
2N (q, ω; kf ) = 1

2

∑
123

|〈 �p1 �p3s1s3t1t3|V̄2N |�q �h2ss2t t2〉|2
ω + ε2 − ε1 − ε3 + iη

n̄1n2n̄3(2π )3δ( �p1 + �p3 − �q − �h2), (5)

where n̄k = 1 − nk selects particle states lying above the Fermi momentum. We construct the momentum-dependent mean
field by setting ω = q2/(2MN ). Fixing �p3 by momentum conservation, aligning the total momentum �p ′ = �p1 + �p3 = �q + �h2

in the �ez direction, and averaging over the external particle spin, isospin and momentum direction then yields the partial-wave
decomposition:

U (q, kf ) + iW (q, kf ) = 8MN

(4π )4q

∑
l1 l2 l3 l4JJ ′M
Smsm′

sT

(2T + 1)
∫ p′

b

p′
a

dp′
∫ q1b

q1a

dq1

[ ∫ x0

0
dcos θ1P̄l1,m(cos θ1)P̄l3,m(cos θ1)

]

×
∫ q2b

q2a

dq2 P̄l2,m′ (cos θ2)P̄l4,m′ (cos θ2)
p′q2

1q2

(q2 − q1 + iη)(q2 + q1)
il2+l3−l1−l4

× CJM
l1mSms

CJM
l2m′Sm′

s
CJ ′M

l3mSms
CJ ′M

l4m′Sm′
s
〈q1l1SJT |V̄2N |q2l2SJT 〉〈q2l4SJ ′T |V̄2N |q1l3SJ ′T 〉, (6)

where �q1 = ( �p1 − �p3)/2, �q2 = (�q − �h2)/2, P̄lm is the
associated Legendre function Plm multiplied by the
factor

√
(2l + 1)(l − m)!/(l + m)!, cos θ2 = (q2 − q2

2 −
p′2/4)/(p′q2), x0 = min{1, (q2

1 − k2
f + p′2/4)/(p′q1)}, and

the limits of integration are

p′
a = max{0, q − kf }, p′

b = q + kf ,

q1a =
√

max
{
0, k2

f − p′2/4
}
, q1b = ∞,

(7)
q2a = |q − p′/2|,
q2b = min

{√(
k2
f + q2

)/
2 − p′2/4, q + p′/2

}
.

The expression in Eq. (6) holds also for the hole contribution
labeled (2c) in Fig. 1, except that since q < kf the contribution
is purely real and one can drop the +iη in the energy
denominator.

The diagrams labeled (2b) and (2d) in Fig. 1 are both given
by the following expression:

�
(2b)
2N (q, ω; kf ) = 1

2

∑
123

|〈�h1 �h3s1s3t1t3|V̄2N |�q �p2ss2t t2〉|2
ω + ε2 − ε1 − ε3 − iη

× n1n̄2n3(2π )3δ(�h1 + �h3 − �q − �p2). (8)

In contrast to Eq. (5), here the contribution picks up an imagi-
nary part for hole states below the Fermi surface and is purely
real for particle states above the Fermi surface. The partial-
wave decomposition is very similar to that for �

(2a)
2N (q, ω; kf ),

except that �q1 = (�h1 − �h3)/2, �q2 = (�q − �p2)/2, and one must
make the following replacements:

+iη → −iη, x0 → min
{
1,

(
k2
f − q2

1 − p′2/4
)
/(p′q1)

}
,

p′
a → max{0, kf − q}, p′

b → 2kf ,

q1a → 0, q1b →
√

k2
f − p′2/4, (9)

q2a → max
{|q − p′/2|,

√(
k2
f + q2

)/
2 − p′2/4

}
,

q2b → q + p′/2.

The numerical accuracy of the above formulas for the
second-order contributions to the nucleon self energy in nu-
clear matter has been checked against semianalytic expressions
obtained for a simple scalar-isoscalar exchange model of the
nuclear force (see the Appendix for details). Although the
contributions labeled (2a) and (2c) in Fig. 1 may potentially
be divergent, for the scalar-isoscalar exchange interaction all
integrals converge. Across a range of momenta and densities
we find the agreement between our numerical calculations and
the semi-analytical results to be within 1%. The formulas for
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iterated one-pion exchange given in Refs. [19,20] have been
used as well for checking the partial-wave representation of
the second-order contribution.

B. Leading-order contribution from three-body forces

The methods described above for two-body forces can be
extended to nuclear many-body forces. For a general three-
nucleon force, the first-order Hartree-Fock contribution to the
nucleon self-energy is real and energy independent. Summing
two of the nucleons over the filled Fermi sea yields

�
(1)
3N (q, ω; kf )

= 1

2

∑
12

〈�q �h1 �h2; ss1s2; t t1t2|V̄3N |�q �h1 �h2; ss1s2; t t1t2〉n1n2,

(10)

where V̄3N is the fully antisymmetrized three-body interaction.
In the present work we consider only the leading-order

N2LO chiral three-nucleon force, which has three terms
proportional to the low-energy constants c1, c3, c4, cD , and cE .
The two-pion exchange component has the momentum-space
representation:

V
(2π)

3N =
∑

i �=j �=k

g2
A

8f 4
π

�σi · �qi �σj · �qj( �qi
2 + m2

π

)( �qj
2 + m2

π

)F
αβ
ijk τ

α
i τ

β
j , (11)

where gA = 1.29, fπ = 92.4 MeV, mπ = 138 MeV, and �qi is
the difference between the final and initial momenta of nucleon
i. The isospin tensor

F
αβ
ijk = δαβ

( − 4c1m
2
π + 2c3 �qi · �qj

) + c4ε
αβγ τ

γ
k �σk · (�qi × �qj )

(12)

results in two terms with the isospin structure �τi · �τj and one
term proportional to �τk · (�τi × �τj ). The one-pion exchange
three-nucleon interaction is proportional to the low-energy
constant cD and given by

V
(1π)

3N = −
∑

i �=j �=k

gAcD

8f 4
π �χ

�σj · �qj

�qj
2 + m2

π

�σi · �qj �τi · �τj , (13)

and finally the chiral three-nucleon contact interaction is
proportional to the low-energy constant cE :

V
(ct)

3N =
∑

i �=j �=k

cE

2f 4
π �χ

�τi · �τj , (14)

where �χ = 700 MeV sets the naturalness scale.
In the following, we will employ values of the low-

energy constants c1 = −0.81 GeV−1, c3 = −3.2 GeV−1, and
c4 = 5.4 GeV−1 for the two-pion exchange three-nucleon
force, which can be constrained by nucleon-nucleon elastic
scattering phase shifts [26]. The low-energy constants cD and
cE must be fit to nuclear systems with A � 3. We employ
the values cD = −0.20 and cE = −0.205 extracted from a
fit [27] to the binding energies of A = 3 nuclei and the half-life
of 3H. In fact, the relevant dimensionful low-energy con-
stants are CD = cD/�χ and CE = cE/�χ with values CD �
CE � −0.3 GeV−1.

In Fig. 2 we show the diagrammatic contributions to the
nucleon self-energy arising from the leading-order chiral three-
nucleon force. The direct Hartree diagrams, labeled as (a) and
(b) in Fig. 2, of the chiral two-pion exchange three-nucleon
force are non-vanishing only for the terms proportional to the
low-energy constants c1 and c3. The sum of these two diagrams
gives

U (q, kf ) = g2
Am6

π

(2πfπ )4

{
14(c3 − c1)u4 + (3c1 − 2c3)u2 − 4c3u

6 + (12c1 − 10c3)u3[arctan 2u + arctan(u + x) + arctan(u − x)]

+
[
c3

2
(1 + 9u2) − 3c1

4
(1 + 8u2)

]
ln(1 + 4u2) + u3

x
[3c3 − 4c1 + 2(c1 − c3)(x2 − u2)] ln

1 + (u + x)2

1 + (u − x)2

}
, (15)

where u = kf /mπ and x = q/mπ .
The Fock diagrams, labeled as (c) and (d) in Fig. 2 are nonvanishing for all terms in the two-pion exchange three-nucleon

force:

U (q, kf ) = g2
Am6

π

(4πfπ )4x2

{
3c1H

2(x, u) +
(

c3

2
− c4

)
G2

S(x, u) + (c3 + c4)G2
T (x, u) +

∫ u

0
dξ

[
6c1H (ξ, u)

∂H (ξ, x)

∂x

+ (c3 − 2c4)GS(ξ, u)
∂GS(ξ, x)

∂x
+ 2(c3 + c4)GT (ξ, u)

∂GT (ξ, x)

∂x

]}
, (16)

with the auxiliary functions:

H (x, u) = u(1 + x2 + u2) − 1

4x
[1 + (u + x)2][1 + (u − x)2] ln

1 + (u + x)2

1 + (u − x)2
, (17)

GS(x, u) = 4ux

3
(2u2 − 3) + 4x[arctan(u + x) + arctan(u − x)] + (x2 − u2 − 1) ln

1 + (u + x)2

1 + (u − x)2
, (18)

GT (x, u) = ux

6
(8u2 + 3x2) − u

2x
(1 + u2)2 + 1

8

[
(1 + u2)3

x2
− x4 + (1 − 3u2)(1 + u2 − x2)

]
ln

1 + (u + x)2

1 + (u − x)2
. (19)
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(a) (b) (c) (d) (e) (f) (g)

FIG. 2. Diagrammatic contributions from the N2LO chiral three-nucleon force to the optical potential at first order in perturbation theory.
The large dots represent vertices proportional to the low-energy constants c1, c3, c4, cD, and cE , while the short double-lines indicate a medium
insertion −2πδ(k0)θ (kf − |�k|). The external line can be either a hole or particle state. Reflected diagrams of (d) and (e) are not shown.

As shown in Sec. III, the sum of the Hartree and Fock contributions from the two-pion exchange three-nucleon force gives rise
to a significantly repulsive mean field. The Hartree term is approximately 75% larger in magnitude and of opposite sign as the
attractive Fock term.

The contribution to the single-particle potential arising from the one-pion exchange three-nucleon force, proportional to cD ,
is given by

U (q, kf ) = gAcDm6
π

(2πfπ )4�χ

{
u6 − 7u4

4
+ u2

8
− 1 + 12u2

32
ln(1 + 4u2) + u3[arctan 2u + arctan(u + x) + arctan(u − x)]

+ u3

4x
(x2 − u2 − 1) ln

1 + (u + x)2

1 + (u − x)2

}
, (20)

which depends very weakly on the momentum q and is
attractive for cD < 0. The first-order contribution from the
N2LO contact interaction is independent of the external
momentum and has the form

U (q, kf ) = − cEk6
f

4π4f 4
π �χ

, (21)

which is of course repulsive for cE < 0. As we will find
in Sec. III, together V 1π

3N and V ct
3N provide a nearly constant

repulsive mean field.
The above analytical expressions result from an exact

calculation of the Hartree-Fock contribution to the nuclear
mean field. To include second-order corrections from three-
nucleon forces, we compute the expressions in Eqs. (5)
and (8) using a density-dependent two-body effective inter-
action [28–30].

III. RESULTS

In the present section we employ the N3LO chiral two-body
interaction of Ref. [26] together with the N2LO chiral three-
body interaction with low-energy constants given in Sec. II to
compute the contributions to the nuclear optical potential up
to second order in perturbation theory. In addition we perform
calculations of the single-particle energy also for hole states
with q < kf . We are particularly interested in comparisons of
our microscopic optical potential to local phenomenological
potentials and in the effects from three-nucleon forces, which
until now have been treated only approximately in several
complementary studies [21,25].

In Fig. 3 we plot the real part of the on-shell self-energy
[ω = q2/(2MN )] as a function of momentum and density.
The advantage in using the free-particle spectrum is that

various general identities, such as the Hugenholtz–Van-Hove
and Luttinger theorems [33,34]

k2
f

2MN

+ U (kf , kf ) = Ē(kf ) + kf

3

∂Ē(kf )

∂kf

,

(22)
W (q, kf ) = C |kf − q|(kf − q) + · · ·

are automatically fulfilled when the relevant quantities
are computed to a particular order in perturbation theory.
The thick solid line denotes the Hartree-Fock contribution
from two-body forces, and the vertical dotted lines show
the Fermi momentum corresponding to the densities ρ =
{0.2ρ0, 0.4ρ0, 0.6ρ0, 0.8ρ0, 0.9ρ0, ρ0} from the upper left
corner to the bottom right, where ρ0 � 0.16 fm−3. The
Hartree-Fock term has a nearly parabolic form, and when
summed with the free-particle kinetic energy q2/(2MN ) it can
be well approximated as [31]

εq = q2

2M∗ + �, (23)

where M∗ is the effective mass and the energy shift � is
independent of momentum. In Fig. 3 the momenta are taken
up to q = 2.5 fm−1, which, for all the densities considered
here, corresponds to possible two-particle relative momenta
well below the cutoff of � � 2.5 fm−1.

The Hartree-Fock three-body force contribution exhibits a
very weak momentum dependence that gives rise to only a
small decrease in the effective mass at the Fermi surface [32].
The strength of the mean field from chiral three-nucleon forces
increases nearly linearly with the density of the medium.
At saturation density it gives a repulsive contribution of
approximately 20 MeV. In Fig. 4 we plot separately the mean
fields associated with the different contributions V 2π

3N , V 1π
3N ,

and V ct
3N at nuclear matter saturation density, corresponding
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FIG. 3. (Color online) Contributions to the real part of the momentum- and density-dependent single-particle potential. The solid and
dashed-double-dotted lines are the first- and second-order contributions, respectively, from the N3LO chiral two-body potential, while the
dashed line is the first-order contribution from the N2LO chiral three-nucleon force. The vertical dotted line denotes the Fermi momentum, and
the dashed-dotted line is the second-order contribution with three-body forces. The results are shown for the case ω = q2/(2MN ).

to kf = 1.33 fm−1. The 2π -exchange chiral three-nucleon
force provides much of the observed repulsion from three-
body forces and accounts also for most of the momentum
dependence, which arises primarily for momenta above the

0 0.5 1 1.5 2 2.5
q (fm

-1
)

0

5

10

15

20

U
(q

,k
f) 

 (
M

eV
)

V
3N

(2π)
V

3N
(1π)

V
3N

(ct.)

ρ = ρ0

FIG. 4. (Color online) Hartree-Fock contributions to the real part
of the nuclear single-particle potential from chiral three nucleon
forces. The two-pion exchange, one-pion exchange, and contact
three-nucleon force contributions are evaluated from Eqs. (15)–(21)
and plotted separately as a function of the momentum.

Fermi surface. The 1π and contact interactions together
give rise to a small net repulsive mean field that is nearly
momentum independent. For nucleon-nucleus scattering, it
therefore appears that the low-energy constants cD and cE
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FIG. 5. (Color online) The real part of the momentum-dependent
single-particle potential at second order in perturbation theory from
chiral two- and three-nucleon forces. The potential is computed for a
medium of symmetric nuclear matter at densities ranging from 0.2ρ0

to ρ0.
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FIG. 6. (Color online) Density dependence of the real part of
the single-particle potential at zero momentum from second order
perturbation theory. Results for two-nucleon forces alone as well as
for the sum of two- and three-nucleon forces are shown.

are strongly correlated, with variations along the line

cE = α · cD + const (24)

giving nearly equivalent descriptions of the mean field, where
the constant of proportionality α � 0.21 ± 0.02 is weakly
dependent on momentum and density. Inspection of Eq. (21)

reveals that in the chiral limit only the leading k6
f term survives,

and the correlation coefficient would be α = gA/4 � 0.3.
The second-order contributions to the single-particle energy

are shown as the dashed-dotted lines in Fig. 3. Below the Fermi
surface, they have a momentum dependence that is nearly
opposite to that of the Hartree-Fock contribution, giving rise to
a quasiparticle effective mass at the Fermi surface that is close
to the mass in vacuum [31]. In Fig. 3 we plot also the second-
order contribution without three-nucleon forces, denoted by
the dashed-double-dotted line. Despite the fact that the three-
nucleon force gives rise to substantial repulsion at the Hartree-
Fock approximation, it appears that second-order effects are
quite small and produce additional attraction at both low and
high momenta.

The combined real part of the nucleon self-energy is shown
in Fig. 5 as a function of density and momentum. We note
that for low to moderate densities, the single-particle potential
for states with momenta q < kf is nearly constant, but in
the vicinity of the saturation density, three-nucleon forces at
second-order introduce additional attraction for low values
of q. The well depth at q = 0 as a function of density is
shown in Fig. 6 for two-nucleon forces alone as well as for
combined two- and three-body forces. Three-nucleon forces
become relevant at about 40% of nuclear matter saturation
density and result in a potential that is significantly nonlinear
in the density.

We plot in Fig. 7 the imaginary part of the nu-
cleon self-energy arising from the second-order perturbative
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FIG. 7. (Color online) The imaginary part of the momentum- and density-dependent optical potential arising from chiral two- and
three-nucleon forces iterated to second order. The vertical dotted line denotes the Fermi momentum.

024614-7



J. W. HOLT, N. KAISER, G. A. MILLER, AND W. WEISE PHYSICAL REVIEW C 88, 024614 (2013)

0 20 40 60 80 100
E (MeV)

-50

-40

-30

-20

-10

U
(E

,ρ
) (

M
eV

)

ρ = ρ0
ρ = 0.6 ρ0
ρ = 0.4 ρ
ρ = 0.2 ρ0

FIG. 8. (Color online) The real part of the energy-dependent
optical potential at second order in perturbation theory from chiral
two- and three-nucleon forces for several values of the nuclear density.

contributions (both with and without three-nucleon forces)
as a function of momentum and density. In agreement
with Luttinger’s theorem [34] the imaginary part vanishes
quadratically in the vicinity of the Fermi surface above and
below kf for both two- and three-nucleon force contributions.
Omitting the chiral three-body force, we find that the imaginary
part is approximately inversion-symmetric about the Fermi
momentum, W (q, kf ) � −W (2kf − q, kf ), a property which
is often assumed in the dispersion optical model formalism
[35]. This feature is, however, modified with the inclusion of
three-nucleon forces, which provide an attractive contribution
at both very low and very high momenta.

The real and imaginary parts of the nuclear optical potential
are obtained by solving the self-consistent equation for the
momentum q(E) as a function of the energy [36–38]:

E(q) = q2

2MN

+ Re �(q,E(q); kf ),

U (E, ρ) = Re �(q(E), E; kf ), (25)

W (E, ρ) =
(

1 + MN

q

∂U

∂q

)−1

Im �(q(E), E; kf ).

Such a prescription reduces the second-order contributions due
to the larger energy difference between particle and hole states
in the energy denominators. In solving for the self-consistent
energies, we employ the effective mass plus energy shift
parametrization in Eq. (23). The resulting real and imaginary
parts of the optical potential are shown in Figs. 8 and 9 for
several nuclear densities as a function of the energy E. We
have restricted the presentation to positive energies E > 0,
which start from a value already higher than the Fermi energy.
The well depth of the real potential for a scattering state at
zero incident energy is approximately 50 MeV, which is in
very good agreement with the phenomenological depth of
50–55 MeV, but the energy dependence is slightly weaker
than that of phenomenological potentials [3].

The overall strength of the imaginary potential at nuclear
matter saturation density for an intermediate scattering energy
of E � 100 MeV is approximately 18 MeV, which would seem
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FIG. 9. (Color online) The imaginary part of the energy-
dependent optical potential at second order in perturbation theory
from chiral two- and three-nucleon forces for several values of the
nuclear density.

too large compared to the empirical value, |W | � 10–12 MeV
[3]. This large magnitude of the imaginary part of the optical
potential is a feature shared by many microscopic calculations.
Already second-order one-pion exchange gives rise to quan-
titatively similar results (see Fig. 6 in Ref. [20]). One should
recall, however, that the phenomenological absorptive strength
|W | is reduced for finite nuclei, which have a characteristic
gap in the single-particle energy spectrum around the Fermi
energy. The nuclear matter calculation does not feature such
a gap at the Fermi surface so that there is an increased phase
space open for absorptive processes, leading to an overestimate
of |W |.

IV. CONCLUSIONS

We have performed a microscopic calculation of the
on-shell self-energy of a nucleon in a medium of isospin-
symmetric nuclear matter at uniform density ρ up to second
order in many-body perturbation theory. The starting point is
a realistic N3LO chiral two-nucleon potential supplemented
with the N2LO chiral three-nucleon force. The first- and
second-order contributions from two-body forces are attrac-
tive, but below the Fermi momentum they have an opposite
dependence on the momentum. The N2LO chiral three-body
force is found to provide substantial repulsion that grows
slowly with momentum and nearly linearly with the density.
Summing up all of these contributions, the resulting real
part of the microscopic optical potential agrees qualitatively
with the depth of phenomenological optical potentials. The
absorptive strength of the imaginary part of the potential
calculated in nuclear matter is considerably larger than the
empirical one deduced for finite nuclei. This suggests that
the inclusion of an energy gap at the Fermi surface may
be necessary in order to achieve a successful description of
nucleon-nucleus scattering at low to intermediate energies. In
the future we plan to extend our calculations to finite nuclei
and isospin-asymmetric nuclear matter that will be important
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to describe neutron-capture cross sections on neutron-rich
isotopes.
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APPENDIX: NUCLEAR OPTICAL POTENTIAL FROM
SECOND-ORDER SCALAR-ISOSCALAR BOSON

EXCHANGE

As a benchmark for our involved numerical calculations of
the nuclear mean field at second order in perturbation theory,
we derive exact semianalytical expressions for the on-shell
self-energy arising from scalar-isoscalar boson exchange.
The attractive central NN potential in momentum space is
given by

VC(Q) = − g2

m2 + Q2
, (A1)

with g the coupling constant, m the boson mass, and Q the
momentum transfer between the two nucleons.

The first-order contribution to the real part of the optical
potential for states both above (q > kf ) and below (q < kf )
the Fermi surface reads

U (q, kf )(1) = g2m

4π2

{
− arctan(u + x) − arctan(u − x)

+u − 8u3

3
+ 1 + u2 − x2

4x
ln

1 + (u + x)2

1 + (u − x)2

}
,

(A2)

with abbreviations u = kf /m and x = q/m.
Due to the presence of poles in Fermi sphere integrals, the

analytic expression of the second-order contributions cannot
be continued directly from below to above the Fermi surface.
We therefore distinguish the contributions to the optical poten-
tial for momenta q < kf and q > kf . Setting ω = q2/(2MN ),
the complex-valued mean field U (q, kf ) + i W (q, kf ) inside
the Fermi sphere q < kf is given by the sum of the following
contributions (in these expressions the superscript “H” and
“F ” refer to Hartree and Fock diagrams, and the subscript
denotes the number of medium insertions [19]):

U2(q, kf )(H ) = g4MN

8π3

{
arctan(u + x) + arctan(u − x) − u + x2 − u2 − 1

4x
ln

1 + (u + x)2

1 + (u − x)2

}
, (A3)

U2(q, kf )(F ) = g4MN

16π3

{∫ (u−x)/2

0
dξ 8ξ +

∫ (u+x)/2

(u−x)/2
dξ

1

x
[u2 − (2ξ − x)2]

}
arctan 2ξ − arctan ξ

1 + 2ξ 2
, (A4)

U3(q, kf )(H ) = g4MN

8π4

∫ 1

−1
dy

{[
uxy + 1

2
(u2 − x2y2) ln

u + xy

u − xy

]
s2

1 + s2
+

∫ s−xy

−xy

dξ

[
2uξ + (u2 − ξ 2) ln

u + ξ

u − ξ

]

× xy + ξ

[1 + (xy + ξ )2]2
+ 1

x

∫ u

0
dξ

ξ 2σ 2

1 + σ 2
ln

|x + ξy|
|x − ξy|

}
, (A5)

with auxiliary functions s = xy +
√

u2 − x2 + x2y2 and σ = ξy +
√

u2 − ξ 2 + ξ 2y2:

U3(q, kf )(F ) = g4MN

16π4

∫ 1

−1
dy

{ ∫ u

0
dξ

ξ 2

xR
ln(1 + σ 2) ln

|xR + (x2 − ξ 2 − 1)yξ |
|xR + (1 + ξ 2 − x2)yξ |

−
∫ 1

−1
dz

yz θ (y2 + z2 − 1)

4|yz|
√

y2 + z2 − 1
ln(1 + s2) ln(1 + t2)

}
, (A6)

with auxiliary functions t = xz + √
u2 − x2 + x2z2 and R =

√
(1 + x2 − ξ 2)2 + 4ξ 2(1 − y2):

W2(q, kf )(H ) = g4MN

16π3

{
ln[1 + (u + x)2] + ln[1 + (u − x)2] − 2(1 + u2) + 2x2

3

+ 1 + u2 − x2

x
[arctan(u + x) − arctan(u − x)]

}
(A7)

W2(q, kf )(F ) = g4MN

32π3

{∫ (u−x)/2

0
dξ 8ξ +

∫ (u+x)/2

(u−x)/2
dξ

1

x
[u2 − (2ξ − x)2]

}
ln(1 + 4ξ 2)

1 + 2ξ 2
, (A8)

W3(q, kf )(H ) = g4MN

16π3

∫ 1

−1
dy

{
(1 + 2u2 − 2x2y2)

s2

1 + s2
− ln(1 + s2) + 2xy

(
arctan s − s

1 + s2

)

+
∫ u

0
dξ

2ξ 2

x
θ (x − ξ |y|) σ 2

1 + σ 2

}
, (A9)
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W3(q, kf )(F ) = g4MN

16π3

∫ 1

−1
dy

{
−

∫ 1

−1
dz ln(1 + s2) ln(1 + t2)

θ (1 − y2 − z2)

4π
√

1 − y2 − z2
−

∫ u

0
dξ

ξ 2

xR
θ (x − ξ |y|) ln(1 + σ 2)

}
,

(A10)

W4(q, kf )(H ) = g4MN

8π3

{
2x2

3
− 2u2 − 1

2
− ln(1 + 4x2) + 4x2 − 3

4x
arctan 2x

+
∫ 1

−1
dy

[
1 + u2 − x2y2

1 + s2
+ 2xy

(
s

1 + s2
− arctan s

)
+ ln(1 + s2)

]}
, (A11)

W4(q, kf )(F ) = g4MN

16π3

∫ 1

−1
dy

∫ u

0
dξ

ξ 2

xR

[
θ (x − ξ |y|)θ (ξ − x) ln(1 + σ 2) + θ (x − ξ ) ln

(
1 + σ 2

x

)]
, (A12)

with σx = ξy +
√

u2 − x2 + ξ 2y2.
Similarly, the second-order contributions to U (q, kf ) + i W (q, kf ) for momenta outside the Fermi sphere q > kf are

given by

U2(q, kf )(H ) = g4MN

8π3

{
arctan(u + x) − arctan(x − u) − u + x2 − u2 − 1

4x
ln

1 + (u + x)2

1 + (u − x)2

}
, (A13)

U2(q, kf )(F ) = g4MN

16π3x

∫ (u+x)/2

(x−u)/2
dξ [u2 − (2ξ − x)2]

arctan 2ξ − arctan ξ

1 + 2ξ 2
, (A14)

U3(q, kf )(H ) = g4MN

8π4

{∫ 1

ymin

dy

{[
uxy + 1

2
(u2 − x2y2) ln

u + xy

|u − xy|
]
Ay

[
s2

1 + s2

]

+
∫ s−xy

xy−s

dξ

[
2uξ + (u2 − ξ 2) ln

u + ξ

u − ξ

]
xy + ξ

[1 + (xy + ξ )2]2

}
+ 1

x

∫ 1

−1
dy

∫ u

0
dξ

ξ 2σ 2

1 + σ 2
ln

x + ξy

x − ξy

}
, (A15)

with ymin =
√

1 − u2/x2 and the antisymmetrization prescription Ay[f (y)] = f (y) − f (−y):

U3(q, kf )(F ) = g4MN

16π4

{
−

∫ 1

ymin

dy

∫ 1

ymin

dzAy[ln(1 + s2)]Az[ln(1 + t2)]
θ (y2 + z2 − 1)

4
√

y2 + z2 − 1
+

∫ 1

−1
dy

∫ u

0
dξ

ξ 2

xR

× ln(1 + σ 2) ln
xR + (x2 − ξ 2 − 1)yξ

xR + (1 + ξ 2 − x2)yξ

}
, (A16)

W2(q, kf )(H ) = g4MN

16π3

{
ln

1 + (u + x)2

1 + (u − x)2
− 2u

3x
(3 + 2u2) + 1 + u2 − x2

x
[arctan(u + x) − arctan(x − u)]

}
, (A17)

W2(q, kf )(F ) = g4MN

32π3x

∫ (u+x)/2

(x−u)/2
dξ [u2 − (2ξ − x)2]

ln(1 + 4ξ 2)

1 + 2ξ 2
, (A18)

W34(q, kf )(H ) = g4MN

16π3

{
1

x

[
u

2
+ 4u3

3
− 1

4
(1 + 4u2) arctan 2u

]
+ θ (

√
2u − x)

∫ u/x

ymin

dy (x2y2 − u2)Ay

[
s2

1 + s2

]

+
∫ 1

ymin

dy Ay

[
− ln(1 + s2) + s2

1 + s2
(1 + u2 − x2y2) + 2xy

(
arctan s − s

1 + s2

)]}
, (A19)

W34(q, kf )(F ) = g4MN

16π3

{
θ (

√
2u − x)

4π

∫ 1

ymin

dy

∫ 1

ymin

dz
θ (1 − y2 − z2)√

1 − y2 − z2
Ay[ln(1 + s2)]Az[ln(1 + t2)]

−
∫ 1

−1
dy

∫ u

0
dξ

ξ 2

xR
ln(1 + σ 2)

}
. (A20)

Finally, we note that the total imaginary part W (0, kf ) evaluated at zero nucleon-momentum (q = 0) can even be written in
closed analytical form:

W (0, kf ) = g4MN

16π3

{
π2

12
+ Li2(−1 − u2) − 2u2

1 + u2
+

[
2 + ln(2 + u2) − 1

2
ln(1 + u2)

]
ln(1 + u2)

}
, (A21)

where Li2(. . .) denotes the conventional dilogarithmic function. The behavior of W (0, kf ) at small densities is k4
f .
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