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Hauser-Feshbach calculations in deformed nuclei
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Hauser-Feshbach calculations are frequently done in deformed nuclei. Although modifications are made in the
level density to reflect the rotational bands for deformed nuclei, these calculations are in error if a conventional
Hauser-Feshbach code is used. A modification to the Hauser-Feshbach formalism is proposed. The new version
of the formalism was tried, both with K conserved and K mixed. It is found that even in the limit of K mixing
the results do not agree completely with the calculations using a spherical (conventional) Hauser-Feshbach code
with the same input. A formula frequently used to calculate the J dependence of level densities in deformed
nuclei is found to be in error.
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I. INTRODUCTION

Calculation of spectra and cross sections for reactions
proceeding under conditions such that the Bohr independence
hypothesis is valid were first carried out by Weisskopf [1,2].
This formalism assumed that the relative decay probabilities
of the compound nucleus were independent of the angular
momentum of the nucleus. Somewhat later, Wolfenstein [3]
and Hauser and Feshbach [4] extended the formula to include
the possibility that branching ratios vary with J , the spin of
the compound nucleus. The resulting form is

σab = π λ̄2

(2I1 + 1)(2I2 + 1)

∑
J,π

(2J + 1)

∑
α,β TaαTbβ∑

γ c Tcγ

. (1)

Here, σab is the cross section for the reaction A(a, b)B, where
a is the bombarding particle, A is the target, b is the emitted
particle, and B is the final nucleus. J is the total angular
momentum of the compound nucleus and π denotes the parity.
I1 is the spin of the target and I2 is the spin of the projectile. Taα

is the transmission coefficient for the entrance channel, α the
angular momentum in this channel, Tbβ is the transmission
coefficient in the exit channel, and β denotes the angular
momentum in the exit channel. λ̄ is the reduced wavelength
of the incident particle. Finally, the sum in the denominator
is over all possible (energetically available) exit channels,
with γ the associated angular momentum. Since there is no
sum over angular momentum projections of the total angular
momentum of the compound nucleus, it is obvious that the
formalism assumes that the branching ratio does not depend
on the projection. Thus, this formula has the assumption of
spherical symmetry “built in.”

This assumption is clearly inappropriate for a deformed
system. In a spherical odd-A nucleus, a 5/2 level is sixfold
degenerate, with states of Jz = −5/2, −3/2, −1/2, 1/2, 3/2,
and 5/2 all sharing the same energy. The corresponding
situation in a deformed nucleus would have the 5/2 level
split into a J = 5/2, K = 1/2, a J = 5/2, K = 3/2, and a
J = 5/2, K = 5/2 group. The K value is the spin projection
on the symmetry axis. Each of these three levels has a different
energy and each is twofold degenerate. Thus, an energy level in
an odd-A deformed nucleus is twofold degenerate. For even-A

deformed nuclei, all levels with K �= 0 are doubly degenerate,
while those with K = 0 are singly degenerate.

In addition to removing the (2J + 1) degeneracy, deforma-
tion has an additional effect on the level density. On each level
of spin J and spin projection K , a rotational band is built.
For J = 0, the states in the band are J = 2, 4, 6, 8, 10, . . .
with spacing proportional to J (J + 1). For larger J , the bands
have J values J + 1, J + 2, J + 3, . . . . For each band, the
excited levels in the band have the same K value as the level
which is the band head. The consequence of the deformation
is that the density of levels as a function of J increases more
rapidly at a given excitation energy than is the case for a
spherical nucleus [5]. Also, because of the bands, for a given
J the density of levels as a function of K at a given energy is
smallest for K = J and increases for smaller K . For large J ,
the ratio at a given energy can approach a factor of 10.

For a Hauser-Feshbach calculation in a spherical nucleus,
it is found that levels of the same J at approximately
the same excitation energy will have about the same cross
section, and that for levels with different J (where J � σ ,
the spin cutoff parameter) the population varies roughly as
(2J + 1). The modification of the level densities now gives
a dependence of the cross section on K as well as J . The
much higher level density for K � J compared to K ∼ J
makes the competition more severe for low K , making the
cross section per level larger for levels with K ∼ J than
K ∼ 0. The larger number of the latter type of level, however,
enhances the total cross section populating levels of K ∼ 0
relative to the total population of K ∼ J levels. Both of
these results are in conflict with the predictions of a spherical
Hauser-Feshbach code.

The modifications to Eq. (1) needed to deal with deformed
nuclei are straightforward. The primary sum must be extended
to K as well as J and π . Each transmission coefficient must
be replaced by the corresponding transmission coefficient
multiplied by the squares of the appropriate Clebsch-Gordan
coefficients. The revised Hauser-Feshbach equation then
becomes

σab = πλ-2

(2Iα + 1)

∑
JK�

∑
αβ τ�

aατ�
bβ∑

γ c τ�
cγ

. (2)
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In Eq. (2),

τ�
aα =

∑
JαKα

〈JαKαJ1K1|JK〉2T �′
αJαKα

. (3)

In this sum, J1 and K1 are the J and K values of the target,
Jα and Kα are the J and K of the projectile, and T �′

αJαKα

is the transmission coefficient for particle a in the entrance
channel with parity � if the target has positive parity in
the ground state and −� if the parity of the ground state
is −1. 〈JαKαJ1K1|JK〉 is the Clebsch-Gordan coefficient for
coupling the angular momentum Jα with Z projection Kα to
angular momentum J1 with projection K1 to give total angular
momentum J with projection K . Similarly,

τ�
bβ =

∑
JβKβ

〈JβKβJ2K2|JK〉2T �′′
βJβKβ

, (4)

where Jβ is the angular momentum of the outgoing particle and
Kβ is its spin projection. J2 is the angular momentum of the
final state and K2 its projection. The transmission coefficient
is in the β channel and has Jβ and Kβ as its spin and spin
projection, respectively. Finally �′′ is � if the parity of the
state in nucleus b is positive and −� if it is −1. Finally,

τ�
cγ =

∑
c

∑
γ

∑
Jγ Kγ

〈Jγ Kγ J2K2|JK〉2T �′′′
γ Jγ Kγ

. (5)

In this expression, c denotes an index including all exit
channels (particle type and energy), γ denotes the associated
angular momentum parameters of the final state. �′′′ will be
� if the parity of the final state is positive, otherwise it will be
−�. In both the expressions for τb and τc there is an implicit
delta function for the final state [in terms of the final energy,
J (J2 or J3), K (K2 or K3), and parity]. In practice, the delta
function will frequently be replaced by a level density. Note
that Eq. (2) is appropriate if the target is deformed. If the target
is spherical (leading to a deformed compound nucleus), then
the leading factor becomes πλ-2/(2Iα + 1)(2I1 + 1) in Eq. (2)
and the sum in the expansion for τaα must be extended to cover
a sum over the values for K1.

It is remarkable that these changes are analogous to the
changes in the Hauser-Feshbach equations introduced to deal
with isospin. Miller, et al. [6] measured (p, p′) and (p, α)
spectra and compared them with (α, α′) and (α, p) spectra,
with the targets chosen so that the same compound nucleus
was formed by the proton beams as by the alpha beam. The
authors determined the ratios [(p, p′)/(p, α)]/[(α, p)/(α, α′)].
The independence hypothesis would predict that this ratio
is 1. In fact, because of the change in branching ratio with J , the
Hauser-Feshbach calculations predicted that it would be about
1.2. The measured value was about 1.4. The authors interpreted
this enhancement as being due to isospin selection rules. A
paper [7] subsequently introduced a revised Hauser-Feshbach
formalism, which corresponded exactly to the changes just
described but with the spin projection replaced by the isospin
projection. A number of subsequent papers [8] have used this
formalism to infer evidence of partial mixing of isospin in
states before decay, and another paper [9] has shown that these
effects can be seen in some cases for neutron- or alpha-induced
reactions.

One question which was raised by the isospin treatment was
the issue of isospin mixing. It is clear that at very low energies
the level density is so small that mixing is minimal, i.e., the
mixing matrix element is much smaller than the separation of
the states which are mixing. As the energy increases,the mixing
would be expected to increase and the measurements done for
excitation energies about 20 MeV show that the mixing is
roughly 0.5. Approximately half of the higher isospin states
damp into lower isospin states before they decay. The mixing
is asymmetric, since the ratio of level densities is about 1:10
or higher with the largest fraction of the states having T =
T0 = (N − Z)/2 and a smaller number having T = T0 + 1.
At very high energies, the mixing will be suppressed by the
fact that the decay width becomes larger than the mixing
width.

A similar situation exists with respect to the J dependence
of mixing. The level density at a given energy first increases
with J and then drops once J exceeds σ , the spin cutoff
parameter. Thus, one would expect to find that mixing is largest
for J ∼ σ and would be smaller for smaller or larger J . To this
point, the tests for isospin mixing have not looked at either J
or excitation energy dependence.

Since the K mixing matrix elements are expected
to be about the same magnitude as the isospin mixing
matrix elements, it is likely that the mixing is energy
dependent. The present code allows for K mixing if
desired.

In analogy to the situation for isospin, it is likely that the
K mixing will vary with excitation energy and J . Because of
level density arguments, it is plausible that mixing for a given
energy and J may depend on K as well.

A similar code has been described by Charity [10]. He
applied the code to the analysis of evaporation spectra at about
100 MeV. Clearly, the issues involved at this energy are not the
same as those addressed here. At low energies, cross sections
can be measured for the population of individual states of
known J and K; this was not possible at 100 MeV. It is also
less likely that the compound states will live long enough for
K mixing to occur at the higher energies. Charity concluded
that for the systems he examined the only significant effect
was a change in the shape of the alpha emission spectrum
at low outgoing energy. This was caused by the change in
transmission with K for a given J .

II. CALCULATIONS

A new Hauser-Feshbach code has been written [11]. This
code differs from a conventional Hauser-Feshbach code in the
following ways:

(1) The level densities are input as functions of J , K , and π
for a given nucleus at a given energy rather than just J
and π .

(2) The transmission coefficients are input for a given channel
as functions of energy, J ′, K , and π rather than just J ′
and π and energy. J ′ is the total angular momentum in the
appropriate channel (= �
 + �s). The appropriate Clebsch-
Gordan coefficients are also included.

024613-2



HAUSER-FESHBACH CALCULATIONS IN DEFORMED NUCLEI PHYSICAL REVIEW C 88, 024613 (2013)

(3) The decay width is summed over J , K , and π .
(4) It can be assumed that K is conserved or mixed; J is

conserved.

This code is formulated in such a way that axial symmetry
is assumed, but nuclear level densities can be input which
are either spherical or deformed. This allows a calculation to
be made in which the nucleus reached by neutron decay is
deformed while the one reached by alpha decay is spherical.
Furthermore, a calculation could be made for the case
where a particular nucleus is deformed up to a particular
excitation energy and becomes spherical beyond this energy.
An additional possibility is to treat a nucleus which has
some deformed states embedded in a group of spherical
states at a given energy. The spherical Hauser-Feshbach
calculations were done using the Hauser-Feshbach code
described in [12].

A. Level densities

Level density refers to a density of levels as a function
of excitation energy, spin (= J ), and parity (π ) for a given
nucleus. In this paper, we will also specify the spin projection
on the symmetry axis (K). At low energies, there is usually
information on the excitation energy, J , K , and π of the
levels. These levels (called the resolved levels) are used
in each channel at low energies. As the energy increases,
some levels are known by excitation energy but J , K , or
π are not known. At even higher energies, the levels will
overlap. In the present calculations, the low-lying states which
have complete spectroscopic information are included in the
calculation as delta functions. Once the energy is increased
for a given nucleus so that spectroscopic information appears
incomplete, the level density is represented by an analytic
function. This region is called the “continuum,” even though
the lowest energies in this region have levels which strictly are
not overlapping.

Level densities are calculated in three steps. First
the “intrinsic” state density is calculated from the
expression

ρ(U ) =
√

π

12a1/4

exp(2
√

aU )

U 5/4
. (6)

In this expression, ρ(U ) is the total density of states at energy
U and a is the level density parameter. For a spherical nucleus,
it is assumed that the states have a Gaussian distribution in Jz,
which leads to a factor multiplying Eq. (6) of

1√
2π

1

σ
exp

[−J 2
z

2σ 2

]
, (7)

where σ 2 = 〈J 2
z 〉. The level density is obtained by differenti-

ation and becomes

ρL(U, J ) = 1√
2π

1

σ

(
J + 1

2

)
σ 2

exp

[
−(

J + 1
2

)2

2σ 2

]
ρ(U ). (8)

If we now calculate the density of states as a function of J , we
obtain

ρS(U, J ) = 1√
2π

1

σ 3
2

(
J + 1

2

)2

exp

[
−(

J + 1
2

)2

2σ 2

]
ρ(U ).

(9)
Note that, if this is integrated from J = 0 to infinity, we recover
ρ(U ). Finally, we can calculate the density of states as a
function of both J and Jz at a specific U by dividing the
above expansion by (2J + 1):

ρSz(U, J, Jz) = 1√
2π

1

σ 3

(
J + 1

2

)
exp

[
−

(
J + 1

2

)2

2σ 2

]
ρ(U ).

(10)

For a deformed nucleus, the notation is changed so that
Jz becomes K . Each level with specified J and K is doubly
degenerate (±K), unless K = 0, which makes the level singly
degenerate. We introduce the factors σ 2

‖ (= 〈K2〉 = I‖T
h̄2 ) and

σ 2
⊥ (= I⊥T

h̄2 ), where T is the nuclear temperature, I‖ is the
moment of inertia about an axis parallel to the axis of
symmetry, and I⊥ is the moment of inertia about an axis
perpendicular to the axis of symmetry. Thus, the intrinsic level
density is

ρLK (U, J,K) = 1√
2π

1

σ 2
⊥σ‖

(
J + 1

2

)
exp

[
−

(
J + 1

2

)2

2σ 2
⊥

]

× exp

[
−K2

(
1

2σ 2
‖

− 1

2σ 2
⊥

)]
ρ(U ). (11)

The final step is to construct a rotational band on each of the
levels given by Eq. (11). The final level density is then

ρ(U, J,K) = ρLK (U, J,K)R(J,K) (12)

= ρ(U )G(J )S(K)R(J,K), (13)

where ρ(U ) is the intrinsic state density at energy U ,

G(J ) = 1√
2π

1

σ 2
⊥σ‖

(J + 1/2) exp
−(J + 1/2)2

2σ 2
⊥

, (14)

and

S(K) = exp

[
−K2

(
1

2σ 2
‖

− 1

2σ 2
⊥

)]
, (15)

and R(J,K) is approximately

R(J,K) ≈ [(J + 1)2 − K2]

(2J + 1)
. (16)

R(J,K) is the enhancement factor for the levels added in
rotational bands. It is the factor by which the intrinsic deformed
level density of levels with spin J and spin projection K must
be multiplied by to give the total level density of levels with
spin J and projection K .

If K = 0, only alternate J values appear in the rotational
band. Thus, if K = 0,

R(J, 0) = J 2 + 4J + 2

2(2J + 1)
. (17)

024613-3



S. M. GRIMES PHYSICAL REVIEW C 88, 024613 (2013)

The approximation made in obtaining Eq. (16) is that the spin
cutoff factors are the same at the energy of the band head or at
the energy of the state in the band.

It can be seen that the R(J,K) factor goes to 1 if J = K .
This is expected because rotational bands are built on band
heads with J and K such that the added levels have the same
K but have J values larger than the band head J . Thus, no
levels will be added with K = J . This form predicts that the
density of levels for a given J as a function of K increases
as K decreases. The total enhancement of the level density is
approximately σ⊥/3 due to the added levels and (

√
π/2)σ⊥

due to the breaking of the K degeneracy. This results in a
multiplication of the state density by about σ⊥/3 and the level
density by about σ 2

⊥(5/12).
The present analytical form is based on two steps. The

intrinsic state density is calculated in a deformed basis. This
makes it a function of K as well as J [the Jz is degenerate
for a spherical well but leaves the total number of states
the same (unitarity)]. On the other hand, the level density
increases substantially because of the removal of the K
degeneracy. Each level of spin J (spherical basis) becomes
J + 1

2 (odd A) or J + 1 (even A) levels in the deformed basis.
As a last step, rotational bands are added. To check the R
factors, a calculation was done which iteratively added the
rotational bands. This showed the R(J,K) factors are accurate
to about 2%.

It should be noted that the behavior observed here is not
consistent with a widely used formula proposed by Bohr and
Mottelson [13] and Huizenga et al. [14]. They conclude that for
deformed nuclei the level density formula is Eq. (8) multiplied
by a factor of σ 2 with the σ 2 in the exponential replaced by
σ 2

⊥. This would mean that the relative distribution of levels as
a function of J is unchanged. It also leads to a multiplication
factor enhancing the level density over the spherical case which
is about a factor of 2 larger than the present result [σ 2

⊥ compared
to ((5/12)σ 2

⊥].
A further problem with the previously used formula is that

it predicts the K distribution for a given J at a specified energy
is the same for 0 � K � J . The present numerical results and
the approximate expression both give differences of up to a
factor of 5 as K varies from 0 to J .

It is interesting that the revised form for the level density in
deformed nuclei helps resolve a puzzle. Komarov et al. [15]
note that deformed nuclei are predicted to become spherical
at high energies (U >∼ 50 MeV). If the level density for a
deformed nucleus is enhanced by σ 2, the authors argue that
a substantial drop in the level density should occur when the
nucleus becomes spherical. No such drop or even leveling
out was found in evaporation spectra examined in Ref. [15]. It
was subsequently noted [5] that a Hauser-Feshbach calculation
essentially populates a given channel based on the state density
rather than the level density. This would reduce the factor
from σ 2 to

√
2/πσ for the Bohr-Mottelson expression. This

makes the expected factor more like 7–10 rather than 50–
100. The present results indicate the factor is about σ⊥/3.
This lowers that ratio to 2–4. If the transition occurs over
5–10 MeV, this change could more easily disappear in the
shape of an evaporation spectrum and could be more easily
lost than the factor of σ 2 originally expected.

The fact that the present level density form disagrees
with that proposed in Refs. [13] and [14] has additional
consequences. The previous form has frequently been used
to infer level density parameters at the binding energy. If the
interaction of the neutrons with the nucleus is limited to s
waves, the levels populated will be 1

2
+

for the spin and parity
if the target was even-Z–even-N and J = JT ± 1

2 if either Z or
N or both are odd, where JT is the J of the target. Assuming
both parities are equally likely, the total level density for a
spherical nucleus will be

ρT (U ) =
2ρ

(
U, 1

2

)∑∞
J= 1

2
G1(J )

G1( 1
2 )

(18)

if the target is even-even and

ρT (U ) = 2
(
ρ
(
U, JT − 1

2

) + ρ
(
U, JT + 1

2

))
G1

(
JT − 1

2

) + G1
(
JT + 1

2

) ×
∞∑

J=0

G1(J )

(19)
where G1(J ) = (J + 1

2 ) exp
[−(J + 1

2 )2/2σ 2
]
. The sum over

G1(J ) in Eqs. (18) and (19) yields σ 2. Here the ρT is the
total level density. If the deformed level density is simply
σ 2

⊥ρs(U, J ), the σ 2
⊥ factors cancel out, leaving Eqs. (18) and

(19) the same if σ 2 is replaced by σ 2
⊥.

The present results would require that Eq. (18) be modified
to

ρT (U ) = 2ρ
(
U, 1

2

)∑
J G(J )

∑
K R(J,K)S(K)

G
(

1
2

)
R

(
1
2 , 1

2

)
S
(

1
2

) (20)

for a deformed even-Z–even-N target and

ρT (U ) = A × B

C
, (21)

where

A = 2
[
ρ

(
U, J − 1

2

) + ρ
(
U, J + 1

2

)]
,

B =
∑

J

G(J )
∑
K

R(J,K)S(K),

and

C = G

(
J − 1

2

)∑
K

[
R

(
J − 1

2
,K

)
S(K)

]

+ G

(
J + 1

2

) ∑
K

[
R

(
J + 1

2
,K

)
S(K)

]

if N and Z are not both even. These equations assume that
K is mixed at the binding energy for Eq. (21). Comparison
of Eqs. (18) and (20) with Eqs. (19) and (21) shows a
systematic distortion of the correction for low-JT relative to
high-JT results from the use of the Bohr-Mottelson equation.
Level density parameters in Ref. [14] have been obtained
using Eqs. (18) and (19) rather than Eqs. (20) and (21). The
results of the present paper are insensitive to this problem.
Calculations using the Bohr-Mottelson level density form
and those using the current numerically generated form gave
similar correction factors (within 10%) for the deformed versus
spherical Hauser-Feshbach calculations.

Even though the difference between the spherical and
deformed Hauser-Feshbach code was similar for the two level
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density approaches, the cross sections for resolved levels are
enhanced about a factor of 2 to 3 using the present level
density formulation over that of Bohr and Mottelson for the
same level density parameters. This occurs with both Hauser-
Feshbach codes. The enhancement comes at the expense of
the continuum.

Because of the difference in level density between the
Bohr-Mottelson form and the present results for the same level
density parameter, it is best to correct the results of level density
compilations based on level counting to the present form if they
are used in a K-dependent Hauser-Feshbach code.

Level density parameters used in the calculations reported
here were taken from Rohr [16]. In addition to a level
density (continuum), specific levels were included. Various
calculations included between 10 and 15 low-lying levels for
the various individual nuclei.

B. Transmission coefficients

Transmission coefficients are obtained through calculations
based on optical models. The most common procedure is to
subject elastic scattering data to an analysis based on spherical
optical model calculations. A comparable analysis can also be
done with a coupled-channel code which specifically couples
in certain strongly coupled excited states and solves the
resulting coupled equations. Comparisons have been made
for protons [17,18] and neutrons [19,20] of the changes in
transmission coefficients caused by the use of a coupled-
channel code compared to a spherical code. At high energies,
inclusion of the coupled channels reduces the transmission
coefficients by about 5% to 10%. This is due to the fact that flux
is removed in populating the coupled excited states. At energies
near the centripetal barrier (neutrons) or the centripetal plus
Coulomb barrier (protons) the two calculations are equal.
Below this energy the coupled channel transmission is higher
than that for a spherical calculation. This is apparently due to
the fact that population of an excited state when the particle
has an energy at or below the barrier makes it more difficult
for the particle to emerge. Thus, the channel coupling makes
it more probable that a compound nucleus is formed rather
than less likely. Although the best choice for a deformed
nucleus would seem to be to use a transmission coefficient
set generated with a couple channel code, the above analysis
suggests that this will not be true if the optical parameters
were generated through fits with a spherical code. Since the
present optical parameters were generated with a spherical
code, it is more reasonable to use a spherical code to calculate
the transmission coefficients. In cases where cross sections for
deformed nuclei are being fit, there is an obvious superiority
to using a coupled channel code to get both transmission
coefficients and the direct contribution, but this should utilize
an optical potential derived from fits to the elastic cross section
with a coupled-channel code.

The gamma-ray channel was also included in the cal-
culations. Gamma-ray transmission coefficients were based
on the parameters of Kopecky and Uhl [21]. This allowed
for E1, M1, and E2 decay branches. Proton and neutron
transmission coefficients were calculated with the parameters
proposed by Koning and Delaroche [22], while the potential

of McFadden and Satchler [23] was used for alpha particles.
The deuteron, triton, and 3He channels were not included in
these calculations.

C. Specific calculations

Specific calculations were done for the n + 168Er, α + 22Ne,
n + 25Mg, n + 182W, and n + 183W reactions. Table I shows
the results for the 168Er + n reaction. The numbers quoted
indicate the ratio of the Hauser-Feshbach calculation of a
specified cross section with a spherical (conventional) code
divided by the cross section calculated with the deformed
Hauser-Feshbach code. An entry of 1.7, for example, indicates
that the spherical Hauser-Feshbach code gave a value 70%
larger than the deformed Hauser-Feshbach code. The values
labeled (n, n′) include the first fifteen levels in 168Er; the values
of J , K , and parity are listed for these levels, A strong tendency
for the spherical code to overpredict cross sections for large J
is seen, with the largest ratios listed for the fourth level (J = 6,
K = 0, + ) and the seventh level (J = 8, K = 0, + ).

The lowest ratios, indicating underprediction of the cross
section by the spherical code, come for the first and twelfth
states, both of which are (J = 0, K = 0, + ). Note also the
difference for the cross section for levels 3, 8, and 10. These are
all J = 4, but have K and parity of 0+, 2+, and 4− respectively.
A similar difference is seen between the fourth, thirteenth, and
fifteenth levels, which have J = 6, K = 0+; J = 6, K = 2+;
and J = 6 K = 4−, respectively. Although there is a general
tendency for cross sections to depend on K as well as J , it is
particularly obvious that cross sections for K = 0 are smaller
than for K �= 0.

Cross sections for (n, α), (n, p) (n, 2n), (n, 3n), and (n, γ )
are also compared in Table I. Since these involve a number of
final levels, they show a tendency to be closer to unity than the
ratios for cross sections to single levels. The (n, γ ) reaction
ratio below 1 MeV neutron bombarding energy approaches 1
as En → 0, because it becomes the largest cross section. If
the largest cross section has a change of 20% in its sum, then
the cross section itself changes less, because the change in the
denominator largely compensates the change in the numerator.
Similarly, the (n, 2n) and (n, 3n) cross section ratios deviate
from 1 by more near threshold than at energies high enough
that they were the dominant cross sections. This is due both to
the “denominator effect” described above and also the fact that
at higher energies more final levels are being summed over,
reducing the sensitivity to the spins of the levels in the first
1–2 MeV.

Table II presents similar information for the reactions
25Mg(n, n′) and 22Ne(α, n). In this case, the compound nucleus
is the same (26Mg) and the binding energies of a neutron and
an alpha particle in 26Mg are almost identical. Thus, a 5 MeV
(11 MeV) neutron produces essentially the same compound
nuclear excitation energy as a 5 MeV (11 MeV) alpha particle.
The cross-section ratios for the first ten levels in 25Mg are
shown, as well as their spin, K , and parity. Again, large J levels
have cross sections which are predicted to be too large by the
spherical Hauser-Feshbach code, while the J = 1/2 levels are
underpredicted. It is somewhat surprising that the ratios vary
considerably between the neutron-induced and alpha-induced
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TABLE I. Cross-section ratio values for n + 168Er.

Reaction Bombarding energy (MeV)

1 2 6 9 16

(n, α) 1.5 1.3 1.07
(n, p) 0.98 0.98 1.01
(n, 2n) 0.89 0.99
(n, 3n) 1.11
(n, γ ) 1.08 1.05 1.02 1.01 1.01

The following are for the lowest fifteen levels in 168Er:
(n, n′) J = 0 K = 0+ 0.53 0.39 0.33 0.29 0.23
(n, n′) J = 2 K = 0+ 2.34 1.80 1.58 1.37 1.11
(n, n′) J = 4 K = 0+ 3.33 2.68 2.59 2.33 1.91
(n, n′) J = 6 K = 0+ 3.69 2.83 3.17 3.14 2.65
(n, n′) J = 2 K = 2+ 0.8 0.75 0.63 0.52
(n, n′) J = 3 K = 2+ 1.05 0.96 0.86 0.71
(n, n′) J = 8 K = 0+ 2.22 3.7 3.83 3.08
(n, n′) J = 4 K = 2+ 1.23 1.18 1.08 0.90
(n, n′) J = 5 K = 2+ 1.44 1.37 1.29 1.09
(n, n′) J = 4 K = 4− 1.0 0.88 0.86 0.76
(n, n′) J = 5 K = 4− 0.87 1.06 1.06 0.90
(n, n′) J = 0 K = 0+ 0.4 0.29 0.29 0.24
(n, n′) J = 6 K = 2+ 1.42 1.5 1.46 1.26
(n, n′) J = 2 K = 0+ 1.81 1.53 1.39 1.13
(n, n′) J = 6 K = 4− 1.06 1.21 1.22 1.07

reactions at a given energy. This is due to the fact that the
alpha and 22Ne nucleus in its ground state both have zero
spin. Thus, only natural parity states are populated in 26Mg.
The neutron-induced reactions populated both natural and
unnatural parity states. A close examination of the calculation
shows that the differences in ratios for the same cross section
between the alpha-induced and neutron-induced reactions are

TABLE II. Cross-section ratios for the 26Mg system.

Reaction Bombarding energy (MeV)

n + 25Mg α + 22Ne

5 11 5 11

(x,α) 0.75 0.58 0.67 0.62
(x, p) 0.6 0.68 1.02 0.89
(x, n) 1.03 1.02 1.12 1.07
(x, 2n) 1.28 1.21
(x,γ ) 1.08 1.02 1.14 1.01

The following are the lowest ten levels in 25Mg:
(x, n) J = 5/2 K = 5/2+ 0.24 0.2 0.53 0.44
(x, n) J = 1/2 K = 1/2+ 0.12 0.12 0.35 0.25
(x, n) J = 3/2 K = 1/2+ 0.47 0.45 0.31 0.30
(x, n) J = 7/2 K = 5/2+ 0.88 0.52 0.71 0.29
(x, n) J = 5/2 K = 1/2+ 1.45 1.1 0.84 0.72
(x, n) J = 1/2 K = 1/2+ 0.11 0.12 0.48 0.32
(x, n) J = 7/2 K = 1/2+ 4.93 2.43 1.15 0.78
(x, n) J = 3/2 K = 3/2+ 0.54 0.45 0.29 0.37
(x, n) J = 9/2 K = 1/2+ 10.3 4.5 1.96 0.92
(x, n) J = 3/2 K = 3/2− 0.2 0.2 0.75 0.56

largely due to this parity selectivity in the alpha channel. A
further difference is primarily seen at energies below 12 MeV.
The distribution of strength as a function of J in the compound
nucleus is different in the two reactions at low energy. The
neutron brings in less angular momentum but is incident on
a 5/2+ ground state. At low energies, the average J in the
compound nucleus is slightly higher for the neutron channel,
but the two become more comparable above 10 MeV, with
the alpha entrance channel eventually overtaking the neutron
channel.

Results for 182W + n are shown in Table III. This target
is even-even so the results are similar to those for 168Er. In
particular, the tendency to overestimate cross sections for
larger J (6 and 8) with calculations from a conventional
Hauser-Feshbach code is evident. Large J levels with K �= 0
are not found in the lowest 10 levels, but note the substantial
difference between ratios for levels 7 and 8, which have J = 2,
K = 0 and J = 2, K = 2, respectively. The spherical code
predicts identical cross sections for these levels, while the
cross section predictions differ by about a factor of 2 with
the new code. The degeneracy ratio is, of course, a factor of
2. Cross sections for capture are slightly overestimated by
the spherical code. This reflects the fact that the degeneracy
of the entrance (and elastic exit) channel is 1 for both the
spherical and deformed calculations. Capture occurs to 1/2,
3/2, and 5/2 levels if E1, M1, and E2 gamma strength
functions are used. The degeneracy of the 1/2, 3/2, and
5/2 levels varies substantially in a spherical basis (2, 4, 6).
The K must be 1/2 for J = 1/2 levels; the degeneracy for
these levels is unchanged. 3/2 and 5/2 levels have degeneracy
of 4 and 6, respectively, in the spherical calculation and
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TABLE III. Cross-section ratio values for n + 182W.

Reaction Bombarding energy (MeV)

0.5 1 4 7 10 14

(n, α) 1.67 1.77 1.85 1.7 1.51 1.3
(n, p) 0.98 1.0 1.0 1.0
(n, 2n) 0.97
(nα, αn) 1.52
(n, γ ) 1.12 1.07 1.03 1.01

The following are the ten lowest levels of 182W :
(n, n′) J = 0 K = 0+ 0.56 0.52 0.36 0.30 0.27 0.24
(n, n′) J = 2 K = 0+ 2.12 2.21 1.25 1.42 1.26 1.14
(n, n′) J = 4 K = 0+ 3.25 3.44 2.84 2.3 2.15 1.96
(n, n′) J = 6 K = 0+ 3.56 3.75 3.16 2.93 2.71
(n, n′) J = 0 K = 0+ 0.377 0.322 0.273 0.24
(n, n′) J = 8 K = 0+ 3.6 3.87 3.59 3.58
(n, n′) J = 2 K = 0+ 1.68 1.45 1.28 1.14
(n, n′) J = 2 K = 2+ 0.75 0.67 0.59 0.54
(n, n′) J = 1 K = 1− 0.54 0.46 0.40 0.35
(n, n′) J = 3 K = 2+ 0.99 0.89 0.8 0.73

2 (K = 1/2, 3/2, 5/2) in the deformed calculation. The role
of 5/2 levels is small, since they require E2 emission. The
net effect is to reduce the gamma width. This overestimate is
reduced as E drops below 0.5 MeV, because the gamma width
eventually dominates, causing changes in the denominator
which approximately cancel those in the numerator. Similar
arguments explain why the ratio for (n, 2n) is so close to 1 at
14 MeV.

Table IV lists the corresponding results for neutron bom-
bardment of 183W; as in the other cases, the (n, n′) cross
sections are underestimated by the spherical code if J is small
and overestimated if J is large. In this case, the (n, γ ) cross
section is closer to being the same with the two codes. This
is because the target has J = 1/2, which has no change in
degeneracy. Capture proceeds through transitions to J = 0,
1, 2, or 3 levels. These have degeneracies of 1, 3, 5, or 7 in
a spherical calculation. The degeneracies will all be 2 in the
deformed cases. Thus, some have increased width and some
decreased width, making the net change small. For energies
below 0.5 MeV, the ratio becomes very close to 1.

D. Related questions

The calculations tabulated in Sec. II C show some consistent
tendencies. In each system, the cross sections for population of
specific final levels are affected most. Cross sections for states
of large J are reduced and those of small J are increased. Cross
sections to particular channels [e.g., (n, p)] are also changed,
but by smaller amounts. An effort was made to see if some of
these changes could be attributed to other effects:

(1) Incomplete gamma strength functions
The present calculations utilized E1, M1, and E2 gamma-
ray strength functions. In a spherical Hauser-Feshbach
calculation, this leaves a small number of levels without a
decay channel (mostly in odd-A final nuclei). If the ground
state is 7/2− and the next level is 1/2− then this level

cannot decay (a transition of �
 = 3 would be needed).
Approximately 4% of the final levels were affected. Using
the deformed Hauser-Feshbach code, this number increased
to about 6%. As an example, a 3− state in an even-even
nucleus is often the lowest negative parity state. If the next
lowest state is 2+, an E1 decay can occur. For the deformed
calculation, if the 2+ has K = 0 and the 3− has K = 3,
E1 decay is not allowed and the lowest order is E3. This
change is too small to explain the calculated differences.
The ambiguity would be eliminated if one included the
specific relative branching of each of the low-lying levels.

(2) Level density form
The calculations reported here were done with level
densities generated with the level density parameters a and
δ in a spherical basis. The state density and level density
were then converted to a deformed basis and rotational
bands were then added (Method A). An alternative would
be to use the Bohr and Mottelson formula relating the
deformed level density ρD(U, J ) to the spherical level
density ρSp with ρD(U, J ) = σ 2

⊥ρSp(U, J ). This was called
Method B. Finally, an analytic approximation to Method A
was developed as described in Sec. II B (Method C). Use of
the same a and δ with Method B gave a consistent reduction
of the resolved level cross sections by 45 to 55%. It also
enhanced the neutron continuum by 2%–3% and reduced
the charged particle continuum by about 1%–2%. Use of
Method C produced very similar results to Method A. None
of these methods for obtaining level density can make
the deformed Hauser-Feshbach agree with the spherical
Hauser-Feshbach. An additional difference between the
Bohr-Mottelson and present level density form is that the
J and K distribution of levels populated in the continuum
is changed. This may be important in calculating cross
sections like (n, 2n) just above threshold or in calculating
particle emission cross sections in competition with fission
(this channel is not yet in the present code).
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TABLE IV. Cross-section ratio values for n + 183W.

Reaction Bombarding energy (MeV)

0.6 1 4 7 14

(n, α) 1.9 2.05 2.2 2.0 1.46
(n, p) 1.0 1.0
(n, 2n) 1.07 1.01
(n, αn + nα) 1.52 1.44
(n, γ ) 1.1 1.04 1.015 1.01

The following are the twelve lowest levels of 183W :
(n, n′) J = 1/2 K = 1/2− 0.18 0.19 0.18 0.16 0.13
(n, n′) J = 3/2 K = 1/2− 0.68 0.71 0.59 0.47 0.37
(n, n′) J = 5/2 K = 1/2− 1.14 1.18 1.0 0.81 0.64
(n, n′) J = 7/2 K = 1/2− 1.6 1.61 1.38 1.12 0.88
(n, n′) J = 3/2 K = 3/2− 0.5 0.61 0.54 0.46 0.38
(n, n′) J = 5/2 K = 3/2− 0.94 1.0 0.9 0.75 0.61
(n, n′) J = 9/2 K = 1/2− 1.77 1.78 1.83 1.48 1.13
(n, n′) J = 11/2 K = 11/2+ 0.56 0.65 1.05 0.94 0.83
(n, n′) J = 7/2 K = 3/2− 1.32 1.42 1.29 1.05 0.84
(n, n′) J = 7/2 K = 7/2− 0.87 1.02 0.97 0.52 0.69
(n, n′) J = 11/2 K = 1/2− 2.15 2.1 2.06 1.70 1.37
(n, n′) J = 13/2 K = 11/2+ 0.73 0.8 1.17 1.13 1.01

(3) Level density parameters
Changes in a and δ can change Hauser-Feshbach cross
sections. Changes of 5% in a caused changes in the relative
cross section of the resolved levels to the cross section to
the continuum of about 20%. It did not change the relative
cross sections to the resolved levels in a manner similar to
the difference between the deformed and spherical Hauser-
Feshbach.

(4) Parity ratio changes
Hauser-Feshbach calculations are usually done with level
density functions for the continuum which have equal
densities for positive and negative parities. A paper by Al
Quraishi et al. [24] has proposed a function for the parity
ratio as a function of energy for the level density. If this
function is put into the deformed and spherical Hauser-
Feshbach calculations, it is found that cross sections for
resolved levels change by as much as 10%, but the ratio
between the spherical and deformed Hauser-Feshbach
changed by 5% or less for each level. The effects are larger
for the A = 26 calculations than for these for heavy nuclei.
The ambiguity could be eliminated if the level spin and
parities are known and input for levels at higher excitation
energies. The best solution would be to use level density
values derived from microscopic calculations which have
appropriate parity ratios.

(5) Level density: collective states
The calculations described in Sec. II C are based on a
level density constructed from deformed levels on which
rotational bans are built. To test if other collective levels
might change these results, level densities were constructed
with 5% or 10% of the deformed levels assumed to have β
vibrational bands built on them instead of rotational bands.
Also, a calculation was done with the deformed basis level
density used but without the rotational bands. The first

change made very little difference in either the resolved
level or continuum cross section. The second enhanced the
resolved level cross sections but left the ratios only slightly
changed (∼3%–5%).

(6) Spin cutoff parameters
The calculations in Sec. II C assumed a rigid body moment
of inertia. Reducing the moment of inertia by 10%
enhanced the large J level cross sections and reduced the
small J resolved level cross sections. This is in the opposite
direction to the present changes. A corresponding increase
in the moment of inertia will add to small J and reduce large
J cross sections. A 10% change in the moment of inertia
(5% in σ ) causes a much smaller change in cross sections
as a function of J than found in Sec. II C. It also does not
cause cross sections in the spherical Hauser-Feshbach to
vary with K as well as J .

(7) Transmission coefficients
As has already been noted, the use of the same optical
parameters in a coupled channel code and a spherical
optical code gives different energy dependence to the
transmission coefficients. The most accurate results would
be obtained if optical model parameters for deformed
nuclei were derived from fits with a coupled channel
code to calculate transmission coefficients. The present
calculations are based on optical parameters obtained from
fits with spherical optical codes so transmission coefficients
were calculated for the calculations reported in Tables I–IV
with a spherical optical code. Use of transmission coeffi-
cients with the energy dependence of a coupled channel
calculation raises the continuum cross section for neu-
trons below 2 MeV, protons below 5 MeV, and alpha
particles below 8 MeV. Cross sections for low-energy
particles are enhanced and those for high-energy particles
are slightly suppressed. No J selectivity similar to that
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observed in Sec. II C was observed. Use of the coupled
channel energy dependence does enhance the reaction
cross section at low energies and lowers it at high
energies.
Individual cross sections can be changed by 10%–15% by
using transmission coefficients from the coupled channel
code, but these are small changes relative to the 40%
to 100% changes caused by using the deformed Hauser-
Feshbach code instead of the spherical one.

(8) K mixing
The calculations reported in Sec. II C were for no mixing
of K . Calculations for mixing fractions up to 90% showed
small changes. Mixing was applied to all excited levels
above 4 MeV, since it is expected that at low energies
the level density is so low that mixing is suppressed. The
mixing tended to remove the differences between levels
of a given J with different K values unless the K was
zero. It did not change the basic tendency for the deformed
Hauser-Feshbach to lower large-J cross sections and raise
low-J cross sections. This is due to the fact that the primary
difference between the two calculations is not the relative
branching as a function of K but rather the change in
degeneracy of the levels. This latter change is not affected
by K mixing.

(9) Isospin
As mentioned previously, the spherical Hauser-Feshbach
code can be run with or without inclusion of isospin,
while the new deformed Hauser-Feshbach code does not
yet have isospin inclusion as an option. Calculations with
the spherical code showed no significant isospin effects for
compound nuclei with 165 � A � 184 and also no effects
for A = 26. In each case, this conclusion would be changed
if the proton entrance channel is used. For the A = 24
compound system, formation of the compound system
through alpha bombardment only makes T = 0 compound
states. Thus, T = 1 states in 20Ne are not populated through
(α,α′) processes nor are T = 3/2 states in 23Na or 23Mg.
Formation of the compound nucleus through the p + 23Na
channel populates both T = 0 and T = 1 states in 24Mg;
both T = 0 and T = 1 states in 20Ne as well as both the

T = 3/2 and T = 1/2 states in 23Na and 23Mg, can be
populated, removing the above restriction. Although the
present deformed code does not include isospin, it appears
the effects would be similar to those for the spherical code.

It appears that the effects 1 though 9 all influence
the compound nuclear cross sections but none seem likely
to change the specific signature of the deformed Hauser-
Feshbach calculations relative to the spherical.

III. CONCLUSIONS

A Hauser-Feshbach code has been written which is based
on an extension of the traditional formalism to include the K
quantum number. The modification of level degeneracy in a
deformed nucleus is also taken into account. The following
changes are observed:

(1) The degeneracy change causes cross sections for small J
to increase and large J to decrease. In some cases, the ratio
changes by more than a factor of 2.

(2) In even A residual nuclei, there is a tendency for levels of
a given J to be populated more strongly if K �= 0 than for
K = 0 levels of the same J . The K dependence is smaller
for odd A nuclei, but is not damped out completely by K
mixing in the compound nucleus.

(3) Cross sections which are sums over many final levels (e.g.,
n, p) show smaller changes because they include both small
and large J final levels.

(4) A number of assumptions affecting compound calcu-
lations were examined. The changes caused by these
modifications do not change the basic conclusion of the
paper.

(5) An error was found in a frequently used level density
formula for deformed nuclei. A principal problem is in the
K dependence; this would never have been seen in Hauser-
Feshbach calculations which ignored K . There are also
changes in the J distribution and rotational enhancement
factor, however.

Further plans include the addition of isospin, the fission
channel, and the calculation of angular distributions.
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