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Density determinations in heavy ion collisions
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The experimental determination of freeze-out temperatures and densities from the yields of light elements
emitted in heavy ion collisions is discussed. Results from different experimental approaches are compared with
those of model calculations carried out with and without the inclusion of medium effects, which become of
relevance for baryon densities above ≈5 × 10−4 fm−3. A quantum statistical (QS) model incorporating medium
effects is in good agreement with the experimentally derived results at higher densities. A densitometer based on
medium modified chemical equilibrium constants is proposed.
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I. INTRODUCTION

Heavy ion collisions (HICs) serve as tools to investigate
the properties of excited nuclear matter. Measured yields of
different ejectiles as well as their energy spectra and their
correlations in momentum space can be used to infer the
properties of the emitting source. Despite the fact that a great
deal of experimental data has been accumulated from HIC
during the past few decades, reconstruction of the properties
of the hot expanding nuclear system remains a difficult task.
Two major problems are (i) the complications inherent in
incorporating nonequilibrium effects and (ii) the treatment
of strong correlations that are already present in equilibrated
nuclear matter.

In the present work we focus on the latter item, the treatment
of strong correlations that are responsible for the formation
of clusters in dense matter. For future progress, the consistent
description of correlations in equilibrium will be a prerequisite
to work out a nonequilibrium approach to HICs.

An often-employed simple approach to handling these
effects is the freeze-out approximation. Starting from hot dense
matter produced in HICs, this approach assumes the attainment
of local thermodynamic equilibrium after a short relaxation
time. Chemical equilibrium may also be established in the
expanding fireball as long as the reaction rates in the expanding
hot and dense nuclear system are above a critical value.

While more microscopic approaches employing transport
models that describe the dynamical evolution of the many-
particle system are being pursued, a freeze-out approach
provides a very efficient means to get a general overview of
the reaction. Such approaches have been applied in heavy ion
reactions to analyze the equation of state of nuclear matter;
see Ref. [1]. Similar concepts are also used in high-energy
experiments (Relativistic Heavy Ion Collider, Large Hadron
Collider) to describe the abundances of emitted elementary
particles; see Refs. [2–4] and further references given therein.
For a critical consideration of deriving unbiased freeze-out
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parameters from particle yield ratios, see Ref. [5]. In warm
nuclear matter, much information on the symmetry energy, on
phase instability, etc., has been obtained using the freeze-out
concept; examples are given in the following section.

Within the freeze-out approximation to expanding excited
nuclear matter, the abundances of emitted particles and clusters
at freeze-out are determined by the temperature T , the baryon
density nB , and the isospin asymmetry δ = (nn − np)/nB ,
which is related to the total proton fraction Ye = (1 − δ)/2.
In this work we discuss the extraction of densities and
temperatures from the measured yields of ejectiles in HIC.
We focus on the information content of neutrons (n), protons
(p), deuterons (d), tritons (t), 3He (h), and 4He (α) particles,
emitted in near-Fermi-energy reactions. To extract the relevant
information we optimize the freeze-out approach by including
correlations and density effects using systematic, consistent
quantum statistical approaches.

We are considering only the yields Yi of these particles; the
energy spectra are established by long-range interactions and
are not discussed here. It is possible to extend the approach
also to other situations where not only particles with A � 4 are
of relevance. Whereas the asymmetry is easily obtained from
the proton and neutron numbers of all emitted fragments, for
the determination of the temperature many efforts have been
made. In particular, double ratios have been considered. We
do not discuss these results here. In contrast, the determination
of the density from the measured yields is a serious problem
that has not been solved in a satisfactory manner until now.
We give the reason and propose a solution to this problem.

II. EXPERIMENTS AND DATA ANALYSIS

A. Nuclear statistical equilibrium (NSE)

The NIMROD Collaboration has recently measured yields
of light particles in three different experiments performed
at energies near the Fermi energy. Collisions of 64Zn pro-
jectiles with 92Mo and 197Au target nuclei [6] and the
collisions 70Zn + 70Zn, 64Zn + 64Zn, and 64Ni + 64Ni
were studied at E/A = 35 MeV/nucleon [7]. Collisions of
40Ar + 112Sn, 124Sn and 64Zn + 112Sn, 124Sn [8] were studied
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at 47 MeV/nucleon. These experiments have been described
in several papers [6,8–11].

Our goal is to infer parameter values T , nB , and δ, charac-
terizing the freeze-out state, from the five experimental yields,
Yp, Yd, Yt , Yh, Yα , of the light charged Z = 1, 2 species.
(The neutron yields are not accurately measured but, under
equilibrium assumptions, can be ascertained from the proton
yields combined with t/h ratios as indicated below.) This
problem is easily solved in the low-density limit where the NSE
can be applied, i.e., below nB ≈ 10−4 fm−3, and at moderate
temperatures where medium effects can be neglected. In
chemical equilibrium, simple relations for the nondegenerate
ideal mixture of reacting components

ni = 2si + 1

�3
i

e(Ei+Ziμp+Niμn)/T (1)

hold, where �i = (2πh̄2/miT )1/2 is the thermal wave length,
mi is the mass, si is the spin, and Ei is the binding energy of
the different components (including excited states). Then, one
can construct expressions that are almost directly related to the
different thermodynamic parameters.

In particular the ratio Yh/Yt can be used to determine the
asymmetry of the nuclear system. It can also be used to give
an estimate of the neutron yield

Yn = Yp

Yt

Yh

fδ(T ), (2)

where fδ(T ) = exp[(Eh − Et )/T ][(mnmh)/(mpmt )]3/2 is a
correction that accounts for the difference in the binding
energies of 3H and 3He. For the sake of simplicity we use in
the following the approximation mA = Am with the average
baryon mass, m.

The temperature can be determined by a double ratio of
yields chosen so that the chemical potentials are compensated
in the NSE. For instance, according to Albergo [12] the H-He
temperature can be obtained from bound hydrogen and helium
states,

THHe = 14.3 MeV

(
ln

[
1.59

YαYd

YtYh

])−1/2

. (3)

Within the NSE framework, knowledge of the temperature
allows the extraction of the baryon density. In Ref. [6], the
yield ratio of 4He to 3H was used to determine the free proton
density according to

np = 0.62 × 1036 T 3/2 exp[−19.8/T ]
Yα

Yt

, (4)

and similarly

nn = 0.62 × 1036 T 3/2 exp[−20.6/T ]
Yα

Yh

. (5)

Here T is the temperature in MeV, and ni has units of
nucleons/cm3. The total baryon density follows as nB =
(np/Yp)

∑
i AiYi .

B. Consistency test for the NSE

Note that only ratios of yields of bound states were used to
infer the temperature, Eq. (3), and the chemical potentials,
Eqs. (4) and (5). To infer the thermodynamic parameter,
other ratios that contain the free nucleon (p,n) yields can
also be considered. If we focus on five measured yields,
Yp, Yd, Yt , Yh, Yα , we have four ratios that are of relevance
to infer the three parameters T , nB, δ that characterize the
thermodynamic state of the nuclear system. There is one
additional degree of freedom that can be used for a consistency
check. In particular, we can consider the ratio

Rtest = 4ε

(
27

16

)3ε/2 3

4

(
8

9

)3/2 Y 2ε−1
α Y ε

p

Y 2ε−1
h Y ε−1

t Yd

(6)

with ε = (Eα + Ed − Et − Eh)/(2Eα − Et − 2Eh) =
0.438 33, where the prefactor of the yield fraction has the
value 1.627 96.

From NSE it follows that RNSE
test = 1. This quantity is also

easily determined from measured yields. In particular, the data
obtained in the experiment Ref. [6] give in total (summed over
the surface velocity vs) Rtest = 1.22, the data of Ref. [8] lead to
Rtest = 1.36, and the data of Ref. [11] lead to 1.147 (summed
over all excitation energies). As will be shown, in comparison
with the yields of bound nucleons, the yield Yp is higher than
expected within NSE.

Different reasons can be given for this deviation:

(i) The assumption of thermodynamic equilibrium is not
realized. One has to investigate the dynamical nonequi-
librium expansion of the fireball produced in HIC.

(ii) The source is more complex.
(iii) The assumption of an ideal mixture of reacting but

otherwise noninteracting components (free nucleons
and clusters) must be improved.

We do not discuss how the freeze-out concept has to
be modified when nonequilibrium and finite-size effects
are taken into account. Rather here we focus on the last
point—improving the approximation of an ideal mixture by
considering effects of correlations in the medium. This can be
done within a systematic quantum statistical approach.

As shown in the following section, the account of medium
effects leads to a suppression of bound states due to Pauli
blocking. As a consequence, the fraction of nucleons that are
found in single-particle states (“free nucleons”) is larger than
expected within the NSE.

III. QUANTUM STATISTICAL (QS) APPROACH

A. Pauli blocking and Mott effect

Within a quantum statistical approach to nuclear matter,
correlations and bound-state formation are treated using
Green’s functions to derive in-medium few-body wave equa-
tions; see Refs. [13,14]. After a cluster decomposition of the
single-nucleon self-energy, the spectral function contains the
contribution of the A-nucleon propagators. The A-particle
wave function ψAνP (1 . . . A) (with total momentum P and
internal quantum number ν) and the corresponding eigenvalues
E

qu
Aν(P ) follow from solving the in-medium Schrödinger
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equation[
E

qu
1 (1) + · · · + E

qu
1 (A) − E

qu
Aν(P )

]
ψAνP (1 . . . A)

+
∑

1′...A′

∑
i<j

[1 − f1(i) − f1(j )]V (ij, i ′j ′)

×
∏
k �=i,j

δkk′ψAνP (1′ . . . A′) = 0. (7)

This equation contains the effects of the medium in the
single-particle shift E

qu
1 (1) as well as in the Pauli blocking

terms due to the phase space occupation f1(p). The single-
particle shift was taken according to the relativistic mean-field
approximation [15]. The Fermi-like distribution function f1(p)
depends on the baryon densities nn, np and the temperature
T . Obviously the bound-state wave functions and energy
eigenvalues as well as the scattering phase shifts become
dependent on temperature and density. The medium dependent
bound-state energies E

qu
Aν(P ; T , nn, np) may be considered as

quasiparticle energies. In the mean-field approximation (7),
two effects have been taken into account: the single-nucleon
quasiparticle energy shift and the Pauli blocking. Diagrams
that contribute in higher orders to the Green’s functions have
been neglected. For the light elements A � 4, the quasiparticle
shifts have been evaluated (see Ref. [14]) where interpolation
formulas for the dependence on P, T , nn, np can be found.

After performing the cluster decomposition of the spectral
function using the quasiparticle picture for the in-medium
bound states, the evaluation of the equation of state is
straightforward; see Ref. [13]. We obtain the result (	 is the
volume)

np(T ,μn,μp) = 1

	

∑
A,ν,P

ZfA,Z

[
E

qu
A,ν(P ; T ,μn, μp)

]
,

(8)

nn(T ,μn,μp) = 1

	

∑
A,ν,P

(A − Z)fA,Z

[
E

qu
A,ν(P ; T ,μn, μp)

]
,

for the equation of state describing a mixture of components
(cluster quasiparticles) obeying Fermi or Bose statistics,

fA,Z(ω) = [exp{β[ω − Zμp − (A − Z)μn]} − (−1)A]−1.

(9)

The NSE is obtained in the low-density limit if the in-medium
energies E

qu
A,ν(P ; T ,μn, μp) can be replaced by the binding

energies of the isolated nuclei E
(0)
A,ν(P ). Note that at low

temperatures Bose-Einstein condensation may occur.
Within the present work, we consider in Eq. (8) only the

contribution of light clusters (A = 1,2,3,4). The approach can
be extended to include also larger clusters A > 4 if their
contribution becomes of relevance. Furthermore, we restrict
ourselves to only the contribution of bound states. The internal
quantum number ν covers also excited bound states and
scattering states. These contributions are neglected here but are
necessary to derive the exact expression for the second virial
coefficient as known from the generalized Beth-Uhlenbeck
formula [16].

Comparing to the NSE that results in the zeroth-order
approach with respect to medium corrections, improvements
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FIG. 1. (Color online) Free proton fraction as function of density
and temperature in symmetric matter. Restricting components to
light elements A � 4, the QS calculations (solid lines) are compared
with the NSE results (dotted lines). No continuum contributions are
included. The Mott effect and its temperature dependence is clearly
seen near 0.01 fm−3 where the bound state fraction decreases and the
free proton fraction rises.

are obtained. In particular, we find the following:

(i) The classical Boltzmann distribution is replaced by the
Fermi or Bose distributions if degenerate effects are
to be accounted for. This follows immediately from
a quantum statistical approach. In a similar spirit,
the momentum quadrupole and normalized number
fluctuations for light particle emission in HIC have been
analyzed in Ref. [11]. In that work it has been proposed
to use the reduction of fluctuations for Fermi systems
or enhancement of fluctuations for Bose systems to
estimate the thermodynamic parameters.

(ii) With increasing density, medium effects have to be
included. Within a quasiparticle picture, the binding
energies of the bound states are decreasing with
increasing density due to Pauli blocking. Depending
on temperature and center-of-mass momentum, the
bound states merge in the continuum at the so-called
Mott density. Since the composition is determined
by the quasiparticle energies, the cluster abundances
are suppressed. As a consequence, the mass fraction
of free nucleons is enhanced compared to the NSE;
see Fig. 1. The medium effects become of relevance
when the baryon density nB exceeds a value of about
5 × 10−4 fm−3. The expressions (3), (4), and (5) used
to derive the thermodynamic parameters based on the
NSE have to be correspondingly corrected, as shown in
the following. (See also Ref. [17].)

(iii) In a QS approach, contributions of the continuum
(continuous internal quantum number ν) to the density
also arise (scattering states). Within a virial expansion,
for each channel where a bound state is formed,
scattering states will also contribute to the equation
of state. An upper limit for the contributions of
the continuum can be given by subtracting for each
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bound state the same term with zero binding energy.
These continuum contributions are small in the region
considered here and are neglected in the present work.
Future investigations are needed to account for the
continuum correlations.

Because the ratio of free nucleons to bound clusters is
strongly influenced by medium effects, the use of the NSE
is limited to very small densities. Compared to the NSE, in
the QS approach the concentration of bound states goes down,
whereas the fraction of free nucleons increases. This modifies
the yield fractions that contain the free nucleon yields.

B. Temperature determinations in low-density nuclear matter

At densities below the Mott point the effect of medium mod-
ifications on the double isotope ratios is not strong [17]. Thus,
to a good approximation the determination of the temperature
can be performed employing the double ratios, Eq. (3). In
Refs. [6,8–10] this technique is employed to characterize the
temperature evolution of the expanding nascent fireball (the in-
termediate velocity or nucleon-nucleon source) by associating
particle velocity with emission time. (The Albergo expression,
Eq. (3), is modified by a factor (9/8)1/2 in front of the double
ratio when applied to particles with the same surface velocity;
see Ref. [6].) In Ref. [11], which focuses on quasiprojectile
sources of different excitation energy, temperatures have been
calculated employing the momentum quadrupole fluctuation
method. In the comparisons which follow, the temperatures
are those derived in the quoted references.

C. Density determinations

The main problem is the determination of the density
because the influence of medium effects can be strong. In the
following we compare results from four different approaches
to determination of the density: (i) the Albergo NSE-based
relations [6], (ii) the Mekjian coalescence model, which takes
into account three-body terms which might mimic either a
higher density (three-body collisions) or Pauli blocking [8,18],
(iii) the quantum fluctuation analysis method [11], and (iv) an
approach based on use of the Chemical equilibrium constant
employed in Refs. [8–10].

The use of the first three of these techniques to extract
temperatures and densities have been well described in the
references cited. The use of the chemical equilibrium constant,
introduced in Ref. [8], to characterize the relative yields

Kc(A,Z) = nA,Z

nZ
pn

(A−Z)
n

, (10)

has some particular advantages. In contrast to the free
proton fraction, these chemical equilibrium constants, while
sensitive to the effects of the medium, are not dependent
on the asymmetry parameter or the choice of competing
species present in a model in the low-density limit where
the NSE can be applied. Specifically, to infer the values for
the thermodynamic parameters of nuclear matter in HIC at
freeze-out from experimental data we define the quantity K̃α

that is related to the chemical equilibrium constant for α
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FIG. 2. (Color online) Chemical constant K̃α , Eq. (11), as
function of density and temperature (T in MeV). Data (stars) [8]
for T = 5, 6, 7, 8, 9, 10, 11 MeV (increasing density) in comparison
with the NSE values (thin dotted lines) and QS calculations (bold
straight lines).

particle formation and can be directly determined from the
observed experimental yields,

K̃α = Yα

Y 4
p

Y 2
h

Y 2
t

( ∑
i

AiYi

)3

= nα

n4
p

n2
h

n2
t

n3
B. (11)

The second relation is found by dividing the particle numbers
by their common volume. This modified chemical constant
K̃α does not depend on the volume of the system. Note
that the baryon density equals nB = np + nn + 2nd + 3nt +
3nh + 4nα , if the ejectiles are restricted to A � 4. In general,
clusters with higher A must be included if they are formed
from the source under consideration.

Within NSE we can show that

ln K̃NSE
α = 3 ln nB + fα(T ), (12)

is applicable for the low-density region, fα(T ) = (Eα +
2Eh − 2Et )/T + (9/2) ln[2πh̄2/(mT )] − ln 2. The quasipar-
ticle shifts, which we have previously calculated for the single
nucleons as well as for the light clusters [14], indicate that
medium effects are relevant above the density of about nB =
5 × 10−4 fm−3. In Fig. 2 we present theoretical values of K̃α

which have been calculated, accounting for the QS corrections
(symmetric matter). The decrease of K̃α for densities above
10−2 fm−3 is due to the Mott effect in which bound states
disappear because of Pauli blocking; see Ref. [9].

In our calculations we find essentially no dependence of
K̃α on the asymmetry parameter as should be expected for
the chemical equilibrium expression. In principle this plot
constitutes a densitometer which may be employed to estimate
the density from experimental yields if the temperature has
been determined. However, in general there are two solutions
so that one has to select out the correct one. For comparison
to the theoretical values presented in Fig. 2 we present also in
that figure experimental values for T = 5 to 11 MeV, derived
from the measured data discussed in Refs. [8–10]. These
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FIG. 3. (Color online) Baryon density derived from yields of
light elements. Data according to Refs. [6,8,11] are compared with
the results of the analysis of yields using NSE and QS calculations
for K̃α .

data reinforce the interpretation that the natural evolution of
the systems under investigation in those works encompasses
densities approaching the Mott point as was previously
concluded.

To compare the results of using this densitometer with re-
sults from the other three techniques in our list of possible tech-
niques for density determinations, we now use comparisons to
the theoretical curves to derive densities from the observed
experimental values of reference [8]. These derived values
(QS) are only slightly different than those extracted using a
coalescence model. The comparison of results from different
techniques of extracting T and nB from experimental data are
presented in Fig. 3. The use of the basic NSE gives unrealisti-
cally low densities reflecting the limitations of that model and
its region of applicability [8,18,19]. This point was already
apparent in the results for laboratory tests of the astrophysical
equation of state (EoS) [8] that also demonstrate the relevance
of medium effects above nB ≈ 10−3 nuc/fm3. Interestingly,
the results of the coalescence model analysis and the quantum
fluctuation analysis presented in Fig. 3 lead to very similar
results even though different systems and sources have been
explored. Both are quite similar to the densitometer analysis
based on QS model results. We return to this point below.

IV. DISCUSSION

Substantial progress has been made in the effort to explore
nuclear matter at subsaturation densities. There is now exper-
imental evidence that proves the relevance of incorporating
medium effects such as Pauli blocking and the Mott effect into
theoretical treatments. As expected from a quantum statistical
approach, the NSE based on noninteracting components is not

sufficient to explain the data from experiments that investigate
nuclear systems at densities around one tenth of saturation
density and above. Considering the clusters as quasiparticles,
a smooth transition from the NSE at low densities to mean-field
approaches at the saturation density can be modeled [15]. The
Albergo densitometer is restricted to very low densities. The
densitometer proposed here, based upon chemical equilibrium
constants calculated within the framework of the QS model,
can be applied at significantly higher densities.

According to Fig. 2, measured yields of light elements
can be used to infer the baryon density if the temperature is
known. Despite the double valued solution, this diagram may
serve as an important tool to derive densities from measured
yields. Two other independent methods have been used to infer
densities from the yields of light clusters:

(i) The Mekjian coalescence model [18] has been used.
Coalescence parameters P0 were calculated for the
different clusters (see Ref. [10]) and used to determine
the volumes. The corresponding volume was used to
convert the measured yields into densities. The results
are shown in Figs. 2 and 3.

(ii) An alternative approach to infer the parameter values
for density and temperature, proposed in Ref. [11],
employs quadrupole momentum fluctuations and the
fluctuations of fermion and boson numbers in the
nuclear system. Compared with classical systems num-
ber fluctuations are decreased for fermion systems
and increased for boson systems if the temperature
approaches the degeneration temperature.

The density values derived by both the coalescence and
fluctuation methods are in rather good agreement with QS
results that include medium effects but in disagreement with
the values derived from NSE. Only below densities of about
5 × 10−4 fm−3 is the NSE applicable.

The discrepancies with NSE are substantially reduced if
medium effects such as Pauli blocking [14] or, alternatively,
excluded volume [18,20] are taken into account. The fact
that the different experimental results for the temperature and
density regions explored are consistent with each other, despite
the fact that they are obtained from quite different emitting
sources and analyses, suggests that an underlying unifying
feature of the EOS is responsible. Indeed, further analysis
by Mabiala et al. [11] indicates that the data are sampling the
vapor branch of the liquid gas coexistence curve and within the
framework of the Guggenheim systematics may be employed
to determine the critical temperatures of mesoscopic nuclear
systems, in a manner analogous to previous treatments [21,22].
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