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Coulomb corrections to density and temperature of bosons in heavy ion collisions
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A recently proposed method, based on quadrupole and multiplicity fluctuations in heavy ion collisions, is
modified in order to take into account distortions due to the Coulomb field. This is particularly interesting for
bosons, such as d and α particles, produced in heavy ion collisions. We derive the temperatures and densities
seen by the bosons and compare them to results of similar calculations for fermions. The resulting energy
densities agree rather well with each other and with the one derived from neutron observables. This suggests
that a common phenomenon, such as the sudden opening of many reaction channels and/or a liquid-gas phase
transition, is responsible for the agreement.
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I. INTRODUCTION

Important information about the nuclear equation of state
(NEOS) can be obtained by colliding heavy ions [1–4]. The
task is not easy because we have to deal with a microscopic
dynamical system. Nonequilibrium effects might be dominant
and we have to derive quantities, such as density, tempera-
ture, and pressure to constrain the NEOS. To minimize for
nonequilibrium effects, we define different physical quantities
in the transverse direction, a practice commonly used in
relativistic heavy ion collisions and other fields. Recently we
have proposed a method to determine density and temperature
from fluctuations [5–9]. The reason for looking at fluctuations,
especially in the perpendicular direction to the beam axis, is
because they are directly connected to temperature through the
fluctuation-dissipation theorem [10], for instance. Of course,
the system might be chaotic but not ergodic, in which case
fluctuations should give the closest possible approximation to
the “temperature” reached during the collisions. Quadrupole
fluctuations (QF) [5] can be easily linked to the temperature in
the classical limit. If the system is classical and ergodic, the
temperature determined from QF and from the slope of the
kinetic energy distribution function [11], i.e., the number of
ions in the energy interval dE, of the particles should be the
same. In the ergodic case, the temperature determined from
isotopic double ratios [12] should also give the same result.
This is, however, not always observed, which implies that
the system is neither ergodic nor classical. Because we are
dealing with bosons and/or fermions it can be necessary to go
beyond classical approximation [6–9]. In a previous work [9]
we have discussed Coulomb corrections to fermion fluctuation
temperatures. In this paper we concentrate on bosons, i.e., α
and d particles. The boson case was also discussed in Ref. [8]
but without Coulomb corrections. It is well known that ideal
Bose gases give unphysical results near and below the critical
point. These problems are mitigated or completely resolved
when the bosons experience some repulsive potential. This
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is surely the case for α and d where, at least, the Coulomb
repulsion must be included. For bosons it is not possible to
disentangle the “temperature” from the critical temperature
Tc and thus the density [8]. Since we have two unknowns,
we need another observable, which depends on the same
physical quantities. In Refs. [6–8] we have proposed to look
at multiplicity fluctuations (MF) which also depend on the
T and ρ of the system in a way typical for fermions [6,7]
or bosons [8]. The application of these ideas in experiments
has produced interesting results such as a sensitivity of the
temperature to the symmetry energy [13], fermion quenching
[14] and the critical T and ρ in asymmetric matter [15]. Very
surprisingly, the method based on quantum fluctuations [15]
gives values of T and ρ very similar to those obtained using
the double ratio method and coalescence [16–18] and gives a
good determination of the critical exponent β. This raises the
question why, in some cases, different methods give different
values [19,20], while in other cases the same values are
obtained.

In Ref. [5] the classical temperature derived from QF gave
different values for different isotopes. In Ref. [9] we showed
that Coulomb corrections result in similar T for different
nuclei having the same mass number. We also showed that the
Coulomb repulsion of different charged particles can distort
the value of the temperature obtained from QF, which depends
on kinetic properties. On the other hand, MF for different
particles seem to be unaffected by Coulomb effects as we have
discussed in Refs. [8,9]. Also the obtained values, say of the
critical temperature and density, might also be influenced by
Coulomb effects (as well as by finite size effects). For these
reasons, it is desirable to correct for these effects as best as
possible. It is the goal of this paper to propose a method to
correct for Coulomb effects in the exit channel of produced
charged particles. In order to support our findings, we compare
our results to the neutron observables, which should not depend
directly on the Coulomb force. Neutron distributions and
fluctuations are not easily determined experimentally. Thus
we base our considerations on theoretical simulations using
the constrained molecular dynamics (CoMD) approach [21].
These simulations have already been discussed in Refs. [6–9]
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for 40Ca + 40Ca at b = 1 fm and for beam energies ranging
from 4 to 100 MeV/nucleon in the laboratory system. About
250 000 events for each case have been generated.

Let us imagine that we have a charged particle, say a
deuteron with charge Zd , leaving a system of charge Zs , mass
A in a volume V . The particle momentum is pi, and it gets
accelerated by the Coulomb field to the final momentum pf .
Assuming a free particle wave function for that particle, the
Coulomb field becomes [9,22]

V (q) = 〈ψf |Hint|ψi〉 = Zde

V

∫
e−ipf ·x/h̄φ(x)eipi·x/h̄d3x

= 1.44 × 4πh̄2ZdZs

q2V
F (q), (1)

where q = pi − pf , φ(x) is the Coulomb potential of the
source, and F (q) is the form factor. This is similar to
that assumed in the density determination of the source
in electron-nucleus scattering [22]. To make calculations
feasible, we assume that pi is negligible, which is not a
bad approximation at low energies or temperatures such that
most of the charged particle acceleration is due to Coulomb
effects. At high excitation energies we expect Coulomb effects
to be negligible [23,24] because the source is at at high
temperature and relatively low density. In fact we have seen
in previous calculations [6–9] that charged and uncharged
particles produced in the collisions at high energies give
similar values of T as expected. For simplicity we also assume
that the form factor is equal to 1. More involved numerical
calculations and higher statistics are needed in order to fully
explore the form factor F (q). Unfortunately, those calculations
are presently beyond our numerical capabilities.

The reason for essentially making a Fourier transform of the
Coulomb field is because the distribution function is modified
by the factor [10]

f (p) ∝ exp

[
−Rmin

T

]
∝ exp

[
−V (q = p)

T

]
. (2)

Using this result, we can estimate modifications to physical
quantities in the classical and quantum cases. The classical case
is interesting because it gives smaller temperatures for different
fragments, very close to the neutron values, as was discussed
in Ref. [9]. The correction to the distribution function is, as we
show below, crucial for bosons.

II. QUANTUM CASE

In this work we restrict the results to the d and α cases.
In the quantum case, considering the Coulomb correction, the
QF can be obtained from

〈σ 2
xy〉 = (2mT )2 4
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FIG. 1. The multiplicity fluctuations versus ν with fixed A′
V T 2 in

Eq. (4). Different lines refer to different values of A′
V T 2 .

where A′ = 1.44×4πh̄2q1q2

2m
and ν = μ

T
. On the same ground we

can derive the MF as

〈(
N )2〉
N

=

∫ ∞
0 dyy

1
2

e
y+ A′

yV T 2 −ν

(e
y+ A′

yV T 2 −ν−1)2∫ ∞
0 dyy

1
2

1

e
y+ A′

yV T 2 −ν−1

. (4)

A detailed derivation of Eqs. (3) and (4) is given in the
Appendix. We introduce three variables, T , V , and ν into
Eqs. (3) and (4). This means that to solve those equations we
need one more condition. We choose the average multiplicity:

N = gV

h3
4π

(2mT )
3
2

2

∫ ∞

0
dyy

1
2

1

e
y+ A′

yV T 2 −ν − 1
. (5)

Again the detailed derivation is given in the Appendix.
Those equations can be solved numerically. In Fig. 1 we
plot 〈(
N)2〉

N
vs ν with fixed A′

V T 2 in Eq. (4). One can see

that 〈(
N)2〉
N

is always larger than 1. When A′
V T 2 = 0, i.e., no

Coulomb correction, 〈(
N)2〉
N

recovers the ideal Bose gas result
when T > Tc [8] and it diverges at the critical point. For
T < Tc, ν = 0 and we get a Bose condensate. An interesting
question is what the energy of the condensate is in the case
with Coulomb repulsion. Of course, we should first stress
that we are dealing with finite systems. The Coulomb term
gives a correction that has some similarities with the repulsive
potential used in realistic Bose gases as first proposed by
Bogoliubov [10,25,26]. For simplicity we assume that the
ground state energy of the condensate is that of a uniformly
charged sphere of radius r . However, in the following we do
not need any information on the ground state of the system and
we have included this in the discussion just for completeness.
We can rewrite Eq. (5) as

ρ = g

h3
4π

(2mT )
3
2

2

∫ ∞

0
dyy

1
2

1

e
y+ A′

yV T 2 −ν − 1
. (6)

In Fig. 2, we plot the critical temperature versus the density
for different values of A′

V
. For a fixed density and volume, the

Coulomb energy is larger and the critical temperature is higher.
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FIG. 2. Critical temperature versus density with fixed A′
V

. We take
d as an example.

This probably provides a larger chance for bosons to reach the
lowest energy state.

It is instructive to study the behavior of the quadrupole
fluctuations and the density below the critical point. In Fig. 3
we plot these quantities divided by their values at the critical
temperature as a function of T/Tc. The behavior when the
Coulomb term is zero (A′ = 0) has been discussed in Ref. [8].
For finite Coulomb potential, we observe that the number of
condensate bosons increases faster with decreasing T and,
accordingly, the quadrupole fluctuations are larger. In fact the
larger the Coulomb repulsion, the higher are the fluctuations
already at zero T , which is intuitively clear: particles emitted
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FIG. 3. N of bosons (a) and quadrupole fluctuations (b) divided
by their respective values at the critical point vs T/Tc. This result is,
to a very good approximation, independent of the particle type (i.e.,
α or d) at one fixed density.
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FIG. 4. The reduced density (a) and temperature T (b) versus
E*/nucleon of d and α from CoMD simulations. Three methods,
with Coulomb correction, without Coulomb correction, and Landau’s
O(m6) theory, are used to calculate the density and temperature. The
corresponding results for neutrons are also included as a reference.

from a source at zero T will develop substantial final momenta
because of the large Coulomb acceleration and consequently
will exhibit large fluctuations. Naturally, we have to keep in
mind that, at zero T , bosons might be confined by an attractive
mean field.

In Fig. 4 we plot ρ̃ = ρ
ρ0

, where ρ0 is the nuclear ground
state density, and T vs excitation energy obtained from CoMD
simulations. The neutron case is also included [6,7]. As
we see the densities derived from d and α observables with
Coulomb correction are very close to each other and to those
derived from the the neutron observables. There is a large
difference between the cases with Coulomb correction and
without Coulomb correction, which demonstrates the crucial
role of adding the Coulomb repulsion between bosons. For
completeness we also include the results for bosons from
Landau’s O(m6) approach [8] which is close to the results
without Coulomb corrections. The derived T values of d and
α with Coulomb correction are also much closer to the neutron
values. The good agreement for the obtained temperatures and
densities suggests that thermal equilibrium is nearly reached
for particles emitted in the transverse direction

In Fig. 5, we plot the energy density ε = E
N

ρ versus T .
Without Coulomb corrections, the results are systematically
located at larger T and energy density with respect to n.
When the correction is included, we obtain a curve very close
to that derived from the neutron data which do not reflect
Coulomb effects (at least not directly). Furthermore they are
fermions. This result shows that when all the different effects
are properly taken into account, we obtain a unique energy
density behavior that demonstrates that different particles
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FIG. 5. Energy density versus T for different cases (see Fig. 4).

experience a sudden increase of the degrees of freedom
(fragmentation) at the same T of about 4 MeV. At higher
T the energy density increases because of a liquid-gas phase
transition. It is important to notice that our results and also
other results in the literature [15,17,27–29] seem to give always
T smaller than the nuclear matter temperature at the critical
point for a liquid-gas phase transition. The impossibility of
reaching TcLG was also predicted in microscopic dynamical
calculations of the Lyapunov exponents. In those calculations,
the Lyapunov exponents do not increase beyond a certain value
because collective effects set in [30]. We stress that the critical
temperature for a liquid-gas phase transition has nothing to do,
in principle, with the critical point of a Bose condensate. The
CoMD model used in this work has no knowledge of a Bose
condensate; thus we do not expect any spectacular effects to
be observable in Fig. 5. However, there are many signatures
of a possible condensate in nuclei even though none has been
so far conclusive. We mention the Hoyle state in 12C, but also
the anomalous large number of α particles in the universe
as compared to hydrogen [31,32]. In heavy ion collisions a
large production of α is observed. Recently, some experimental
signatures of a condensate have been proposed [33,34]. In the
calculations discussed here we have always implicitly assumed
that the number of bosons is constant, which is crucial to have
a condensate. In reality, during the collisions, even though
we might start from a “perfect” α cluster nuclei, because of
the large excitation energy, α particles might be destroyed,
and thus we obtain in general a mixture of fermions and
bosons. This is of course especially severe for d-like events.
To avoid this problem we propose the following strategy to
select “good” events. First we define the quantity

bj = 1

M

M∑
i=1

(−1)Zi + (−1)Ni

2
, (7)

where M is the multiplicity in one event, Zi and Ni are,
respectively, the proton and neutron number in the ith fragment
in that event. The meaning of such a quantity is clear: if the
final fragments, for instance, are all d-like, we get bj = −1,
while for pure α-like fragments bj = +1, if we further select
N = Z nuclei. Pure fermion cases give bj = 0. In Fig. 6
we plot the bj distribution from CoMD calculations. As we
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FIG. 6. The bj distribution for CoMD at 35 MeV/nucleon.

see in the figure the model gives an average bj close to
zero, which means that most of the final fragments in the
model are “fermionlike.” Recall that the model takes into
account mainly the Pauli principle. However, preliminary
experimental results on 40Ca + 40Ca collisions [35,36], display
much larger distributions than in Fig. 6. In particular, events
are observed near bj = ±1 that could be a signature for a Bose
condensate. Therefore, we propose to select fragments from
data with bj = 1(−1) and N = Z and perform the analysis
discussed in this paper to obtain the density and temperature
of the bosons for each excitation energy. The energy density
might be constructed for different situations and compared to
fermions.

III. CONCLUSION

In conclusion, in this paper we have discussed Coulomb
modifications to the density and temperature in heavy ion
collisions. The quantum case (bosons) has been discussed.
We have shown that the temperatures obtained from different
particle types are very similar to those derived from neutron
observables, which implies the “near ergodicity” of the system.
The energy densities are very similar at high temperatures,
which suggests that Coulomb corrections are small due to
the small source densities. Experimental investigations of the
effects discussed in this work for well-determined sources
and excitation energies [5,13,15,16,27,35] would be very
important to further constrain the NEOS in the liquid-gas
phase transition region also for asymmetric matter. We suggest
a selection of data according to excitation energy and to
their bj distribution as defined in this paper. The T , ρ, and
energy density for d-like, α-like, and fermionlike events might
be compared to pin down the possibility of a condensate
in nuclei.
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APPENDIX

For the quantum case, assuming particles follow the Bose-
Einstein distribution modified by the Coulomb correction,

f (p) = 1

e
[ε+ 1.44×4πh̄2Zd Zs

Vp2 −μ]/T − 1
, (A1)

where ε = p2

2m
is the energy, μ is the chemical potential, and

T is the temperature. The average number of particles is

N = g

h3

∫
d3xd3pf (p) = gV

h3
4π

∫ ∞

0
dpp2f (p), (A2)

where g is the degeneracy. Let’s make the integral variable
transformation:

ε = p2

2m
, p = (2mε)

1
2 , dp = m√

2mε
dε. (A3)

Thus Eq. (A2) becomes

N = gV

h3
4π

∫ ∞

0
dpp2f (p)

= gV

h3
4π

(2m)
3
2

2

∫ ∞

0
dεε

1
2 f (ε)
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(2m)
3
2

2
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2
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dεε
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e[ε+ 1.44×4πh̄2Zd Zs
2mV ε

−μ]/T − 1

= gV

h3
4π

(2m)
3
2

2

∫ ∞

0
dεε

1
2

1

e[ε+ A′
V ε

−μ]/T − 1
, (A4)

where A′ = 1.44×4πh̄2ZdZs

2m
. Define

y = ε

T
, ν = μ

T
. (A5)

Therefore, Eq. (A4) becomes

N = gV

h3
4π

(2mT )
3
2

2

∫ ∞

0
dyy

1
2

1

e
y+ A′

yV T 2 −ν − 1
. (A6)

When T > Tc, the multiplicity fluctuation is

〈(
N )2〉 = T

(
∂N

∂μ

)
T ,V

=
(

∂N

∂ν

)
T ,V

. (A7)

Substitute Eq. (A6) into Eq. (A7), we get

〈(
N )2〉 = gV

h3
4π

(2mT )
3
2

2
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0
dyy

1
2

e
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e
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(A8)

Dividing Eq. (A8) by Eq. (A6) gives
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In the same framework, we also calculate the quadrupole
momentum fluctuation:

〈
σ 2

xy

〉 =

∫
d3p

(
p2

x − p2
y

)2 1

e
[ p2

2m
+ 1.44×4πh̄2ZpZs

p2V
−μ]/T −1∫

d3p 1
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p2V
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= (2mT )2 4
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