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Thermodynamic properties and shear viscosity over entropy-density ratio of the nuclear fireball
in a quantum-molecular dynamics model
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Thermodynamic and transport properties of nuclear fireball created in the central region of heavy-ion collisions
below 400 MeV/nucleon are investigated within the isospin-dependent quantum molecular dynamic (IQMD)
model. These properties, including the density, temperature, chemical potential, entropy density (s), and shear
viscosity (η), are calculated by a generalized hot Thomas Fermi formulism and a parametrized function, which
was developed by Danielewicz. As the collision goes on, a transient minimal η/s = 5/4π − 10/4π occurs in the
largest compression stage. Besides, the relationship of η/s to temperature (T ) in the freeze-out stage displays a
local minimum which is about 9–20 times 1/4π around T = 8–12 MeV, which can be argued as indicative of a
liquid gas phase transition. In addition, the influences of nucleon-nucleon (NN) cross section (σNN) and symmetry
energy coefficient (Cs) are also discussed, and it is found that the results are sensitive to σNN but not to Cs .
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I. INTRODUCTION

In the past decades, extensive experimental and theoretical
efforts have been devoted to search for the nuclear liquid-gas
phase transition (LGPT) in intermediate energy heavy-ion
collisions (HIC) [1–12]. Many probes have been suggested
for the onset of nuclear LGPT. For instance, the fragment
size distribution [13] and its rank distribution [12], the largest
fluctuation of the heaviest fragment [14], caloric curve [4,6],
bimodality [15], etc. In addition, it has been observed that
the ratio of shear viscosity to entropy density (η/s) reaches
its local minimum at the transition temperature for a wide
class of systems. For instance, empirical observation of the
temperature or incident energy dependence of the shear
viscosity to entropy density ratio for H2O, He, and Ne2 exhibits
a minimum in the vicinity of the critical point for phase
transition [16]. And a lower bound of η/s > 1/4π obtained by
Kovtun-Son-Starinets (KSS) for infinitely coupled supersym-
metric Yang-Mills gauge theory based on the AdS/CFT duality
conjecture, is speculated to be valid universally [17,18]. In
ultrarelativistic HIC [19–23], people have used the ratio of
shear viscosity to entropy density to study the quark-gluon
plasma phase and the extracted value of η/s seems close to the
KSS bound (1/4π ).

So far there are many interesting investigations on the
ratio of η/s, but it is still rare to study the behavior of
η/s during the heavy-ion collision at intermediate energies
[24–27]. Furthermore, the influences of nucleon-nucleon cross
section and nuclear symmetry energy are less discussed.

In this work we use a microscopic transport model known
as the isospin-dependent quantum dynamics model [28] to
simulate Au + Au central collisions. In order to study the
effect of nucleon-nucleon cross section, 0.5 times and 1.5
times normal nucleon-nucleon cross section are also used in the
simulation. On the other hand for the symmetry energy which
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is important for asymmetric nuclear matter as well as nuclear
astrophysics [29–31], different symmetry energy parameters
are employed, namely 15 MeV, 25 MeV, and 35 MeV. The
generalized hot Thomas Fermi formalism (GHTFF) [32–34]
and the transport formula [35] are employed, respectively,
to extract thermodynamic and transport properties of the
nuclear fireball which is located in the central region with
a moderate volume. Then different correlations between the
extracted thermal and transport properties are discussed and a
good agreement with our previous calculations is found [36].
Furthermore the multiplicity of intermediate mass fragments
(IMFs) is also checked as a signal of liquid gas phase transition
[37–40] to verify the calculated result.

The paper is organized as follows. Section II provides a
brief introduction for the IQMD model, GHTFF as well as
transport formula for shear viscosity. In Sec. III we present the
calculation results and discussions, where the time evolution
of thermodynamic quantities and shear viscosity over entropy
density are focused. Finally a summary and outlook is given.

II. MODEL AND FORMULISM

A. Quantum molecular dynamics model

The quantum molecular dynamics (QMD) [41,42] model
approach is a many-body theory which describes heavy ion
collisions from intermediate to relativistic energy. The isospin-
dependent quantum molecular (IQMD) [42,43] model is based
on the QMD model, including the isospin effects and Pauli
blocking. Each nucleon in the colliding system is described as
a Gaussian wave packet, i.e.,

ψi(pi, ri, t) = 1

(2πL)3/4
exp

[
i

h̄
pi(t) · r − (r − ri(t))2

4L

]
. (1)

Here ri(t) and pi(t) are the mean position and mean momen-
tum, and the Gaussian width has the fixed value L = 2.16 fm2

for Au + Au system. The centers of these Gaussian wave
packets propagate in coordinate (R) and momentum (P) space
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according to the classical equations of motion:

ṗi = −∂〈H〉
∂ri

; ṙi = ∂〈H〉
∂pi

, (2)

where 〈H〉 is the Hamiltonian of the system.
The Wigner distribution function for a single nucleon

density in phase space is given by

fi(r, p, t)

= 1

(πh̄)3
exp

[−(r − ri(t))2

2L

]
exp

[−2L(p − pi(t))2

h̄2

]
.

(3)

The mean field in IQMD model is written as

U (ρ) = USky + UCoul + UYuk + Usym, (4)

where USky, UCoul, UYuk, and Usym represent the Skyrme
potential, the Coulomb potential, the Yukawa potential, and the
symmetry potential interaction, respectively [41]. The Skyrme
potential is

USky = α(ρ/ρ0) + β(ρ/ρ0)γ , (5)

where ρ0 = 0.16 fm−3 and ρ is the nuclear density. In the
present work, the parameters α = −356 MeV, β = 303 MeV,
and γ = 7/6, correspond to a soft EOS, are used. UYuk is
a long-range interaction (surface) potential, and takes the
following form:

UYuk = (Vy/2)
∑
i �=j

exp(Lm2)/rij

·[exp(mrij )erfc(
√

Lm − rij /
√

4L)

− exp(mrij )erfc(
√

Lm + rij /
√

4L)], (6)

with Vy = 0.0074 GeV, m = 1.25 fm−1, L = 2.16 fm2, and rij

is the relative distance between two nucleons. The symmetry
potential is Usym = Cs

ρn−ρp

ρ0
, where ρn, ρp, and ρ0 are the

neutron, proton, and nucleon densities, respectively. Cs is the
symmetry energy coefficient, and three different values of 15,
25, and 35 MeV are taken in order to study its influence on the
ratio of η/s.

Furthermore the isospin degree has entered into the cross
sections, which is similar to the parametrization of VerWest

and Arndt, see Ref. [44]. The cross section for the neutron-
neutron collisions is assumed to be equal to the proton-proton
cross sections. In order to study the effect of cross section on
the ratio of η/s, the nucleon-nucleon (NN) cross section is
multiplied by a coefficient Cσ . Three different situations are
considered, namely Cσ equals 0.5, 1.0, and 1.5, respectively. In
a practical viewpoint, a smaller Cσ seems suitable to describe
HIC, which was proposed in the previous work Ref. [45]:

σNN = Cσσ free
NN . (7)

From Eq. (3) one obtains the matter density of coordinate
space by the sum over all the nucleons, namely,

ρ(r, t) =
AT +AP∑

j=1

ρj (r, t) =
AT +AP∑

j=1

1

(2πL)3/2
exp

−(r − ri(t))2

2L
.

(8)

The kinetic energy density in coordinates space could also
be calculated from Eq. (4) by

ρK (r, t) =
AT +AP∑

j=1

Pj (t)2

2m
ρj (r, t). (9)

B. The generalized hot Thomas-Fermi formalism

Thermodynamical properties of hot nuclear matter formed
in heavy ion collisions, e.g., temperature and entropy density,
can be extracted by using the approach developed by Faessler
and collaborators [32–34,46,47]. In this approach one starts
from a microscopic picture of two interpenetrating pieces of
nuclear matter and deduces the thermal quantities from the
matter density and kinetic energy density obtained during the
collisions. In this paper, the extraction of thermal properties
of the hot nuclear matter is done in two steps. First, based
on the IQMD simulation, one could calculate the nuclear
matter and kinetic energy densities at each point in coordinate
space at every time step. Second, by employing the hot
Thomas-Fermi formalism, we could obtain the corresponding
thermal properties for every set of nuclear matter density
and nuclear kinetic energy density [32,33]. In GHTFF, the
momentum distribution in cylindrical coordinates kr , kz can
be written as

n(K) =
{

n1(K) =
n2(K) =

{(
1 + exp

[
h̄2

(
k2
r + k2

z

)
/2mT − μ′

1

])−1
, kz < k0(

1 + exp
[
h̄2

(
k2
r + (kz − kR)2

)
/2mT − μ′

2

])−1
, kz > k0

with μ′
i = μi/T is the reduced chemical potential, k0 =

[k2
R − 2mT (μ′

1 − μ′
2)]/2kR , which makes n(K) a continu-

ous function of K , i.e., n1(Kr,K0) = n2(Kr,K0), kR is
the relative momentum between the projectile (index 1)
and target (index 2). The local nuclear matter density ρi

is expressed as

ρi = 1

2
ρ0(μ′

i) + 1

2π2

(
2mT

h̄2

)3/2

× [
f (μ′

i , K0i) + J1/2
(
μ′

i , K
2
0i

)]
, (10)
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where K01 = h̄K0√
2mT

,K02 = K ′
R − K01 with K ′

R = h̄kR√
2mT

, and
Jn(μ′) = Jn(μ′,∞) is the Fermi integrals, i.e.,

Jn(μ′, z) =
∫ z

0

xndx

1 + exp(x − μ′)
,

f (μ′
i , K0i) = K0i ln[1 + exp(μ′

i − K2
0i)].

The local kinetic energy density ε = h̄2τi

2m
, where τi reads

τi = 1

2
τ0(μ′

i) + 1

2π2

(
2mT

h̄2

)5/2

×
[

1

3
K2

0if (μ′
i , K0i) + 1

3
J1/2

(
μ′

i , K
2
0i

)

+
∫ K0i

0
J1(μ′

i − x2)dx

]
+ τi(μ

′
i). (11)

And the entropy density si is written as

si = 1

2
s0(μ′

i) + 1

2π2

(
2mT

h̄2

)3/2

×
[ (

1

3
K2

0i − μ′
i

)
f (μ′

i , K0i) + 1

3
J1/2

(
μ′

i , K
2
0i

)

−μ′
iJ1/2

(
μ′

i , K
2
0i

) + 2
∫ K0i

0
J1(μ′

i − x2)dx

]
. (12)

Here i = 1, 2 represents the projectile and target, and
τ1(μ′

1) = 0,

τ2(μ′
2) = 1

2π2

(
2mT

h̄2

)5/2

KR

× [
J1(μ′

2) − J1
(
μ′

2,K
2
02

) − K02f (μ′
2,K02)

]
+ k2

Rρ2(μ′
2),

From Eqs. (10)–(12), one can obtain the thermal properties
by inversion in principle. But such an inversion procedure is
practically not feasible due to the complexity of the equations.
Therefore, a more practical way is chosen to obtain the thermal
properties. First, we generate all reasonable combinations T ,
KR , and μ′

i , which ranging from 0–100 MeV, 0–5 fm−1, and
0–2, respectively. Then the corresponding ρi, τi, si could be
obtained. Second, from the extracted ρi, τi in the central region
at each time step during the evolution of collision, T , KR ,
and μ′

i are obtained from the calculations in the first step.
Third, the entropy density is calculated according to Eq. (12).
One should pay attention that all the values displayed in the
following pictures are the average one in the central region.

C. Shear viscosity formalism

For largely equilibrated systems, fluxes of macroquantities,
leading to dissipation, are proportional to gradients within the
system. The shear viscosity denoted as η is the coefficient
of proportionality between anisotropy of momentum-flux
tensor, including dissipation and velocity gradients [48]. In the
Boltzmann statistical limit the shear viscosity corresponds to
the first order Chapman-Enskog coefficients. In Refs. [35,45]
the nuclear shear viscosity for normal NN cross section,

FIG. 1. (Color online) Shear viscosity of nuclear matter as a
function of ρ/ρ0 and T with Eq. (13). Different colors (lineshapes)
represent different ρ/ρ0, which are illustrated in the inset.

has been derived from the microscopic Boltzmann-Uehling-
Uhlenbeck equation and can be parametrized as a function of
density ρ and temperature T :

η

(
ρ

ρ0
, T

)
= 1700

T 2

(
ρ

ρ0

)2

+ 22

1 + T 210−3

(
ρ

ρ0

)0.7

+ 5.8
√

T

1 + 160T −2
, (13)

where η is in MeV/fm2c, T in MeV, and ρ0 = 0.168 fm−3.
Figure 1 shows η as a function of T and ρ/ρ0. One can see
that η exhibits a very distinct minimum when nuclear matter
density is less than normal nuclear density. And as the density
increases, the transition temperature also get larger, e.g.,
for normal density the transition temperature locates around
10 MeV, but for 2.5 times normal density it is almost 50 MeV.
This conclusion is coincident with macroscopic result. And in
the case of scaled NN cross section, the shear viscosity just
only needs to be scaled by 1

Cσ
, i.e.,

η

(
ρ

ρ0
, T , Cσ

)
=

η
(

ρ
ρ0

, T
)

Cσ

. (14)

From Eq. (14) we can see that the shear viscosity is very
sensitive to the NN cross section, the larger the cross section
is, the smaller the shear viscosity. And it is intuitive that large
NN cross section makes the transport of particle momentum
much difficult. Since the equilibrium of the considered nuclear
matter at the very starting stage is not reached, the calculated
shear viscosity should be considered as the transport properties
of largely equilibrated nuclear matter with the same density
and kinetic energy density.

III. CALCULATION AND DISCUSSION

In present work, we simulate head-on collision of Au+Au
at different beam energies. The reason why we choose the
central collision is that the participant zone is the maximal and
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FIG. 2. (Color online) X-Z density profile in different time step for Au + Au head-on collisions at 50 MeV/nucleon (upper panels) and
200 MeV/nucleon (lower panels), respectively. From left to right panels, time step is 2, 10, 20, 30, 50, and 80 fm/c, respectively.

the matter is more nuclear liquid-like during the early time
evolution of collision.

A. Time evolution of density profile in reaction plane

Figure 2 shows the evolution of density profile in X-Z
plane for Au + Au head-on collisions at 50 MeV/nucleon and
200 MeV/nucleon at 2, 10, 20, 30, 50, and 80 fm/c. The
zero point of time is set at the initial contact between project
and target (the far left panel). With the collision goes on, the
system overlaps and seems more isotropic in phase space. In
order to calculate the thermodynamic quantities in different
time steps, we select the central sphere with radius r = 5 fm,
which defines a volume of nuclear fireball in this paper.

B. Time evolution of thermodynamic variables

The time evolution of the average nuclear matter density
[panel (a)] and kinetic energy density [panel (b)] in the central
region, with Cσ = 1.0, is shown in Fig. 3. It is interesting
that the maximum density reached is about 1.5ρ0 to 2.0ρ0

and the maximum kinetic energy density is 10 MeV fm−3 to
25 MeV fm−3 for the energy displayed in the picture. Along
the time scale of the collision one can see that both ρ/ρ0 and τ
are reaching their maxima at about 20 fm/c and at a bit earlier
time for higher energy. After the compression stage the matter
starts to expand and some of them will escape from the central
region, mainly in the transverse plane, the matter density drops
to very small values and the central region is cooled down. In
general the warm and dense nuclear matter survives much
longer when the incident energy is low. At about 80 fm/c the
hot and dense matter disappears.

Time evolution of matter density and kinetic energy density
are shown in Fig. 4, when Cσ and Cs are set by different
values. The upper panels demonstrate the different cross
section situation (Cσ ∈ [0.5, 1.0, 1.5]), on the other hand the

bottom panels are for different symmetry energy. In panels
(a) and (b), it is easy to find that the nuclear matter density
and kinetic energy density are different from each other when
Cσ is different. We found that there is no difference for the
nuclear matter density during compression stage. But when
the system starts to expand, the larger nucleon-nucleon cross
section makes the dense matter stay longer. In contrast with the
behavior of density around the maximum compression stage,
more distinction for the kinetic energy density is exhibited.
It shows that the smaller the nucleon-nucleon cross section,
the larger the kinetic energy density. But these curves almost
overlap each other after 40 fm/c, it may be understood that the
longitudinal energy enters the central region more easily when
the nucleon-nucleon cross section is small. It should be noted
that the large kinetic energy density dose not mean higher
temperature, since the kinetic energy is not calculated in the
center of mass frame, detailed information can be found in
Refs. [32–34,46,47]. In addition, the extracted density and

FIG. 3. (Color online) Time evolution of mean matter density
(a) and kinetic energy density (b) at different beam energies.
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FIG. 4. (Color online) Time evolution of mean nuclear matter
density [(a) and (c)], and the kinetic energy density [(b) and (d)] in the
central region defined as a sphere with radius equals 5 fm of head-on
Au + Au collisions at 130 MeV/nucleon. Different nucleon-nucleon
cross sections [(a) and (b)] and symmetry energy parameters [(c) and
(d)] are used.

kinetic energy density show insensitivity to the symmetry
energy as depicted in panels (c) and (d). The curves are
overlapped with each other for the whole process. As has
been discussed in the previous paragraph, this leads the nuclear
matter to the same thermal properties. So the extracted thermal
properties based upon the hot Thomas-Fermi formulism
keep exactly the same with each other. So in this paper
we just investigate the nucleon-nucleon cross section effect
on thermodynamic and transport quantities in the following
texts.

Time evolution of temperature is plotted in Fig. 5.
Figure 5(a) shows the time evolution of temperature with
Cσ = 1.0 at different incident energies. Figure 5(b) shows
the time evolution of temperature when the incident energy
is 130 MeV/nucleon but with different cross sections. The
following pictures are arranged with the same mode, i.e., panel
(a) represents a constant cross section Cσ = 1.0 but at different

FIG. 5. (Color online) Time evolution of temperature inside the
central region at normal nucleon-nucleon cross section at different
incident energies (a), or at 130 MeV/nucleon but with different
σNN (b). The incident energies and NN cross section parameters are
illustrated in the inset.

FIG. 6. (Color online) Same as Fig. 5 but for chemical potential.

incident energies; panel (b) means a constant incident energy
at 130 MeV/nucleon with different cross sections. For a given
beam energy, temperature increases at first, then reaches a local
maximum about 20 fm/c and decreases till a saturated value at
about 80 fm/c. The higher the incident energy, the larger the
maximum value. The corresponding time at maximum value
is a little earlier than that for the density and kinetic density.
In panel (b), it is found that the larger cross section makes
the system a little hotter. The reason is that there are more
frequent nucleon-nucleon collisions as σNN becomes larger,
which makes the translation from the longitudinal energy to
thermal energy more efficiently.

Figure 6 shows the time evolution of chemical potential
(μ). Again, the left panel displays the normal cross section
one, we can find that μ increases in the compression stage
and decreases in the expansion stage, and the lower the
incident energy, the larger the chemical potential. This might
be understood as a large compound nucleus is formed during
the compression stage, and the lower the incident energy,
the larger the compound nucleus is. In panel (b), it shows
that the chemical potential becomes generally larger when
nucleon-nucleon cross section is larger.

Time evolution of entropy density is plotted in Fig. 7. It is
found that the entropy density almost synchronically evolves

FIG. 7. (Color online) Same as Fig. 5 but for entropy density.
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FIG. 8. (Color online) Same as Fig. 5 but for shear viscosity η of
the central fireball.

with the temperature. The higher the incident energy and
nucleon-nucleon cross section, the larger the entropy density
is.

C. Ratio of shear viscosity to entropy density

Now we can move to the discussion on transport coefficient.
Since the nuclear participant in central region could be seen as
nuclear fluid, we adopt Eq. (13) to calculate the shear viscosity.
Unlike the Green-Kubo formula [27,48], the advantage of
the equation is that we can investigate the time evolution of
shear viscosity in the framework of transport model. But it
should be noted that Eq. (13) is principally applicable when the
system is largely equilibrated. However, a full equilibrium is
hardly achieved during the whole heavy-ion collision process.
So the shear viscosity extracted here should be seen as the
properties of an equilibrated nuclear fireball with the same
thermodynamic state as the simulated one.

Figure 8 displays the time evolution of shear viscosity
(η), it shows an increase in earlier stage and then drops with
time. As Eq. (1) shows, here the shear viscosity depends on
both temperature and density which vary with time. Roughly
speaking, the shear viscosity increases in the compression
stage and decreases as the system expands. The smaller the
nucleon-nucleon cross section, the larger the viscosity in the
maximum compression stage. Figure 8(b) shows that there is
a big enhancement when the NN cross section is scaled by
Cσ = 0.5, which is demonstrated in Eq. (14), the smaller the
NN cross section the larger the viscosity is.

When the entropy density is taken into account, the ratio
of shear viscosity to entropy density shows a minimum near
maximum compression point as shown in Fig. 9. From the
hydrodynamical point of view, the less the η/s, the more
perfect the matter looks like. In this sense, the nuclear matter
becomes a more ideal-like liquid around the most compressible
point in comparison with other evolution stages. But note that
this minimum η/s is just a transient process. In addition, the
extent of approaching an ideal-like liquid of the nuclear matter
is growing up with the increasing of beam energy. In relativistic
energy domain, the η/s of quark-gluon matter becomes very

FIG. 9. (Color online) Same as Fig. 5 but for the ratio of shear
viscosity to entropy density η/s of the central nuclear fireball.

small, close to 1/4π (KSS bound), it is called a perfect
liquid.

Temperature dependence of η/s is an important issue to
understand the transport properties of the nuclear matter in
different hot and dense environment. To this end, we plot
a correlation between η/s and temperature in Fig. 10(a) at
different energies. Note that the density is not fixed in each
curve. It is found that there is a decrease of η/s at first when
the system is in the compression stage. However, η/s becomes
increasing as the system begins to expand. The higher the
beam energy, the hotter the nuclear matter, and the smaller the
η/s. From this picture it is obvious to find the time when the
η/s approaches its transient minimum, essentially corresponds
that the nuclear matter reaches the highest temperature. On
the other hand, in the present beam energy domain below
400 MeV/nucleon, the transient minimum of η/s which
corresponds to the larger compression stage is around 0.4,
which is about 5 times of KSS bound (i.e., 1/4π ).

FIG. 10. (Color online) (a) The correlation between η/s and
temperature at different beam energies with a normal nucleon-
nucleon cross section parametrization. (b) The η/s evolves versus
temperature at 130 MeV/nucleon with the different nucleon-nucleon
cross section. The incident energy and nucleon-nucleon cross section
is illustrated in the insets of (a) and (b), respectively.
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FIG. 11. (Color online) Same as Fig. 10 but for density depen-
dence of η/s.

Furthermore, we can also extract the correlation between
η/s and nuclear matter density as shown in Fig. 11. Here
temperature is another hidden variable. Similar to Fig. 10, η/s
first drops to a minimum value as the density is compressed to
a maximum point and then rises up when the system expands.
Larger compressible state produces a less η/s, i.e., the system
is close to a more ideal-like state.

Considering that only final reaction products can be
detected in experiments, such as the multiplicity and flows
of the fragments and light particles, it is therefore necessary
to check the η/s in the freeze-out stage and see if it is a
useful probe to study the properties of nuclear matter as well
as liquid gas phase transition. The freeze-out volume has been
already studied in some previous works [25,49,50], but in
our case, it is more suitable to define a freeze-out density
instead. The time average values of η/s when the nuclear
matter is in some given freeze-out density regions of ρ/ρ0 in
[0.19, 0.21], [0.24, 0.26], and [0.29, 0.31] have been extracted
as a function of temperature.

Figure 12 shows a correlation of the above average η/s
versus temperature for given freeze-out densities (a) and with
different σNN (b). From Fig. 12(a) we observe that there

FIG. 12. (Color online) The average of η/s as a function of
temperature at different fixed freeze-out densities (a) and different
cross sections (b).

exhibits a local minimum of η/s with a value of 0.76 to
0.84 (about 9–10 times of KSS bound), depending on the
freeze-out density, in the range of 8–12 MeV of temperature,
this phenomenon may be related to the liquid gas phase
transition. With the increasing of freeze-out density, we
observe the minimal value of η/s decreases and while its
corresponding turning temperature increases. The former is
consistent with the results showed in Fig. 12 and the latter can
be understood by the transition temperature/pressure increases
with the freeze-out density as expected by the pressure-density
phase diagram [1,51]. In contrast with the sensitivity of η/s
to freeze-out density, Fig. 12(b) demonstrates that the time
averaged η/s when the system is in a given ρ/ρ0 [0.2, 0.3] is
also very sensitive to the σNN . The larger the NN cross section
is, the smaller the η/s is, which means the nuclear matter
behaves much similar as an ideal fluid when nucleons collide
with each other more frequently.

In order to check the result of η/s, another signal of liquid
gas phase transition, namely intermediate mass fragment,
is also studied. The intermediate mass fragment which is
defined as charge number Z ∈ [3, Ztot/3], where Ztot is the
total charge number. These fragments are larger than typical
evaporated light particles and smaller than the residues and
fission products, and they can be considered as nuclear fog.
So the multiplicity of intermediate mass fragments (MIMFs)
is intimately related with the occurrence of liquid gas phase
transition. Usually the MIMFs increases first as the collision
system changes toward gas phase, and reaches a maximum,
then decreases when the system becomes vaporized [37].

The result of MIMFs as a function of temperature is showed
in Fig. 13. In panel (a), it is interesting to find that the higher
the density, the lower the transition temperature is, where the
maximum of MIMFs approaches. This trend is just coincident
with the result of η/s, which showed in Fig. 12(a) except
the exact value of the transition temperature; In MIMFs case,
the transition temperature T ∈ [7, 10], a little smaller than the
η/s’s, where T ∈ [8, 12]. The difference could be explained
as the nuclear matter is hotter in the central region, so we

FIG. 13. (Color online) The average of MIMFs as a function of
temperature at different fixed freeze-out density stages (a); the average
MIMFs on the whole freeze-out stage with ρ/ρ0 ∈ [0.2, 0.3] as a
function of temperature at different cross sections (b).
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argue that the minimum of the η/s could be a probe of
liquid gas phase transition. In panel (b) the average value
of MIMFs as a function of the average temperature when the
nuclear matter density ρ ∈ [0.2, 0.3]ρ0, it is found that the
multiplicities of the intermediate mass fragment increase as
the NN cross section is large. This can be understood as large
NN cross section increases the probability of intermediate mass
clusters formation. Furthermore, the transition temperature is
also increase as the NN cross section just like the results of
Fig. 12(b).

It is interesting to note that phase transition temperature
8–12 MeV which corresponds a local minimum of η/s is
basically coincident with previous works [52,53].

IV. SUMMARY AND OUTLOOK

Thermodynamical and transport properties of a fireball
formed in head-on Au + Au collisions are investigated in
a framework of quantum molecular dynamics model. The
relationships between different thermodynamic quantities are
explored. The influences of nucleon-nucleon cross section
and symmetry energy on the thermodynamical and transport
properties are also focused. We found that all the properties
are very sensitive to the nucleon-nucleon cross section and
insensitive to the symmetry energy. In our calculations, the
shear viscosity is calculated by a parametrization formula
developed by Danielewicz and entropy density is obtained by
a generalized hot Thomas-Fermi formalism. The present work
gives a time evolution of shear viscosity over entropy density
ratio of nuclear fireball, which shows that a transient minimal
η/s occurs in the largest compression stage. The results at
different beam energies show that the larger the compression,
the more ideal the nuclear fireball behaves like fluid. In the

present beam energy domain below 400 MeV/nucleon, this
transient η/s approaches to 5 times KSS bound.

In addition, temperature and density dependencies of η/s
are also investigated. It is of very interesting to observe
that a local η/s minimum, which is about 9–20 times KSS
bound, emerges from the temperature dependence of η/s at
different constant freeze-out densities (0.2–0.3 ρ0), which
corresponds to a liquid-gas phase transition occurring in
the intermediate energy heavy-ion collisions. And the larger
the NN cross section, the smaller the η/s is, which means
the nuclear matter behaves more like the ideal fluid. From
the temperature dependence of η/s, we learn that the phase
transition temperature rises up with the freeze-out density. In
order to check the result of η/s, another liquid gas phase
transition signal, the multiplicity of the intermediate mass
fragment is also checked, and a very nice coincidence is found.

Finally, we like to point out that the present work is still in
a phenomenological level for investigating η/s of hot nuclear
matter which is formed in intermediate energy heavy-ion
collisions, experimental measurements of η/s are still not
available so far. Therefore, proposals for direct probes of
shear viscosity and entropy density in intermediate energy HIC
are very crucial and welcome for constraining the transport
properties of nuclear matter around the liquid-gas phase
transition.
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