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Siegert approach within a microscopic description of nucleus-nucleus bremsstrahlung
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Previous studies of nucleus-nucleus bremsstrahlung within the microscopic cluster model made use of a
simplified current version of the electric transition operators, neglecting the meson exchange currents. The
present microscopic cluster model relies on operators based on the charge density derived from an extension
of the Siegert theorem valid for arbitrary photon energy. A part of the meson exchange current effects is then
implicitly included in this approach. Divergence problems in matrix elements are avoided. The model is applied
to the α + α system at low photon energy for which experimental data are available. In particular, good agreement
is obtained with data about on- and off-resonance 4+ → 2+ transitions. The differences between the charge and
current approaches are discussed on this example.
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I. INTRODUCTION

The description of electromagnetic transitions has been a
focus of interest in nuclear physics for a long time. Radiative
transitions within the continuum, also called bremsstrahlung,
were actively studied for nucleon-proton collisions [1–5] but
more rarely for other types of collisions at low energies, and
in particular in collisions between light ions. The energy of
photons emitted in such low-energy nucleus-nucleus scattering
is taken from the relative motion of the colliding nuclei.
Measurements of bremsstrahlung cross sections involving
light nuclei were performed mostly in the 1970s for proton-
deuteron [6], proton-α [7–9], α-3He [10], and α-α scatterings
[10,11]. The data were rather scarce and restricted to a peculiar
planar geometry. Later, a few studies concentrated on γ
transitions between molecular resonances in the 12C + 12C
[12] and α + α [13] collisions as a test of cluster structures.
However, the relative lack of experimental interest for light-
ion bremsstrahlung recently started to be reversed with the
perspective of using the t(d, nγ )α bremsstrahlung to diagnose
plasmas in fusion experiments [14].

Let us briefly summarize different types of models that
are, or will be, applied to the description of bremsstrahlung
processes. In the microscopic cluster model, the internal wave
functions of the colliding nuclei have a simple cluster structure
in the harmonic-oscillator shell model and the scattering wave
functions are fully antisymmetrized. The results are derived
from an effective nucleon-nucleon interaction without fitted
parameters. The potential model is also based on a cluster
assumption but the clusters are treated as pointlike particles
interacting with an effective nucleus-nucleus interaction. The
cluster assumption is relaxed in ab initio models where the
internal structures of the colliding nuclei are derived by solving
multinucleon Schrödinger equations with a realistic nucleon-
nucleon interaction, and the collision is described by fully
antisymmetrized wave functions with the same interaction.
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As shown in Ref. [15] for the α(α, αγ )α bremsstrahlung,
potential-model results are very sensitive to the potential used
and do not agree well with a microscopic cluster model
taking antisymmetrization exactly into account. The study
of the much more complicated t(d, nγ )α bremsstrahlung at
low energies will require using realistic forces in an ab
initio description. Ab initio wave functions have recently
been derived for this reaction [16]. It is crucial to pre-
pare a study of t(d, nγ )α by improving and simplifying
bremsstrahlung calculations within fully antisymmetrized
models.

For the sake of completeness, let us notice that
bremsstrahlung photons are observed in nuclear collisions
involving heavier nuclei and in higher ranges of energies
(see references in Refs. [17–20]). These processes cannot at
present be studied in microscopic models but the description
with phenomenological nucleon-nucleus or nucleus-nucleus
potentials can give satisfactory results [18–20]. These potential
models are essentially equivalent to the model derived by our
group where special attention has been devoted to solving
slow convergence problems [21]. Bremsstrahlung photons
also provide useful information in other nuclear processes
such as proton decay, α decay, fission, . . . (see references
in Refs. [19,20]). These processes can still be considered as
continuum to continuum transitions since the initial decaying
state is not square-integrable. The photons are then emitted
from the energy of the relative motion of the final particles.
These processes can also be studied in variants of the potential
model.

From now on, we focus on the microscopic description
of bremsstrahlung at low energies. Early theoretical stud-
ies were based on an expansion in powers of the photon
energy where the coefficients only depend on the on-shell
scattering amplitudes [22]. A significant progress came with
a microscopic model of the α(α, αγ )α bremsstrahlung [23]
using an effective nucleon-nucleon (NN) interaction within
the framework of the resonating-group method (RGM). A
good agreement with the few experimental data was obtained.
This opened the way to studies of various bremsstrahlung
reactions between light ions within the RGM [24–26] and
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within a potential model [27]. The calculation of cross
sections suffered from a slowness of convergence due to the
Coulomb part of the interaction. This problem was solved
for both potential and microscopic models by a separate
treatment of the Coulomb terms, which can be summed up
exactly [21]. Microscopic studies then focused on evaluations
of the model dependence of the calculations [15,28] and
extensions to heavier systems [29,30]. A particularity of
those calculations of bremsstrahlung cross sections is that the
so-called Siegert theorem, i.e. the replacement of the current
form of the electric transition operators by the charge-density
form, could not be applied because of divergences in some
matrix elements.

Describing electromagnetic transitions in nuclear systems
requires a fair knowledge of the nuclear current. This current
depends on the motion of the nucleons but also on the
motion of the mesons which are responsible for the NN
interaction. The contribution of the meson exchange currents
is not fully known and their inclusion in the nuclear models
is a heavy work. This problem was not addressed in previous
nucleus-nucleus bremsstrahlung studies [15,21,23–30] where
the meson exchange currents were neglected. At low photon
energies, when the long-wavelength approximation can be
applied, the direct inclusion of the meson exchange currents
is needlessly complicated because the electric transitions can
be described from the charge density rather than from the
current density. Since the effects of the nuclear interaction on
the charge density are weak, as first noted by Siegert [31], they
can be neglected to a good approximation. However, the
long-wavelength approximation cannot be performed in the
bremsstrahlung calculations because it leads to mathemat-
ical divergences. The dependence of the bremsstrahlung
description on the nuclear current cannot be fully removed.
We propose to reduce it nevertheless greatly by using an
extension of the Siegert theorem valid for arbitrary photon
energy [32].

Based on the extended Siegert theorem, a microscopic
cluster model of bremsstrahlung is developed and applied to
the α + α system for which experimental data are available.
The α(α, αγ )α bremsstrahlung reaction allows an evaluation
of the importance of corrections due to meson exchange
currents. Moreover, it allows testing the molecular structure
of 8Be by a comparison of on-resonance 4+ → 2+ cross
sections with off-resonance data [13]. The present study
should open the way to ab initio studies of bremsstrahlung
and in particular of the t(d, nγ )α bremsstrahlung based
on recent ab initio wave functions of the t(d, n)α transfer
reaction [16].

In Sec. II, the photon-emission operator is defined and its
Siegert form is derived. Then, the microscopic cluster model
of bremsstrahlung is described and the calculations of the
electric transition matrix elements are explained. In Sec. III,
the model is applied to the α + α system for an effective
NN interaction adapted to the cluster approach. The cross
sections obtained with this Siegert approach are compared
with the non-Siegert cross sections and with experimental
data. The effects of the nuclear current in the Siegert approach
are also analyzed. Concluding remarks are presented in
Sec. IV.

II. NUCLEUS-NUCLEUS BREMSSTRAHLUNG MODEL

A. Cross sections

Two nuclei with reduced mass μ collide at the initial
relative momentum pi = h̄ki in the z direction and energy
Ei = p2

i /2μ. After emission of a photon with energy Eγ

and momentum pγ = h̄kγ in the direction �γ = (θγ , ϕγ ),
the system has a final momentum pf = h̄kf in the direction
�f = (θf , ϕf ) and an energy Ef = p2

f /2μ, which satisfies

Ef = Ei − Eγ , (1)

where the small recoil energy is neglected. For the sake
of clarity, the presentation is restricted to spinless nuclei.
Moreover, the nuclei are assumed to be the same in the initial
and final states.

Evaluating the bremsstrahlung cross sections requires
calculating the matrix element of the photon-emission operator
He between the incoming initial state �

(+)
i with energy Ei

and the outgoing final state �
(−)
f (�f ) with energy Ef and

direction �f .
The photon-emission operator He can be expanded as a sum

of multipoles [33],

He = −
∑
λμσ

qσ (−1)λασ
λ Mσ

λμDλ
μ−q(−ϕγ ,−θγ , 0), (2)

where q = ±1 is the circular polarization, Dλ
μ−q is the rotation

matrix depending on the Euler angles (−ϕγ ,−θγ , 0), Mσ
λμ

is an electromagnetic transition multipole operator, σ = 0
or E corresponds to an electric multipole and σ = 1 or M
corresponds to a magnetic multipole, and ασ

λ is given by

ασ
λ = −

√
2π (λ + 1)iλ+σ kλ

γ√
λ(2λ + 1)(2λ − 1)!!

. (3)

Defining the multipole matrix elements by

uσ
λμ(�f ) = ασ

λ 〈�(−)
f (�f )|Mσ

λμ|�(+)
i 〉, (4)

the differential bremsstrahlung cross section is given by [21]

dσ

dEγ

= Eγ

π2h̄5c

p2
f

1 + δ12

×
∑
σλμ

∫ π

0
(2λ + 1)−1

∣∣uσ
λμ(θf , 0)

∣∣2
sin θf dθf , (5)

where δ12 is equal to unity if nuclei 1 and 2 are identical
and to zero otherwise. This formula is not specific to the
microscopic approach but is also valid in the potential model
for instance [21]. The explicit formulas to obtain other
differential bremsstrahlung cross sections from the multipole
matrix element uσ

λμ can be found in Refs. [21,23]. They are
not repeated here.

To calculate the matrix element uσ
λμ, the initial and final

states are expanded in partial waves. In a numerical approach,
for some configurations, many partial waves are required to
reach convergence. However, nuclear effects are restricted
to few partial waves whereas Coulomb effects contribute
up to much higher orbital momenta. As explained in Ref. [21],
the bremsstrahlung matrix element can be separated into a
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purely Coulomb part and a fast-converging series. Then, uσ
λμ

can be approximated by

uσ
λμ ≈ uσC

λμ [∞] + uσ
λμ[lmax] − uσC

λμ [lmax], (6)

where uσ
λμ[lmax] means that only the partial waves up to the

orbital momentum lmax are taken into account in the calculation
of uσ

λμ. The index C is added when the matrix element is
calculated in a purely Coulombic pointlike nuclei approach.
The truncated series uσ

λμ[lmax] − uσC
λμ [lmax] converges for small

values of lmax since the nuclear effects are restricted to few
partial waves. In the Coulomb contribution uσC

λμ [∞], the partial
wave expansion is summed up analytically, thus avoiding the
problem of the slow convergence [21].

B. Electric multipole operators

Since only the electric transitions are concerned by the
Siegert approach and since they dominate for light-ion
bremsstrahlung at low photon energy, the magnetic transitions
are not considered hereafter. The electric transition multipole
operators are defined by [34]

ME
λμ =

√
λ

λ + 1

(2λ + 1)!!

kλ
γ c

∫
J · AE

λμd r, (7)

where J is the intrinsic nuclear current density and AE
λμ is the

electric multipole defined, in the Coulomb gauge, as [35]

AE
λμ(r) = i

kγ

√
λ(λ + 1)

χλμ(kγ , r) (8)

with

χλμ(k, r) =
(

k2
γ r + ∇ ∂

∂r
r

)
φλμ(kγ r), (9)

φλμ(kr) = jλ(kr)Yλμ(�), (10)

and r = (r,�).
The current density J can be divided in two parts [36],

J = J c + Jm, (11)

where J c is associated with the charge density and Jm

with the magnetization density. The current J c depends not
only on the motion of the protons but also on the motion
of charged mesons or non-nucleonic constituents, therefore
on the NN interaction too. However, evaluating the meson
currents and taking directly their effects into account is a heavy
task, all the heavier as the nuclear interaction is complicated.
At low photon energy, a common method to get around
this difficulty is to deduce the electric transition multipoles
from the charge density rather than from the current density.
The effects of the nuclear interaction on the charge density
being weak, they can be neglected to a good approximation
[31]. However, the full removal of the current density in
the expression of the electric transition multipole is only
possible at the long-wavelength approximation, which cannot
be performed in the bremsstrahlung calculations. Indeed, since
the initial and final states are in the continuum and hence not
square-integrable, the long-wavelength approximation leads to
divergent matrix elements of the electric transition multipole
operators. Nevertheless, the current-density dependence of the

electric transition multipole operator can be largely reduced by
using an extension of the Siegert theorem for arbitrary photon
energy [32]. Let us summarize this approach.

The electric multipole AE
λμ is divided into a gradient term

and a rest,

AE
λμ(r) = ∇�λμ(r) + A′E

λμ(r). (12)

This separation is not unique since �λμ can be chosen
arbitrarily insofar as A′E

λμ is defined consistently. However, the
compatibility with the Siegert theorem restricts to functions
�λμ with the behavior

�λμ(r) −→
kγ →0

i
√

λ + 1kλ−1
γ√

λ(2λ + 1)!!
rλYλμ(�) (13)

at low photon energies. Moreover, to avoid divergence prob-
lems, additional constraints on �λμ are added,

r�λμ(r) bounded,
∂

∂r
�λμ(r) −→

r→∞ 0. (14)

A practical choice of �λμ is specified in Eq. (21). By inserting
Eq. (12) in Eq. (7) and after an integration by parts, the
divergence of the current density appears in the expression of
ME

λμ. It can then be removed by using the current conservation

∇ · J(r) + i

h̄
[H, ρ(r)] = 0, (15)

where H is the internal Hamiltonian, i.e. with the center of
mass (c.m.) removed, and ρ is the internal charge density of the
system of A nucleons. Then, the electric transition multipole
operator is written as

ME
λμ =

√
λ

λ + 1

(2λ + 1)!!

kλ
γ c

×
∫ {

i

h̄
[H, ρ(r)]�λμ(r) + J · A′E

λμ

}
d r. (16)

If �
(+)
i and �

(−)
f are assumed to be exact eigenstates of

the internal Hamiltonian, the matrix element of the electric
transition multipole operator between initial and final states is
given by

〈�(−)
f |ME

λμ|�(+)
i 〉 =

√
λ

λ + 1

(2λ + 1)!!

kλ
γ c

×
∫

〈�(−)
f | − ickγ ρ(r)�λμ(r)

+ J · A′E
λμ|�(+)

i 〉d r, (17)

where Eq. (1) is used. The r.h.s. of Eq. (17) defines the Siegert
form of the electric transition multipole operator, noted as
M

E(S)
λμ ,

M
E(S)
λμ =

√
λ

λ + 1

(2λ + 1)!!

kλ
γ c

×
∫ [−ickγ ρ(r)�λμ(r) + J · A′E

λμ

]
d r. (18)

As expected, at low photon energy, the dominant part of
M

E(S)
λμ only depends on the charge density and not on the
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current density. Consequently, at low photon energy, using
an approximate current should be more accurate in the Siegert
operator (18) than in the non-Siegert operator (7).

To evaluate the residual contribution of the current density
to the Siegert operator, an approximate Siegert operator fully
neglecting the current is also defined as

M
E(J=0)
λμ = −i

√
λ

λ + 1

(2λ + 1)!!

kλ−1
γ

∫
ρ(r)�λμ(r)d r. (19)

Comparing the results obtained from M
E(S)
λμ and M

E(J=0)
λμ

enables us to study the importance of the current-dependent
term of the Siegert operator.

To define the Siegert operator in an unequivocal way, �λμ

has to be chosen. By inspection of Eq. (8), a natural choice
seems to be

�λμ(r) = i

kγ

√
λ(λ + 1)

∂

∂r
rφλμ(kγ r). (20)

However, this choice does not fulfill conditions (14). Other
choices for �λμ were considered in Ref. [32]. Among them,
only the so-called standard choice fulfills Eq. (14) and enables
us to have only convergent integrals in the calculation of matrix
elements for electric transitions between two continuum states.
This standard choice, which is considered hereafter in this
paper, is defined by

�λμ(r) = i
√

λ + 1

kγ

√
λ

φλμ(kγ r). (21)

In a conceptual point of view, the arbitrary nature of this choice
is not problematic since it has, in principle, no influence.
The Siegert and non-Siegert operators, defined by Eqs. (18)
and (7), lead exactly to the same results if consistent current
and charge densities are considered and the exact eigenstates
of the internal Hamiltonian are used. However, in many-body
nuclear models, the eigenstates of the Hamiltonian as well as
the current and charge densities are known only approximately.
In practice, differences between the Siegert and non-Siegert
approaches can thus arise and the particular choice of �λμ

could have some effects on the results. Nevertheless, at low
photon energy, these effects are weak as will be explained
in Sec. II D. Differences between the Siegert and non-Siegert
approaches are studied in Sec. III for the α + α system.

Let us specify the current and charge densities that are
considered here. To limit the complexity of the calculations,
the current density for free nucleons is considered. In this
approximation, regarding the nucleons as point particles with
a charge and a magnetic moment, the charge current density
is given by [34]

J c(r) = e

2mN

A∑
j=1

(
1

2
− tj3

)
× [ pj − A−1 Pc.m., δ(rj − Rc.m. − r)]+, (22)

where [a, b]+ is a shorthand notation for a · b + b · a, the
magnetization current density by

Jm(r) = e

2mN

A∑
j=1

gsj∇ × δ(rj − Rc.m. − r)sj , (23)

and the charge density by

ρ(r) = e

A∑
j=1

(
1

2
− tj3

)
δ(rj − Rc.m. − r). (24)

In these expressions, A is the mass number of the system,
mN is the nucleon mass, rj , pj , sj , and tj are the coordinate,
momentum, spin, and isospin of nucleon j , Rc.m. and Pc.m. are
the c.m. coordinate and momentum, and gsj = (gn + gp)/2 +
tj3(gn − gp) where gn and gp are the neutron and proton
gyromagnetic factors, respectively.

From these current densities, the non-Siegert electric
transition multipole operators are given explicitly by [37]

ME
λμ = ie(2λ + 1)!!

mNc(λ + 1)kλ+1
γ

×
A∑

j=1

[(
1

2
− tj3

)
χλμ(kγ , r) · ( pj − A−1 Pc.m.)

− 1

2
k2
γ gsj (r × ∇)φλμ(kγ r) · sj

]
r=rj −Rc.m.

. (25)

This is the expression used in earlier works. The spin-
independent part of ME

λμ comes from the convection current
density J c and the spin-dependent part from the magnetization
current density Jm. The Siegert electric transition multipole
operators are written explicitly with Eq. (21) as

M
E(S)
λμ = e(2λ + 1)!!

kλ
γ

A∑
j=1

(
1

2
− tj3

)
φλμ[kγ (rj − Rc.m.)]

+ ie(2λ + 1)!!

2mNc(λ + 1)kλ+1
γ

A∑
j=1

{(
1

2
− tj3

)
[χλμ(kγ , r)

− (λ + 1)∇φλμ(kγ r), pj − A−1 Pc.m.]+

− k2
γ gsj (r × ∇)φλμ(kγ r) · sj

}
r=rj −Rc.m.

. (26)

The first sum in Eq. (26) comes from the charge density.
The second sum comes from the current density (the spin-
independent part from J c and the spin-dependent part from
Jm). At the approximation where the current is neglected, the
Siegert operator is thus limited to the first sum,

M
E(J=0)
λμ = e(2λ + 1)!!

kλ
γ

A∑
j=1

(
1

2
− tj3

)
φλμ[kγ (rj − Rc.m.)].

(27)

The spin term is the same for the Siegert and non-Siegert
operators since∫

Jm · A′E
λμdr =

∫
Jm · AE

λμdr. (28)

As the effects of the nuclear interaction are expected to be
weaker on the charge density than on the current density [31],
the Siegert operator M

E(S)
λμ should have preference over ME

λμ.
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C. Scattering wave functions

The scattering wave functions are described by the same
model as in Ref. [23]. Their definition is briefly summarized
here.

In the microscopic cluster approaches, the scattering wave
functions can be expanded in partial waves defined by

ψlm =
√

A!

A1!A2!(1 + δ12)
Aφ1φ2Y

m
l (�ρ)gl(ρ), (29)

where A1 and A2 are the mass numbers of nuclei 1 and
2, A is the antisymmetrization projector, ρ = (ρ,�ρ) is the
relative coordinate between the cluster c.m., and φ1 and φ2 are
the internal wave functions of nuclei 1 and 2. To simplify
the presentation, the spins of the colliding nuclei are not
considered here and hereafter.

In the generator coordinate method (GCM) version of the
model [38,39], a particular ansatz is considered for φ1 and φ2,
allowing a systematic calculation of the matrix elements. The
internal wave functions φ1 and φ2 are obtained by removing
a c.m. factor from Slater determinants describing the ground
states of the clusters within the harmonic oscillator shell model.
The same oscillator parameter b is used for both nuclei. The
gl relative function is approximated as a sum of projected
Gaussian functions �l(ρ,Rn) defined by

�l(ρ,Rn) = (μ′/πb2)3/4e−μ′(ρ2+R2
n)/2b2

il(μ
′ρRn/b

2), (30)

where Rn are real parameters called generator coordinates,
μ′ = μ/mN , and il is a modified spherical Bessel function
of the first kind or spherical Hankel function. This particular
choice of gl enables us to rewrite ψlm as a function of Slater
determinants,

φc.m.ψ
lm =

∑
n

f l
nφ

lm(Rn), (31)

where φc.m. ∝ exp(−AR2
c.m./2b2) is the c.m. harmonic-

oscillator 0s wave function with the oscillator parameter
b/

√
A centered around the origin. The function φlm(Rn) is

the projection on the relative orbital momentum l of a Slater
determinant in the two-center harmonic-oscillator shell model
with centers separated by a distance Rn. The key point of the
GCM is that the matrix elements between Slater determinants
can be evaluated efficiently and systematically. The main
drawback of the GCM expansion (31) is that the projected
Gaussian functions are not able to reproduce the correct
asymptotic behavior of the relative function gl . This problem is
solved by the microscopic R-matrix method (MRM) [40,41].
In this approach, the configuration space is divided at the
channel radius a into two regions: an internal region where ρ <
a and an external region where ρ > a. In the internal region,
the scattering wave function is described by the GCM as
explained before with full account of the antisymmetrization.
In the external region, the antisymmetrization between the
colliding nuclei is neglected and the radial relative function gl

is approximated by its asymptotic behavior,

ψlm
ext = φ1φ2Y

m
l (�ρ)gl

ext(ρ) (32)

with

gl
ext(ρ) = 2[π (1 + δ12)(2l + 1)/v]1/2ilei(σl+δl )

× [Fl(η, kρ) cos δl + Gl(η, kρ) sin δl]/kρ, (33)

where Fl and Gl are the regular and irregular Coulomb
functions, η is the Sommerfeld parameter, σl and δl are the
Coulomb and nuclear phase shifts, and k and v are the relative
wave number and velocity. When the colliding nuclei are
identical, a residual effect of the antisymmetrization between
the nuclei in the external region is that Eq. (32) must be
properly symmetrized. The partial wave expansion has to be
limited to even values of l if the colliding nuclei are identical
bosons.

The coefficients f l
n of Eq. (31) and the nuclear phase shifts δl

are evaluated by solving a Bloch-Schrödinger equation based
on a microscopic Hamiltonian, associated with the continuity
condition between ψlm

int and ψlm
ext at a [40,41]. The wave

function is insensitive to the value of a if a is chosen large
enough, i.e., larger than the range of the nuclear forces and
of antisymmetrization effects between nucleons belonging to
different nuclei.

D. Matrix elements of electric transition multipole operators

The calculation of the matrix elements of the electric
transition multipole operators ME

λμ between partial waves was
previously discussed in Ref. [23], but the calculation for the
Siegert operator M

E(S)
λμ is new. For the sake of comparison, the

calculations for both operators are detailed here.
Let us note Mλμ for ME

λμ, M
E(S)
λμ , or M

E(J=0)
λμ . The matrix

element of Mλμ is approximated with a good accuracy by [23]

〈ψlf mf |Mλμ|ψlimi 〉 = 〈
ψ

lf mf

int

∣∣M̃λμ

∣∣ψlimi

int

〉
− 〈

ψ
lf mf

int

∣∣M̃λμ

∣∣ψlimi

int

〉
ext

+ 〈
ψ

lf mf

ext

∣∣Mλμ

∣∣ψlimi

ext

〉
ext, (34)

where the first matrix element is calculated microscopically
over the whole space while the last two are evaluated over
the external region, by neglecting the antisymmetrization. The
operator M̃λμ is the long-wavelength approximation of Mλμ.
Replacing Mλμ by M̃λμ can be done for the matrix elements

between ψ
limi

int and ψ
lf mf

int without that convergence problems
arise since the wave functions in the internal region are square-
integrable. This substitution is not essential but it leads to much
less complicated matrix elements.

At the long-wavelength approximation, the Siegert op-

erator M̃
E(S)
λμ is deduced from Eq. (13). Performing the

long-wavelength approximation enables thus one to eliminate
totally the dependence on the current and on the particular
choice of �λμ in the Siegert operator.

The electric transition multipole operators are explicitly
given at the long-wavelength approximation by

M̃
E(S)
λμ = M̃

E(J=0)
λμ = e

A∑
j=1

(
1

2
− tj3

) [
rλY

μ
λ (�)

]
rj −Rc.m.

(35)
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and [23]

M̃
E
λμ = ie

mNckγ

A∑
j=1

(
1

2
− tj3

)
× [∇rλY

μ
λ (�)

]
rj −Rc.m.

· (
pj − A−1 Pc.m.

)
. (36)

The Siegert operator M̃
E(S)
λμ has the advantage over the non-

Siegert operator M̃
E
λμ in that it depends only on the nucleon

coordinates and not on the nucleon momenta. The calculation
of the M̃

E(S)
λμ matrix element is thus easier. Moreover, the initial

and final states, which are considered in this model, are not
exact. Since the wave functions are generally better known than
their derivatives, it is preferable to avoid derivatives when it is
possible, as recommended in Ref. [36].

The calculation of the first term of the r.h.s. of Eq. (34)
is simplified by working with individual nucleon coordinates
thanks to the property [23,42]〈

ψ
lf mf

int

∣∣M̃λμ

∣∣ψlimi

int

〉 = 〈
φc.m.ψ

lf mf

int

∣∣M̃λμ(o.b.)
∣∣φc.m.ψ

limi

int

〉
,

(37)

where M̃λμ(o.b.) is the one-body form of M̃λμ obtained by
replacing rj − Rc.m. by rj and pj − A−1 Pc.m. by pj . The
r.h.s. of Eq. (37) is the matrix element of a one-body operator
evaluated between linear combinations of projected Slater
determinants. Therefore, it can be evaluated efficiently with
Brink-Löwdin techniques [43,44]. Equation (37) comes from
the particular form of the scattering wave function.

The calculation of the matrix elements evaluated over
the external region in Eq. (34) is simplified by neglecting
the antisymmetrization between nuclei, consistently with the
R-matrix approach. Again, a symmetrization between nuclei
has to be considered if colliding nuclei are identical, but it
causes no additional difficulty. Over the external region, the
asymptotic form of the electric transition multipole operators
can be used. Then, the matrix elements over the external region
can be expressed as one-dimensional integrals, as in Ref. [23].
The matrix element of Mλμ between the external parts of the
wave functions is given by〈

ψ
lf mf

ext

∣∣Mλμ

∣∣ψlimi

ext

〉
ext

= (2λ + 1)!!k−λ−1
γ

eh̄

μc

∫
Y

mf ∗
lf

Y
μ
λ Y

mi

li
d�ρ

× [Z1Mλ(A2kγ /A) + (−1)λZ2Mλ(A1kγ /A)], (38)

where Mλ is given in the Siegert form by

M
E(S)
λ (k) = M

E
λ(k) + a2

2
jλ(ka)

[
g

lf ∗
ext

dg
li
ext

dρ
− g

li
ext

dg
lf ∗
ext

dρ

]
ρ=a

+ a2

2

[
g

lf ∗
ext g

li
ext

djλ(kρ)

dρ

]
ρ=a

, (39)

or when the current term is neglected by

M
E(J=0)
λ (k) = μc

h̄
kγ

∫ ∞

a

ρ2g
lf ∗
ext g

li
extjλ(kρ)dρ, (40)

and in the non-Siegert form by [23]

M
E
λ(k) = 1

2(λ + 1)
[λ(λ + 1) + li(li + 1) − lf (lf + 1)]

×
∫ ∞

a

g
lf ∗
ext g

li
ext

d

dρ
ρjλ(kρ)dρ

+ λ

∫ ∞

a

ρg
lf ∗
ext

dg
li
ext

dρ
jλ(kρ)dρ. (41)

The Siegert and non-Siegert matrix elements over the external
region only differ by a term evaluated at the channel radius.
However, if the long-wavelength approximation is accurate
over the internal region, it should remain accurate at the
channel radius too. If the long-wavelength approximation is
applied to the term evaluated at the channel radius, the Siegert
matrix element over the external region no longer depends on
the particular choice of �λμ, as is the case for the Siegert
matrix element over the internal region. Consequently, at low
photon energy, the Siegert matrix element is nearly insensitive
to the particular choice of �λμ when conditions (13) and (14)
are satisfied.

The integrals appearing in Eqs. (40) and (41) converge
very slowly, which makes a numerical integration tedious.
However, the convergence rate can be greatly improved by
using a contour integration method [45], widely applied in the
continuum-to-continuum electromagnetic transition frame-
work [23,24,46]. This method is detailed in the Appendix.

The second term of the r.h.s. of Eq. (34) is obtained
from Eqs. (38)–(41) by replacing gext by gint and jλ(kρ) by
(kρ)λ/(2λ + 1)!!. Only the terms of the lowest order in kρ
are kept, since for this matrix element the electric multipole
is considered at the long-wavelength approximation. After
simplifications, one obtains〈

ψ
lf mf

int

∣∣M̃λμ

∣∣ψlimi

int

〉
ext

= eh̄

μckγ Aλ

[
Z1A

λ
2 + (−1)λZ2A

λ
1

]
M̂λ

×
∫

Y
mf ∗
lf

Y
μ
λ Y

mi

li
d�ρ, (42)

where M̂λ is given by

M̂
E(S)
λ = M̂

E(J=0)
λ = μc

h̄
kγ

∫ ∞

a

ρλ+2g
lf ∗
int g

li
intdρ (43)

and

M̂
E
λ = 1

2
[λ(λ + 1) + li(li + 1) − lf (lf + 1)]

×
∫ ∞

a

ρλg
lf ∗
int g

li
intdρ + λ

∫ ∞

a

ρλ+1g
lf ∗
int

dg
li
int

dρ
dρ.

(44)

III. APPLICATION TO α + α BREMSSTRAHLUNG

A. Model specifications

The model developed here is applied to the α + α
bremsstrahlung, which is one of a few collisions between light
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ions for which experimental data exist. The results obtained
with the Siegert operator are compared with the ones obtained
with the non-Siegert operator and with experimental data when
they are available. The importance of the current-dependent
term of the Siegert operator is evaluated by comparing results
obtained with the full Siegert operator and with the Siegert
operator with the current term neglected.

For the α + α system, odd-parity multipoles are forbidden
since the α particles are bosons and M1 transitions are
forbidden at the long-wavelength approximation because of
the orthogonality between the initial and final states [42]. Only
the E2 dominant transitions are considered here. The oscillator
parameter b is set at 1.36 fm to reproduce the experimental α
radius. Ten generator coordinates varying from 0.5 to 7.7 fm
with a step of 0.8 fm are used to describe the wave function
in the internal region. The effective NN interaction is the sum
of the central part of the Minnesota interaction [47] and the
Coulomb potential. The exchange parameter u is set at the
value 0.9474 to reproduce with this model the experimental
phase shifts with a good accuracy [48]. The matrix elements
uE

2μ are calculated by Eq. (6) with lmax = 8. The results are
not modified significantly when lmax is increased from 8 to 10.
The purely Coulombic matrix element uσC

λμ [∞] is calculated
exactly following the method presented in Ref. [21]. This ma-
trix element has the peculiarity of being exactly the same in the
Siegert and non-Siegert approaches. Two values of the channel
radius are considered in this model, a = 5.3 fm and a =
6.1 fm, to check the insensitivity of the results to the value of
a. Only the results for a = 5.3 fm are displayed in the figures.

B. Cross sections

In Fig. 1, the angle-integrated cross sections dσ/dEγ are
shown for three values of the photon energy: Eγ = 1, 5,
and 9 MeV. Relative differences between cross sections at
the two considered values of the channel radius are smaller
than 1% at Eγ = 1 MeV, 1.5% at 5 MeV, and 2.3% at
9 MeV. In all cases, the absolute differences are bounded by
0.5 nb/MeV. For all considered energies, differences between
the Siegert approach and its null-current approximation are
totally negligible. Differences between the Siegert and non-
Siegert approaches are negligible at Eγ = 1 MeV too. They
are still weak at Eγ = 5 MeV but they become quite important
at Eγ = 9 MeV. These results indicate that the differences
between the Siegert and non-Siegert approaches increase
with the photon energy. This can be understood intuitively.
Indeed, for a central NN interaction, the differences between
the Siegert and non-Siegert approaches mainly come from
the inaccuracy of the scattering wave functions, and hence
from the cluster approximation. The lower the photon energy
is, the weaker the contribution of the internal region to
the bremsstrahlung matrix element is. Moreover, the larger
the relative coordinate ρ is, the more accurate the cluster
approximation is. Hence, the results based on the Siegert and
non-Siegert approaches must be close at low photon energy.

Let us compare the model results with experimental
data. Only few experimental differential bremsstrahlung cross
sections are available [10,11] and all of them are measured in
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FIG. 1. Angle-integrated cross sections dσ/dEγ for Eγ =
(a) 1 MeV, (b) 5 MeV, and (c) 9 MeV as a function of the initial energy
Ei . Full lines correspond to the Siegert operator M

E(S)
λμ and dashed

lines to the non-Siegert operator ME
λμ. The null-current approximation

M
E(J=0)
λμ is indistinguishable from the full lines.

the equal-angle coplanar Harvard geometry, for which the α
particles are detected in the directions �1 = (θ, 0) and �2 =
(θ, π ). The photon is undetected. Differential bremsstrahlung
cross sections for the Harvard configurations θ = 35◦ and
θ = 37◦ are shown in Fig. 2.

For the displayed energy ranges, absolute differences
between cross sections at the two considered values of the
channel radius are smaller than 0.08 μb/sr2.

Again, differences between the Siegert approach and its
null-current approximation are totally negligible. Since in the
Harvard configuration the photon energy is proportional to the
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FIG. 2. Laboratory differential cross section d2σ/d�1d�2 in the
coplanar geometry at (a) θ = 35◦ and (b) θ = 37◦ as a function of
the initial energy Ei . Full lines correspond to the Siegert operator
M

E(S)
λμ and dashed lines to the non-Siegert operator ME

λμ. The null-

current approximation M
E(J=0)
λμ is indistinguishable from the full lines.

Experimental data are from Refs. [10,11].

initial energy, one notes again that the differences between the
Siegert and non-Siegert approaches are weak at low photon
energy. Experimental data being available only at low initial
energy Ei , the photon energy given by

Eγ = (1 − tan2 θ )Ei (45)

is rather small and the agreement with the experiments is
similar for both approaches.

In a quite recent paper [13], cross sections of γ transitions
in 8Be were measured. They were interpreted as transitions
from 4+ to 2+ states. However, since 8Be is unbound,
radiative transitions in this nucleus are nothing but α + α
bremsstrahlung radiations and, though 4+ to 2+ transitions
are dominant, radiative transitions take place actually between
two continuum states. The bremsstrahlung model developed
here enables a proper description of this experiment.

In Ref. [13], integrated cross sections are measured for
two incident energies: one (Eres) that should correspond to the
4+ resonance energy and the other (Eoff) that is above this
resonance. Taking account of the energy loss of the beam in
the intervening material before the collision, the on-resonance
and off-resonance energies are given by Eres = 10.85 MeV
and Eoff = 12.95 MeV [49].

TABLE I. Theoretical and experimental cross sections
σ (Emin, Emax) at Ei = Eres and Ei = Eoff . In parentheses, cross
sections considering only 4+ to 2+ transitions are given. Experimental
data come from Ref. [13].

Ei Emin Emax Siegert Non-Siegert Expt.
(MeV) (MeV) (MeV)

10.85 5.0 12.5 200 (178) 219 (199) 165 ± 54
12.95 7.0 14.5 44 (12) 53 (24) 39 ± 26

The bremsstrahlung events are detected only if the photon
energy is in a certain range. The integrated cross sections that
are measured can be defined by

σ (Emin, Emax) =
∫ Emax

Emin

dσ

dEγ

dEγ , (46)

where the differential cross section dσ/dEγ is given by Eq. (5).
The Eγ range is [5.0, 12.5] MeV for the incident energy
Ei = Eres and [7.0, 14.5] MeV for Ei = Eoff [13]. For the
theoretical cross sections, the integration over Eγ is limited
to Ei since Eγ larger than Ei is unphysical. When Eγ tends
to Ei , the final energy Ef tends to zero. Consequently, the
final wave function is damped by the Coulomb barrier and
the differential bremsstrahlung cross section dσ/dEγ tends to
zero. The integration in Eq. (46) is performed numerically.

Let us note that the differential cross section dσ/dEγ tends
to infinity when the photon energy tends to zero. Very low
photon energies would require treating bremsstrahlung and
elastic scattering in a common framework [50]. However, in
practice, this problem is avoided since the lower limit of the
photon energy detection Emin is large enough in the considered
experiments.

The experimental and theoretical cross sections are com-
pared in Table I. Experimental errors include statistical and
systematic errors. Both approaches lead to results in agreement
with the experimental data. The Siegert results are, however,
smaller than the non-Siegert ones by about 10% on resonance
and 20% off resonance. They seem to be closer to experiment.
To evaluate the importance of the 4+ to 2+ transitions,
cross sections considering only these transitions are given in
parentheses in Table I. At the resonance energy Eres, the 4+ to
2+ transitions are actually dominant. Their contribution to the
total cross section is about 90%. Off resonance, their relative
importance is weaker. Their contribution is smaller than 50%.

Other values of the initial energy are also considered. The
integrated cross sections for both Eγ ranges are shown in Fig. 3
as a function of the initial energy Ei . Integrated bremsstrahlung
cross sections were already calculated in a potential model but
considering separately the transitions to the 0+ states [51] and
the transitions to the 2+ states [52]. Moreover, the Eγ range
was not the same as the experimental one which does not
enable a direct comparison.

Again, results obtained with the Siegert approach and
its null-current approximation are nearly identical. Relative
differences between cross sections at the two considered
values of the channel radius are smaller than 1% and absolute
differences are smaller than 1.6 nb. For all considered energies,
differences between the Siegert approach and its null-current
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FIG. 3. Cross sections σ (Emin, Emax) as a function of the
initial energy Ei for (a) [Emin, Emax] = [5.0, 12.5] MeV and
(b) [Emin, Emax] = [7.0, 14.5] MeV. Full lines correspond to the
Siegert operator M

E(S)
λμ and dashed lines to the non-Siegert operator

ME
λμ. The null-current approximation M

E(J=0)
λμ is indistinguishable

from the full lines. Experimental data come from Ref. [13].

approximation are totally negligible. The differences between
the Siegert and non-Siegert approaches remain weak in
comparison with the experimental error bars.

The Eγ range has a rather large influence on the integrated
cross sections. Comparing theoretical and experimental results
thus requires using the same Eγ range. This point was
overlooked in Ref. [13].

IV. CONCLUSION

Previous microscopic models of nucleus-nucleus
bremsstrahlung totally neglected the contribution of the
meson exchange currents to the photon-emission operator.
In this work, a microscopic cluster model of bremsstrahlung
is developed which implicitly takes them partially into
account by using an extension of the Siegert theorem. The
photon-emission operator is deduced from the nuclear density
rather than from the nuclear current. Strictly speaking,
the nuclear current dependence is not totally canceled,
but the results show that this residual dependence is negligible
for the α(α, αγ )α reaction.

In addition to this implicit inclusion of the meson exchange
currents, the Siegert photon-emission operator has the advan-
tage over the non-Siegert one of leading to less complicated

calculations. Consequently, considering the Siegert photon-
emission operator will make easier the development of ab
initio bremsstrahlung models.

The microscopic cluster model is applied to the α + α
bremsstrahlung for an effective NN interaction. Differences
between cross sections obtained with the Siegert and non-
Siegert approaches increase with the photon energy. They are
quite weak for photon energies limited to 5 MeV but start
to become important for photon energies around 10 MeV.
A good agreement is obtained with the experimental data of
Ref. [13] about on- and off-resonance 4+ → 2+ transitions,
but the error bar is too large to clearly discriminate the Siegert
and non-Siegert approaches.

It will be interesting to apply the microscopic cluster model
to other low-energy reactions involving light nuclei. A first
test on α+nucleon bremsstrahlung, where E1 transitions are
not forbidden, would be an important step to prepare ab initio
studies of the t(d, nγ )α reaction. It should also be possible
to extend microscopic cluster-model descriptions to proton
scattering on 12C or 16O for which experimental data exist at
low energies [53–57].
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APPENDIX: APPLICATION OF THE CONTOUR
INTEGRATION METHOD

In this Appendix, a variant of the contour integration
method proposed in Ref. [45] is presented and applied, as
an illustration, to the calculation of the integral∫ ∞

a

ρ2g
lf ∗
ext g

li
extjλ(kρ)dρ, (A1)

which appears in Eq. (40).
The integration range is first divided in two: from a to ρR

and from ρR to infinity. The second integral is written after
some algebraic manipulations as a function of the incoming
and outgoing Coulomb wave functions,∫ ∞

ρR

ρ2g
lf ∗
ext g

li
extjλ(kρ)dρ

= 2(1 + δ12)π

√
(2li + 1)(2lf + 1)

kikf
√

vivf

e
i(δli

+σli
−δlf

−σlf
)
ili−lf

× Im

{
i

∫ ∞

ρR

Oli (ηi, kiρ)eiδli jλ(kρ)

× [
Ilf (ηf , kf ρ)e−iδlf − Olf (ηf , kf ρ)eiδlf

]
dρ

}
, (A2)
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FIG. 4. Schematic view of the contour integration method.

where Ol an Il are the outgoing and incoming Coulomb wave
functions defined by

Ol(η, x) = Gl(η, x) + iFl(η, x), (A3)

Il(η, x) = Gl(η, x) − iFl(η, x). (A4)

The dominant part of the oscillating terms in the integral in
Eq. (A2) behaves asymptotically as

ei(ki±kf ±k)ρ. (A5)

Since ki is larger than kf and much larger than k (which is
proportional to kγ ), the sign of the imaginary exponential in
Eq. (A5) is positive. This property is used in the choice of the
contour integration. The integral in Eq. (A2) can be written as
a sum of integrals in the complex plane,∫ ∞

ρR

f (ρ)dρ =
∫

V+
f (z)dz +

∫
C+

f (z)dz −
∮

D+
f (z)dz,

(A6)

where the function f is defined by

f (ρ) = Oli (ηi, kiρ)eiδli jλ(kρ)

× [Ilf (ηf , kf ρ)e−iδlf − Olf (ηf , kf ρ)eiδlf ] (A7)

and the integration contours are shown in Fig. 4. Since the
function f has no pole in D+, the integral of f over the contour
of D+ is null. When the radius of D+ tends to infinity, the
integral of f over C+ is null too, and Eq. (A6) is simplified as∫ ∞

ρR

f (ρ)dρ = i

∫ ∞

0
f (z+)dy, (A8)

where z+ = ρR + iy. The transformation defined by Eq. (A8)
enables us to replace the imaginary exponentials of the initial
integral with decreasing exponentials. Finally, the integral in
Eq. (40) is given by∫ ∞

a

ρ2g
lf ∗
ext g

li
extjλ(kρ)dρ

=
∫ ρR

a

ρ2g
lf ∗
ext g

li
extjλ(kρ)dρ

+ 2(1 + δ12)π

√
(2li + 1)(2lf + 1)

kikf
√

vivf

e
i(δli

+σli
−δlf

−σlf
)
ili−lf

× Im
∫ ∞

0
Oli (ηi, kiz+)eiδli jλ(kz+)

× [
Olf (ηf , kf z+)eiδlf − Ilf (ηf , kf z+)e−iδlf

]
dy. (A9)

The first integral can be evaluated efficiently by a
Gauss-Legendre quadrature. To calculate the second integral,
it is convenient to split the two terms in two separated integrals
because they have different decreasing speeds. Each of these
two integrals can be evaluated efficiently by a Gauss-Laguerre
quadrature associated with a suitable scale factor.

The Coulomb functions for complex variables are evaluated
by the subroutine COULCC from Ref. [58]. The parameter ρR is
chosen large enough so that the Coulomb functions converge
fast when they are evaluated in the complex plane.
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