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Quantum interference effects in an ensemble of 229Th nuclei interacting with coherent light
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As a unique feature, the 229Th nucleus has an isomeric transition in the vacuum ultraviolet that can be
accessed by optical lasers. The interference effects occurring in the interaction between coherent optical light
and an ensemble of 229Th nuclei are investigated theoretically. We consider the scenario of nuclei doped in
vacuum ultraviolet transparent crystals and take into account the effect of different doping sites and therefore
different lattice fields that broaden the nuclear transition width. This effect is shown to come into interplay with
interference effects due to the hyperfine splitting of the ground and isomeric nuclear states. We investigate possible
experimentally available situations involving two-, three- and four-level schemes of quadrupole sublevels of the
ground and isomeric nuclear states coupling to one or two coherent fields. Specific configurations which offer
clear signatures of the isomer excitation advantageous for the more precise experimental determination of the
transition energy are identified. Furthermore, it is shown that population trapping into the isomeric state can be
achieved. This paves the way for further nuclear quantum optics applications with 229Th such as nuclear coherent
control.
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I. INTRODUCTION

Out of the entire nuclear chart, 229Th has the so far only
known nuclear transition that can be accessed with available
optical lasers. The transition energy is at present estimated to
be 7.8 ± 0.5 eV [1], corresponding to the vacuum-ultraviolet
(VUV) range. Except for this unique example, direct laser
driving of nuclear transitions has been so far discussed in the
context of the commissioning of x-ray light sources such as
the x-ray free electron laser (XFEL) [2–4]. In both cases, the
interest in nuclear quantum optics applications is fueled by the
expected parallel to intriguing and counterintuitive quantum
interference effects in multilevel atomic and molecular systems
[5,6]. Induced atomic and molecular coherences are related to
many optical phenomena such as enhanced nonlinear effects
[7], electromagnetically induced transparency (EIT) [8,9],
coherent population trapping [10], stimulated Raman adiabatic
passage (STIRAP) [11], lasing without inversion [12,13],
efficient nonlinear frequency conversions [14], collective
quantum dynamics [15–17], and vacuum induced coherence in
photoassociation [18], to name a few. The possibility of similar
coherent control in nuclear systems, also related to specific
nuclear incentives as isomer depletion or a nuclear γ -ray laser,
have been considered with great interest [2,3,19,20]. All these
quantum optical effects require strong Rabi coupling of the
driving field to the considered transitions [5,6]. Consequently
it is important to achieve direct laser driving of nuclear
transitions if similar phenomena in nuclei are to be observed
experimentally.

However, the direct interaction of laser fields with nuclei
is generally difficult to achieve due to (a) small nucleus-
laser interaction matrix elements [21], (b) ineffective nuclear
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polarization, as the populations of the hyperfine levels are
usually nearly equal even at very low temperatures, and
(c) the mostly high nuclear excitation energies in the keV
to MeV range which are still out of reach for currently
available coherent light sources. In this regard, the isomeric
transition (Iπ

is = 3/2+) → (Iπ
g = 5/2+) (see Fig. 1) of 229Th

is the notable exception. This transition is currently a strong
candidate for frequency metrology [22,23] and is in focus for
several other potential applications such as temporal variation
of the fine structure constant [24], building a nuclear laser
in the optical range [25], or providing an exciting platform
for nuclear quantum optics and coherent control of VUV
photons [2,4,26–29].

Even with energies in the VUV range it is difficult to in-
vestigate field-induced coherence effects among the hyperfine
levels of this 229Th isomeric transition by direct laser coupling
at present. This is primarily due to an 1 eV uncertainty in the
transition energy and a very narrow radiative transition width
of ∼0.1 mHz. A correspondingly narrow bandwidth VUV laser
source is at present available only within limitations and could
not be directly employed prior to attaining better knowledge
of the transition frequency. A viable alternative to attain
optical probing of the isomeric transition is to use coherent
light scattering off nuclei in the low-excitation limit [30–35]
by a broadband source such as a synchrotron or available
VUV lasers. In particular, enhanced transient fluorescence in
the forward direction obtained in such scattering was found
to be useful in search for the isomeric transition frequency
of 229Th nuclei [36]. Coherence and interference effects are
expected to help both in the precise determination of the
isomeric transition and in developing a platform for nuclear
quantum optics studies based on the isomeric transition of
229Th.

In Ref. [36] a first step in this direction was made by
investigating a novel scheme for the direct measurement of
the transition energy via electromagnetically modified nuclear
forward scattering (NFS) involving two fields that couple to
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FIG. 1. (Color online) Quadrupole splitting of 229Th doped in
VUV-transparent crystals such as LiCaAlF6 or CaF2. Here m is the
magnetic quantum number. The splittings are on the order of MHz
[23].

three nuclear states. This scheme provides an unmistakable
signature of the isomeric fluorescence in nuclear spectroscopy
using 229Th nuclei doped in VUV-transparent crystals. Here
we extend the study of coherence and interference effects
occurring in the interaction between coherent light and an
ensemble of 229Th nuclei towards two important directions.
First, we consider a more realistic scenario than in Ref. [36]
and take into account the effect of sample inhomogeneities
that broaden the nuclear transition width. This broadening
is incoherent and does not enhance the strength of the
light-nucleus coupling; however, its effects need to be well
understood and controlled for frequency standard applications.
So far theoretical studies of the sources of width broadening
in an ensemble of 229Th nuclei consider the doping 229Th
ion occupying the same location in the crystal unit cell.
The theoretical studies in Ref. [23] show that in a thorium-
doped CaF2 crystal, for instance, the thorium ion will most
probably replace a Ca2+ ion in a Th4+ state. The broadenings
experienced by the thorium nuclei due to electric and magnetic
fields from the surrounding lattice are then assumed to be
the same throughout the sample [23,36,37]. This is, however,
difficult to achieve in practice not least due to impurities and
color centers, which may occur even during the experiment as
irradiation effects. Motivated by this, we investigate the effect
of different 229Th doping sites for the NFS response of the
irradiated sample. This effect is shown to come into interplay
with interference effects due to the hyperfine splitting of the
ground and isomeric nuclear states leading to specific beating
patterns in the scattered spectra. The effects of different nuclear
sites for the fitting of iron 57Fe Mössbauer spectra has been
investigated in detail [38].

A second goal of this work is to extend the study of interfer-
ence effects for the more realistic case of a multilevel quantum
system to mimic the quadrupole hyperfine structure of 229Th
presented in Fig. 1. We investigate a number of possible two-,
three- and four-level schemes involving quadrupole sublevels

of the ground and isomeric nuclear states coupling to one
or two coherent fields. For the case of three-level schemes
we consider two different configurations: the so-called V
configuration in which two excited hyperfine states couple
to one ground state, and the � configuration where two
ground hyperfine levels are coupled to one excited state. Both
these level configurations have been extensively investigated
in multilevel quantum optical studies of atoms and molecules.
As driving fields we consider both pulsed and continuous-wave
coherent VUV sources. We find specific configurations which
offer clear signatures of the isomer excitation advantageous for
the more precise experimental determination of the transition
energy. Furthermore, it is shown that even population trapping
into the isomeric state can be achieved in a two-field driven
three-level V configuration. This paves the way for further
nuclear quantum optics applications with 229Th. The paper is
organized as follows. In Sec. II we describe the model and
discuss the basic properties of coherent forward scattering of
VUV laser from an ideal system—an ensemble of two-level
nuclei doped in a VUV-transparent crystal lattice environment.
We then develop a general theoretical framework in terms
of the Maxwell-Bloch formalism to study coherent forward
scattering of VUV including decoherence, multiple resonances
due to multilevel structure of nuclei, and inhomogeneity due to
different doping sites. In Sec. III we then apply this framework
to the study of NFS from an ensemble of two-level nuclei doped
in a VUV-transparent crystal lattice environment affected
by decoherence (for instance via spin-lattice relaxation) and
doping inhomogeneity. In Sec. IV we consider an ensemble
of multilevel nuclei doped in a crystal lattice environment in
several different configurations driven by either one or two
optical fields. In Sec. IV A we study NFS of a VUV pulse
from a three-level scheme in which one hyperfine level of the
isomeric state is coupled to two different hyperfine levels of the
nuclear ground state by a probe and a control field. We consider
both continuous-wave and pulsed fields as control field and
discuss the corresponding quantum interference signatures in
the NFS spectra. The effect of different 229Th doping sites on
the NFS signal in such a three-level setup is investigated. In
Sec. IV C we study NFS of a VUV pulse from a three-level
scheme in which two hyperfine levels of the isomeric state are
coupled to a common hyperfine level of the nuclear ground
state by a single optical field. We also investigate in this model
the effect of coherence created between the hyperfine levels
of the isomeric state on the population dynamics. In Sec. IV D
we then study NFS of a VUV pulse driving a four-level
configuration with two near-degenerate transitions. Finally we
conclude in Sec. V with a summary of our findings.

II. MODEL AND THEORETICAL FRAMEWORK

We begin our investigation by studying NFS off an ensem-
ble 229Th nuclei doped in a crystal lattice environment. Nuclear
spectroscopy using 229Th nuclei doped in VUV-transparent
crystals such as LiCaAlF6 [37] or CaF2 [23] offers the possibil-
ity to increase the nuclear excitation probability significantly
due to the high doping density of up to 1018 Th/cm3. Both
LiCaAlF6 and CaF2 have large band gaps and present good
transparency at the probable transition wavelength. Hence, in-
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terplay with electronic shells in processes such as the electronic
bridge [39], internal conversion [40], or nuclear excitation via
electron capture or transition [41] can be neglected. When
confined to the Lamb-Mössbauer regime of recoilless nuclear
transitions, the excitation of the isomeric transition will occur
coherently in the forward direction. This then leads to speed-up
of the initial nuclear decay depending primarily on the sample
optical thickness. These effects are well known from NFS
of synchrotron radiation [42,43] driving Mössbauer nuclear
transitions in the x-ray regime, and have been addressed for
the first time for the case of 229Th in Ref. [36].

As nuclear level scheme we use the quadrupole structure of
229Th with hyperfine level energies given by Em � Qis(g)(1 −
γ∞)φzz[3m2 − Iis(g)(Iis(g) + 1)]/[4Iis(g)(2Iis(g) − 1)]. Here
Qis(g) = 1.8 eb (3.15 eb) is the quadrupole moment of
the isomeric (ground) level, γ∞ = −(100–200) is the
antishielding factor and (1 − γ∞)φzz ∼ −1018 V/cm2 is the
electric field gradient [23,25]. Figure 1 shows the energy
scheme of 229Th with the electric quadrupole splitting [23]
of the ground and excited 229Th nuclear states of spins Ig =
5/2 and Iis = 3/2, respectively. We use the recently proposed
229Th:CaF2 crystal [23] parameters for numerical evaluation
of the NFS signal.

A radiation pulse denoted in the following as “probe”
driving the relevant nuclear transition shines perpendicular to
the nuclear sample, and the scattering response in the forward
direction is recorded. Depending on the pulse polarization,
different hyperfine transitions will be driven. This setup
follows the typical NFS experiments extensively performed
with 57Fe [32,44].

A. Analytical framework: Two-level approximation

We consider first the simplest possible model for NFS
study—two-level nuclei interacting with an incident VUV
laser pulse. In case of 229Th, such a two-level system can be
formed by selectively driving a me − mg = 0,±1 magnetic
dipole transition with a VUV pulse using a cooled sample
where not all hyperfine ground states are populated. Here me

and mg denote the projections of the excited and ground state
nuclear spins on the quantization axis, respectively. The VUV
laser pulse may be generated via nonlinear sum-frequency
mixing [45], or a harmonic of a VUV frequency comb [46,47]
around the isomeric wavelength.

In NFS the resonant scattering off the nuclear ensemble
occurs via an excitonic state—an excitation coherently spread
out over a large number of nuclei. When the scattering is
coherent, the nuclei return to their initial state, erasing in the
process any information of the scattering path. This leads to
cooperative emission with scattering only in the forward direc-
tion (except for the case of Bragg scattering [32,42,44]) and
decay rates modified by the formation of sub- and super-radiant
modes of emission. In combination with the narrow linewidth
of nuclear transition, this cooperative feature of NFS has
been exploited in studying cooperative Lamb shifts [48,49],
single-photon entanglement generation in the x-ray regime
[50,51], storage and modulation of single hard x-ray photons
[27], and the coherent optical scheme of direct determination
of the 229Th isomeric transition [36]. The time evolution of

the forward scattering response exhibits pronounced intensity
modulations characteristic of the coherent resonant pulse
propagation [43,52,53]. This modulation is known in nuclear
condensed-matter physics under the name of dynamical beat
and, for a single resonance (two-level approximation) and a
short δ(t)-like exciting pulse, has the form

E(t) ∝ ξe−τ/2J1(
√

4ξτ )/
√

ξτ , (1)

where E is the transmitted pulse envelope, τ is a dimensionless
time parameter τ = t/t0 with t0 denoting the natural lifetime
of the nuclear excited state, ξ is the optical thickness, and J1

is the Bessel function of the first kind. The optical thickness is
defined as ξ = NσL/4 [32], where N is the number density
of nuclei, σ is the nuclear resonance cross section, and L is
the sample thickness. In the asymptotic limit, for early times
of evolution τ � 1/(1 + ξ ), the response field has the form
E(t) ∝ ξ exp[−(1 + ξ )τ/2], showing the speed-up of the ini-
tial decay by ξ . At later times, the decay becomes subradiant,
i.e., with a slower rate comparable to the incoherent natural
decay rate due to destructive interference between radiation
emitted by nuclei located at different depths in the sample.

In the case of 229Th doped in VUV transparent crystals, both
the conditions for recoilless, coherent excitation and decay
and for broadband excitation are fulfilled for scattering in the
forward direction. The incident VUV laser pulse duration is
much shorter than the nuclear lifetime and provides broadband
excitation. Since the crystal is expected to be transparent
at the nuclear transition frequency [23], the main limiting
factor for coherent pulse propagation, namely, electronic
photoabsorption, is not present in this case. Thus we can
expect pronounced intensity modulations characteristic of the
coherent resonant pulse propagation given by the analytical
expression (1) for the forward scattered field from an ensemble
of two-level 229Th nuclei.

B. General framework: Maxwell-Bloch formalism

Instead of using Eq. (1) to study the behavior of the
scattered field intensity in the forward direction, we take an
alternative approach and numerically evaluate the Maxwell-
Bloch equations [5]. This allows us to include multiple
transitions between hyperfine splitting levels in 229Th (this
will become important in later sections when we consider
multiple levels) and consider decoherence processes such
as inhomogeneous broadening occurring due to spin-spin
relaxation. The interaction Hamiltonian for the system of
multilevel nuclei in the dipole approximation and in a frame
rotating with the frequency of the incident laser is given by

H = h̄
∑

j


jS
−
j S+

j −
∑

j

(
�j

2
(�εfj · �εnj )S+

j + H.c.

)
, (2)

where 
 = ωj − ωL is the so-called detuning with ωj , ωL

being the j th nuclear transition and the driving laser frequency,
respectively. Here �j is the space- and time-dependent Rabi
frequency of the driving field for the nuclear transition of
interest labeled by j and �εfj , �εnj are the polarizations of the
incident light and of the transition, respectively. Furthermore,
S+

j (S−
j ) are the nuclear raising (lowering) operators for the j th
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transition in analogy to the atomic raising (lowering) operators
and satisfying the SU (2) angular momentum algebra.

The interaction of the doped nuclei with their environment
consisting of atoms, electrons and nuclei of other species in
the VUV crystals leads to relaxation and decoherence in the
system. The major mechanisms of relaxation and decoherence
are the spontaneous decay—in the crystal assumed to occur
only radiatively—and the spin relaxation of thorium nuclei due
to interaction with the random magnetic field created by the
surrounding fluorine spins in CaF2 [23]. Mathematically the
effect of population relaxation can be included in the formalism
by the following Louvillian operators:

Lρ(α) = −
∑

j

γj

2
(S+

j S−
j ρ(α) + ρ(α)S+

j S−
j − 2S−

j ρ(α)S+
j ),

(3)

where γj is the population relaxation rate of the j th transition
and ρ(α) is the density operator for the nuclei of type α.
The relaxation rate for a relevant nuclear hyperfine transition
can be related to the total decay rate with the help of the
corresponding Clebsch-Gordon coefficient [3]. In practice, due
to more than one doping sites of the VUV crystal, the nuclear
ensemble might consist of 229Th nuclei with different hyperfine
splittings, which can in principle be treated as different species
of nuclei doped throughout the sample. The index α will be
used to differentiate between the nuclei doped in different
nuclear sites.

In order to obtain the NFS time spectra, we evaluate the
net generated intensity I (z, t) = |�(z, t)|2 at the exit from the
medium. The behavior of the output field �(z, t) is given by
the Maxwell equations involving the induced nuclear currents
which in turn are related to the coherence terms. The coherence
in the system can be found by studying the dynamics of the
density matrix ρ(α). This thus leads to the coupled Maxwell-
Bloch equations [5]

∂tρ
(α) = 1

ih̄
[H, ρ(α)] + Lρ(α) + Ldρ

(α), (4)

∂z�j + 1

c
∂t�j = i

∑
α

∑
lk

η
(α)
lk alkρ

(α)
lk , (5)

where alk is the Clebsh-Gordon coefficient, ηα
lk = �0ξ

(α)
lk /2L

for the transition between the states l → k, (l 	= k), and �0

is the natural (radiative) decay rate for the nuclei. Note that
the optical thickness ξ varies with the group index α and the
transition, due to its dependence on the doping density and
transition linewidth via the nuclear resonance cross section
[54]. For typical 229Th-doped VUV crystal parameters �0 ∼
0.07 mHz, η = 100 Hz/cm, where ξ = 106 and L = 1 cm
[1,23,36]. The term Ldρ

(α) in the above equations represents
the decoherence of the relevant nuclear transitions for both
few-level and multilevel nuclei.

III. COHERENCE EFFECTS IN NFS OFF AN ENSEMBLE
OF TWO-LEVEL NUCLEI

In this section we investigate the properties of NFS of a
VUV laser pulse off an ensemble of simple two-level 229Th

doped in a VUV-crystal lattice environment. This problem was
discussed earlier in Sec. II in an analytical framework. Here, we
use the general framework developed in the previous section
to numerically simulate the additional effect of decoherence
and different doping sites on the NFS for Th-doped VUV-
transparent crystals.

We begin our investigation by assuming the exciting
VUV pulse to be linearly polarized, and for now driving
resonantly a single transition. Thus the hyperfine manifold
of the 229Th nucleus can be approximated by a two-level
system satisfying the selection rule me − mg = 0. For our
model calculation we explicitly choose the levels to be
{|3/2,−3/2〉 = |1〉, |5/2,−3/2〉 = |2〉} as shown in Fig 2(a).
Thus in the two-level situation the number of transitions

(a)

|3/2,−3/2

|5/2,−3/2

Δ

ωL, Ω

γ

γd

(b)

|3/2,−3/2

|5/2,−3/2

Δ

ωL, Ω
γ

|3/2,−3/2

|5/2,−3/2

ωL, Ω
γ

γd γd

Δ + δ(B)

FIG. 2. (Color online) (a) Level scheme for VUV excitation of
the doped 229Th in the crystal lattice. All doping thorium nuclei share
the same environment and lattice-generated fields. (b) Level schemes
for two different doping sites. The darker (blue) thorium nuclei are
influenced by a different environment than the lighter (yellow) ones.
See text for further explanations.
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FIG. 3. (Color online) NFS time spectra scattered off an ensemble
of two-level nuclei. The dotted (black) line shows the results for
single-site doping while the solid (red) one with yellow shading is for
two-site doping. Here γ = 0.356�0, η(1) = η(2) = η/2 ∼ 91 Hz/cm
for ξ = 106 with the pulse and detuning parameters �0 = 106�0,
t0 = 0.1 ms, τ = 0.01 ms, and δ(B) = 10(8)�0, respectively.

involved is only 1, and the nuclear raising and lowering
operators are defined as S+ = |1〉〈2|, S− = (S+)†. The corre-
sponding field equation (5) is thus driven by a single coherence
term ρ

(α)
12 with the subscript j on � replaced by p denoting

the probe field. Furthermore, the decoherence term Ldρ
(α) in

Eq. (4) for the two-level configuration can be written as

Ldρ
(α) = −γd

2
(SzSzρ(α) + ρ(α)SzSz − 2Szρ(α)Sz), (6)

where γd is the decoherence rate of the transition and Sz =
1/2(|1〉〈1| − |2〉〈2|) is the energy operator. For the present
analysis we assume that all thorium nuclei occupy the same
doping site in the VUV crystal, i.e., all dopants experience
the same lattice fields and hence we can drop the index α.
The coupled Maxwell-Bloch equations (4) and (5) are solved
taking into account the initial condition that all the population
is in the ground state [ρ22(0) = 1]. The exciting VUV pulse is
assumed to have a Gaussian shape defined by the initial and
boundary conditions

�p(0, t) = �p0 exp

[
−

(
t − t0

τ

)2 ]
, �p(z, 0) = 0. (7)

The NFS time spectrum after the passage of the excitation
pulse is shown by the dotted line in Fig. 3 for a resonant
probe field and with a decoherence (spin relaxation) rate of
γd = 2π × 108 Hz [23]. A Rabi frequency of �0 = 106�0 is
assumed for the numerical computation of the Maxwell-Bloch
equations in the present case. Our result enforces the earlier
found behavior of NFS spectra of 229Th in such a setup [36].
The NFS time spectra are not sensitive to the laser detuning
and have a behavior similar to that in Fig. 3 for a large range
of detuning 
 (0–1 KHz). Furthermore, the slope of the time
spectra essentially follows the decoherence rate e−2γd t of the
two-level nuclear system.

A. Different doping sites

In the above case we have assumed that any energy shifts
or broadening induced by the crystal lattice (such as hyperfine
interactions) are the same for all thorium nuclei. However, in
practice the perfectly doped crystal with all thorium nuclei in
the same doping site is hard to achieve, since impurities and

color centers are often also present. The energy splittings of
the driven hyperfine transitions can therefore be different at
different lattice sites.

We mimic this situation for a simple case by considering
the VUV crystal with two groups of dopant nuclei with
different splitting of the isomeric transition energy. In the
Hamiltonian (2) the index j takes the values j = 1, 2 now, with

1 = 
 and 
2 = 
1 + δ(B) representing the second group
of nuclei depicted by yellow circles in Fig. 2(b). Here δ(B)
is an additional intrinsic magnetic-field-dependent detuning
due to the different hyperfine splitting of the second group of
nuclei. The incident field in this case interacts with both groups
of dopant nuclei leading to simultaneous contribution of the
nuclear coherences from each group in the generated signal.
The field equation in the Maxwell-Bloch formalism changes
accordingly to incorporate the contribution of coherences from
both nuclear sites. In Eq. (5) the index α = 1, 2 stands now for
the two groups of doping thorium nuclei. The dynamics of the
system follows from Eq. (4) with the modified Hamiltonian as
discussed above and the corresponding population relaxation
and decoherence given by Eqs. (3) and (6). For simplicity we
have considered equal doping density of the groups such that
η(1) = η(2).

The NFS time spectrum for two different doping sites is
shown in Fig. 3 by the solid line with yellow shading. We
have assumed resonant driving of the transition for the first
group of nuclei (
 = 0) and δ(B) = 108�0 corresponding to
an intrinsic magnetic field of ∼100 gauss. The behavior of
the time spectra is distinctly modified in the presence of such
nonuniform doping. We find quantum beats in the NFS spectra
of the order of δ(B) owing to internuclei quantum interference
between the two groups with different hyperfine splittings. The
beating pattern is influenced by the decoherence in the system
and has an envelope governed by the decay rate e−2γd t .

Unfortunately, in experiments such spectra cannot be
differentiated from background coming from other unwanted
electronic processes in the VUV crystal that can be active at
nonresonant probe laser frequencies. The NFS signal lacks
any distinctive signature of nuclear resonance, particularly for
uniform doping of the sample, being insensitive to even large
detunings. In the following sections we thus move on to some
more complicated and realistic multilevel models of 229Th
in search for isomeric signatures provided by coherence and
quantum interference features in the scattered light.

IV. COHERENCE EFFECTS IN NFS OFF AN ENSEMBLE
OF MULTILEVEL NUCLEI

In this section we systematically study the effect of quantum
coherence and interference on the NFS signal emitted from an
ensemble of multilevel nuclei. In the first part of this section we
consider a nuclear ensemble interacting with two fields which
selectively drive two magnetic dipole transitions. The level
configuration is such that in each nucleus there is one upper
level connected to two lower levels by the two fields forming
a � system. The � scheme is a typical set for interference
effects and has been extensively studied in atomic quantum
optics during the past decade. In the second part of the section
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we consider the inverse level configuration of the nuclear
ensemble, i.e., a V configuration where a single field drives
two transitions formed by two upper and one lower nuclear
levels. A second additional field that couples the upper states
is also considered in this case to create coherence among the
latter. Finally in the last part we study a nuclear ensemble in
which a single field drives two nearly degenerate transitions
formed by four levels in a two-upper and two-lower states
configuration.

A. Nuclear ensemble in a three-level � configuration

We consider an ensemble of nuclei occupying the same
doping site in a VUV crystal interacting with two electro-
magnetic fields. One of the fields is a left-circularly polarized
weak VUV pulse denoted in the following as “probe” driving
the me − mg = −1 magnetic dipole transition, while the other
is a strong right circularly polarized continuous wave (cw)
denoted as “control” driving the me − mg = 1 transition.
Due to the selected polarizations, the two fields couple two
nuclear ground states to a common excited state forming
a �-type scheme. Such a � configuration of the nuclear
levels can be achieved in 229Th by driving the transition
|5/2,±1/2〉 → |3/2,±3/2〉 with the control laser and the
|5/2,±5/2〉 → |3/2,±3/2〉 transition with the probe pulse
as shown in Fig. 4(a). Note that recently such a three-level
two-field scheme was proposed for the coherence-enhanced

(a)

|5/2, 5/2

|5/2, 1/2

|3/2, 3/2

Δ1 Δ2

ωc,Ωc

ωp, Ωp

γ1, γd1
γ2, γd2

(b)

|5/2, 5/2

|5/2, 1/2

|3/2, 3/2

Δ1 Δ2

ωc, Ωc

ωp,Ωp

γ1, γd1 γ2, γd2

|5/2, 5/2

|5/2, 1/2

|3/2, 3/2

ωc, Ωc

ωp,Ωp

γ1, γd1
γ2, γd2

Δ1 + δ1(B) Δ2 + δ2(B)

FIG. 4. (Color online) Level schemes of the doped 229Th in the
crystal lattice exposed to two VUV fields. (a) The doping occurs in
one site only and thus all the thorium nuclei experience the same
environment. (b) Two-site doping with different hyperfine splittings
due to different magnetic environments in the crystal lattice. See text
for further explanations.

optical determination of the isomeric transition energy to a
high precision [36].

For the three-level scheme, the interaction Hamilto-
nian is given by Eq. (2) with j = 1, 2 representing the
transitions |5/2,±1/2〉 → |3/2,±3/2〉 and |5/2,±5/2〉 →
|3/2,±3/2〉, respectively. The nuclear raising (lowering)
operators are defined in a three-level basis {|3/2,±3/2〉 =
|1〉, |5/2,±1/2〉 = |2〉, |5/2,±5/2〉 = |3〉} as S+

1 = |1〉〈2|,
S+

2 = |1〉〈3|, S−
k = (S+

k )†, k = 1, 2. In the following we
consider the transitions between the states with positive
angular momentum projection |5/2, 1/2〉, |5/2, 5/2〉, and
|3/2, 3/2〉; similar results are valid when the fields couple
the corresponding states with negative projections. There
are two Rabi frequencies �1 = �c and �2 = �p in the
Hamiltonian corresponding to the control and probe fields with
the detunings 
1 = ω12 − ωc and 
2 = ω13 − ωp, where ωc,
ωp and ω12, ω13 are the frequencies of the control, probe, and
the relevant nuclear transitions, respectively. The population
relaxations in the three-level system are given by the Louvillian
operator in Eq. (3) with j = 1, 2 and γ1 and γ2 being the
relaxation rates of the isomeric state to the two ground levels
|5/2, 1/2〉 and |5/2, 5/2〉, respectively. All nuclei experience
the same environment and hyperfine splitting such that we
drop the index α on the density operator. The decoherence of
the transitions are incorporated in the dynamical equations by
means of the decoherence matrix,

Ldρ = −
⎡
⎣ 0 γd1ρ12 γd2ρ13

γd1ρ21 0 0
γd2ρ31 0 0

⎤
⎦ , (8)

where γd1 and γd2 are the decoherence rates of the transi-
tions |5/2, 5/2〉 → |3/2, 3/2〉 and |5/2, 1/2〉 → |3/2, 3/2〉,
respectively. We consider the system to be closed, thus
enforcing no population relaxation of the ground states (no
leakage of population from ground to other hyperfine states)
in our model.

The Maxwell-Bloch equations for the three-level scheme
are given by Eqs. (4) and (5) with j = p, l = 1, k = 3
in Eq. (5) and without the summation over index α. The
coherence ρ13, i.e., the source term in the field equation, is
evaluated from the Bloch equation (4). The second term of the
Maxwell-Bloch equations only involves the probe field as the
control field is assumed to be a continuous wave. Time spectra
of the NFS are numerically evaluated as the scattered intensity
of the probe field from the Maxwell-Bloch equations.

For numerical computation we have considered the initial
condition ρ33(0) = 1 for the Bloch equations. The initial and
boundary conditions on the probe field are given by Eq. (7)
with �p0 = 106�0. The Rabi frequency of the control field
is assumed to be 102�p0 which is of the order of MHz.
Furthermore, as the quadrupole splitting of the thorium ground
state can be determined experimentally [23], following [36]
we set the detunings of the control and probe fields to be
identical, i.e., 
1 = 
2 = 
. The time spectrum of the field
intensity scattered in the forward direction is shown in Fig. 5
by the dashed black curve with yellow shading for decoherence
rates γd1 = 2π × 158 Hz, γd2 = 2π × 251 Hz and detuning

 = 105�0. The spectrum as seen from the figure is quite
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FIG. 5. (Color online) The time domain spectrum of NFS for a
� three-level configuration with two-fields setup. The black dotted
(solid red) curve with yellow shaded region represents the scattering
signal for single (two-site) doping. Here we have considered equal
doping density for the two nuclear sites such that η

(1)
13 = η

(2)
13 =

η13/2 � 227 Hz/cm for ξ � 106. The additional detuning introduced
by the two different doping sites is δi(B) = 108�0. The spontaneous
decay rates of the transitions are respectively γ1 = 0.088�0 and
γ2 = 0.889�0. The control and probe fields are equally detuned from
the level |3/2, 3/2〉 by 
 = 105�0. The control field is assumed to
have a Rabi frequency of 108�0.

different to that of the two-level case with uniform doping.
Here we observe definite signatures of nuclear excitation in the
form of quantum beats in the NFS signal [32,36]. Furthermore,
the beats are influenced by decoherence of the probe transition
and have an envelope governed by the rate e−2γd2t .

The existence of the quantum beats in such a three-level
configuration can be explained in the dressed-state picture [55].
The strong control field dresses the transition |5/2, 1/2〉 →
|3/2, 3/2〉 to form two new dressed states |�+〉 and |�−〉
which are linear combinations of the states |3/2, 3/2〉 and
|5/2, 5/2〉 such that

|�+〉 = sin θ |5/2, 1/2〉 + cos θ |3/2, 3/2〉,
(9)

|�−〉 = cos θ |5/2, 1/2〉 − sin θ |3/2, 3/2〉,
where tan(2θ ) = �c/
. The incoming probe excitation then
couples these two dressed states to the |5/2, 1/2〉 level. Thus
the nuclear resonance driven by the probe field is split into a
doublet [56] via the Autler-Townes effect [57], forming two
transition pathways for emission. The quantum interference
for emission along these two transitions creates the beating
pattern with the dressed frequency �̃, where �̃ = √


2 + �2
c .

As in the present case 
 � �c, the dressed frequency is
approximately the same as the Rabi frequency of the control
field. Note that the beating pattern found in this case is similar
to the two-level situation with two-site doping. This is due
to the fact that in both cases the NFS involves two transition
pathways with frequency difference of 108�0. The physical
origin of the quantum beats is, however, different. While the
beats arise due to intranuclei quantum interference in the
three-level case with uniform doping, for the two-level case
with two doping sites they come about as a result of internuclei
quantum interference.

So far we have assumed only one doping site for the
three-level system. For a two-doping site situation the Hamil-
tonian description of the � configuration now comprises two
Hamiltonians of the form (2) for group 1 and 2 of doping

nuclei, respectively. The detuning 
j in the Hamiltonian
for the second group, however, has now additional terms

1 → 
1 + δ1(B) and 
2 → 
2 + δ2(B). Here δ(B) is an
additional intrinsic magnetic field B dependent detuning due to
the different hyperfine splitting of the second group of nuclei.
The probe VUV pulse will now simultaneously interrogate
both doping groups, with the field equation having nuclear
coherence contributions from both doping sites 1 and 2. The
index α on the density operator and η now takes the values
α = 1, 2 representing the nuclei in the two doping sites. The
field equation for propagation in this case is given by Eq. (5)
with the summation running over different values of α,

∂z�p + 1

c
∂t�p = ia13

(
η

(1)
13 ρ

(1)
13 + η

(2)
13 ρ

(2)
13

)
. (10)

The dynamics of the two groups of nuclei follows from
Eq. (4) with α = 1, 2 and the modified Hamiltonian as
discussed above. The corresponding population relaxation and
decoherence are given by Eqs. (3) and (8) for each α. We as-
sume for computational purposes δ1(B) = δ2(B) = δ = 108�0

which corresponds to a magnetic field of B = 100 gauss.
Furthermore, we take equal doping density for both nuclear
sites such that η

(1)
13 = η

(2)
13 .

The red solid curve of Fig. 5 shows the NFS time spectrum
in this case for equal doping density of the two nuclear sites.
The spectral response is found to be distinctly different from
the homogeneous case due to an interplay of two scenarios of
quantum interferences. We label these as intra- and internuclei
interference, the former due to the Autler-Townes splitting of
the resonances with formation of dressed states (9) for each
group of the nuclei, and the latter due to the two different sets
of nuclei with different hyperfine splittings. As δi(B) ∼ �c

the intra-nuclei quantum interference in the two groups of
nuclei with and without δi(B) is of the order of

√
2�c and

�c respectively. In Fig. 5 we find the initial beating pattern
as a result of interference between two groups of nuclei
with different frequencies which, however, is smeared out
gradually with time. Furthermore, contrary to the uniform
doping case, at longer times the behavior of the NFS time
spectrum is no longer governed by the decoherence rate of
the probe transition. This feature can be attributed to loss
of coherence among scattered field amplitudes from the two
groups of nuclei with different detunings. The shallower
slope in this case thus suggests that the system encounters
an additional inhomogeneous broadening owing to the two
different doping sites. Note that such distinct behavior of
NFS with two-site doping arise only when δi(B) � �c.
In the other limit, the Autler-Townes splitting dominates
and the nuclei in both sites would experience a beating
∼�c and would become indiscernible, thereby resulting in
a NFS time spectrum similar to that of a uniformly doped
sample.

B. Pulsed control field

In the above discussion we have assumed that the control
field is a continuous wave. However, a cw laser source in the
VUV region is currently available only within limitations. The

024601-7
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FIG. 6. (Color online) Time domain pulse shape of the control
and probe fields shown by the dashed (red) and solid (blue) line.
The control pulse has 10 times the width of the probe pulse with
�c0 = 108�0 and tc0 = 5 ms, τc = 0.5 ms, while the probe parameters
are �p0 = 106�0 and tp0 = 5 ms, τp = 0.05 ms, respectively.

KBe2BO3F2 crystals [58] have been successful in generating
narrow-band VUV radiation via harmonic generation owing
to their wide transparency and large birefringence necessary
for phase-matched frequency conversion processes in this
frequency region [59,60]. A quasi-cw coupling VUV laser
at around 160 nm wavelength could also be generated by the
sum frequency mixing in metal vapors or driving a KBe2BO3F2

crystal with a Ti:sapphire laser [59,61]. To circumvent these
limitations we propose to use a VUV pulse of width much
broader than the VUV probe pulse, allowing complete overlap
of the two in the time domain as shown in Fig. 6.

Both control and probe Rabi frequencies in the Bloch
equations (4) are in this case space and time dependent. Hence,
the field equations for propagation (5) now have to be solved
for both probe and control with additional initial and boundary
conditions for the control field given by

�c(0, t) = �c0 exp

[
−

(
t − tc0

τc

)2 ]
, �c(z, 0) = 0. (11)

The NFS signal is measured solely from the scattering of the
probe pulse with the control pulse influencing the dynamics
during its presence by formation of a time-dependent dressed
state. In principle, by varying the overlap time of the probe and
control pulses one can achieve stimulated Raman adiabatic
passage (STIRAP) in this configuration. This has already been
proposed for such configuration of nuclear levels involving
keV and MeV transition energies in Refs. [4,29].

In Fig. 7 the black dotted curve shows the time spectrum
of NFS from 229Th doped VUV crystal for one doping site
with both control and probe as pulsed fields. During the time
when the control field is present the behavior of the NFS
spectra is quite similar to that seen in Fig. 5, and we see
the formation of a quantum beat. However, once the control
and probe no longer overlap at t ∼ 6 ms, the spectra become
similar to those of two-level nuclei without any sensitivity to
the probe detuning as discussed earlier. This time-dependent
behavior of the beating is related to the time dependence of the
dressed frequency �̃(t) [11,62] and of the dressed states (9).
The time-dependent splitting of the resonances creates two
transitions for the probe to interact with for the duration of
the control pulse and determines the emission characteristics.

6 7 8 9 1010 14

10 11

10 8

10 5

0.01

t ms
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FIG. 7. (Color online) The time-domain spectrum of NFS for
three-level configuration with a two-pulsed-field setup. The black
dotted with yellow shading (red solid) curve is for a single-doping
(two-doping) site case. Due to doping at a different site an additional
shift of δ2(B) = 108�0 of the energy level is induced in the second
group of nuclei. Here we have considered equal doping density for
the two groups such that η(1)

13 = η
(2)
13 = η13/2 � 227 Hz/cm and η

(1)
12 =

η
(2)
12 = η12/2 � 22.7 Hz/cm for ξ � 106. The spontaneous emission

rates are the same as those of Fig. 5. The control and probe fields are
equally detuned from the level |3/2, 3/2〉 by 
 = 105�0.

As for the long-time behavior of the NFS spectra, it is found
to be similar to the two-level case, with the response being
dominated by the decoherence rate of the probe transition.

For the case of two doping sites in the VUV crystal, the
space- and time-dependent propagation of the control field
now has contributions from coherences of both groups. Thus
the field equations in this case become

∂z�p + 1

c
∂t�p = ia13

(
η

(1)
13 ρ

(1)
13 + η

(2)
13 ρ

(2)
13

)
,

(12)

∂z�c + 1

c
∂t�c = ia12

(
η

(1)
12 ρ

(1)
12 + η

(2)
12 ρ

(2)
12

)
,

with the Bloch equations given by (5), where the Hamiltonian
now has an additional intrinsic magnetic-field-dependent
detuning δi(B) (i = 1, 2) for the second group of nuclei as
was discussed at length for the case of a cw control field.
For simulation we consider equal doping density for the two
groups such that η

(1)
12 = η

(2)
12 and η

(1)
13 = η

(2)
13 .

The NFS time spectrum is obtained from the field equation
for the probe as shown by the solid (red) curve in Fig. 7. For a
short time when the probe and control pulses overlap, we find
the behavior similar to that of Fig. 5 governed by the interplay
of two quantum interferences. The intranuclei interference
arises from the two transitions created by time-dependent
dressed states, while the internuclei interference comes into
play due to different hyperfine splitting in two groups of 229Th
nuclei occupying the two different nuclear sites. However, once
the control field and the probe cease to overlap, the dressed
states and Autler-Townes doublet vanish. Thus, there is no
further intranuclei interference and the NFS probe response
bears the signature of only internuclei interference among the
two groups of nuclei with different hyperfine splittings owing
to different doping sites. Note that this behavior is similar
to the two-level case, as in absence of the control field the
probe simply interacts with a single transition in the nuclei.
Furthermore, the envelope of the beating pattern is found to
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FIG. 8. (Color online) VUV excitation of the doping thorium
nuclei in a three level V-configuration. The pulse with frequency ωp

is equally detuned from the upper doublet by 
. The time-dependent
driving pulse �d (t) creates a time-dependent coherent superposition
of the upper levels. Population trapping in the excited doublet occurs
as long as drive and probe pulse overlap. See text for further
explanations.

follow the decoherence rate of the probe transition in analogy
to the simple two-level case.

C. Nuclear ensemble in a three-level V configuration

We next consider an ensemble of doping nuclei in the
VUV-transparent crystal driven by a strong VUV probe pulse
that couples two nearly degenerate upper levels to a common
ground level forming a V configuration as shown in Fig. 8.
Such a V -level scheme has been extensively investigated in
atomic quantum optics. For instance, it was shown that, under
the restrictive condition of nonorthogonality of the dipole
transitions, decay-induced coherence among the upper levels is
generated in such a scheme [63,64]. This coherence may lead
to fascinating phenomena such as lasing without inversion
[12], breaking of detailed balance [65] and manipulation of
resonance profiles [66]. However, in our system the magnetic
dipole transitions from the two upper to a common lower
nuclear state are left and right circularly polarized and
therefore orthogonal. To drive both transitions with a common
field it is thus important to select the suitable polarization of
the VUV pulse, which in this case is chosen to be along the
x̂ direction. Here we are interested in achieving population
trapping among the upper levels by creating initial coherence
among them via an additional VUV pulse as depicted in Fig. 8.
In the following we denote this additional field as the driving
field. The interaction Hamiltonian in the dipole approximation
and in a frame rotating with the frequency ωp of the probe for
the V scheme has a form similar to Eq. (2) with j = 1, 2 and

the interaction part modified to

h̄
∑

j

(
�j

2
(�εfj · �εnj )S+

j + H.c.

)

→ h̄
�p[z, t]

2
[(x̂ · �σ−)S+

1 + (x̂ · �σ+)S+
2 ]

− h̄
�d

2
[S+

1 S−
2 ] + H.c., (13)

where �σ± = (x̂ ± iŷ), and �p and �d are the Rabi frequencies
of the probe and driving field, respectively. The detunings
in the Hamiltonian (2) are now 
1 = ω13 − ωp and 
2 =
ωp − ω23, and the nuclear raising (lowering) operators are de-
fined in the three-level basis {|3/2,−1/2〉 = |1〉, |3/2, 3/2〉 =
|2〉, |5/2, 1/2〉 = |3〉} as S+

1 = |1〉〈3|, S+
2 = |2〉〈3|, S−

k =
(S+

k )†, with k = 1, 2. The population relaxation in the V -
level configuration is given by the Louvillian operator (3)
with γ1 and γ2 being the population relaxation rates of the
nuclear levels |3/2,−1/2〉 and |3/2, 3/2〉 to the common
ground levels |5/2, 1/2〉, respectively. The decoherence of
the relevant transitions is incorporated into the dynamics
phenomenologically by means of the decoherence matrix

Ldρ = −
⎡
⎣ 0 γd12ρ12 γd1ρ13

γd12ρ21 0 γd2ρ23

γd1ρ31 γd2ρ32 0

⎤
⎦ , (14)

where γd12, γd1, and γd2 are the decoherence rates of the
transitions |1〉 → |2〉, |1〉 → |3〉, and |2〉 → |3〉, respectively.

To obtain the NFS time spectra from the nuclear ensemble
in such a V -level scheme we numerically compute the output
field from the Maxwell-Bloch equations (5) and (6) without
summation over the index α (we consider a single-doping-site
scenario for this scheme) and with j = p, l = 1, 2, k = 3.
The field propagation equation becomes

∂z�p + 1

c
∂t�p = i(η13a13ρ13 + η23a23ρ23), (15)

with contributions from coherences along both the transitions.
The NFS time spectra generated by numerical computation of
(15) and the Bloch equations are shown in Fig. 9. Here we have
assumed the probe field, given by Eq. (7), to be positively and
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FIG. 9. (Color online) The time domain spectrum of NFS for
three-level V configuration in a two-field setup. The black dotted (red
solid) curve is in the absence (presence) of the external field coupling
between the upper doublet. The parameters used for computation are
γ1 = 0.267�0, γ2 = 0.0889�0, η13 � 22.7 Hz/cm, η23 � 68 Hz/cm
for ξ � 106, �d0 = 108�0, td0 = 1 ms, τd = 0.1 ms, �p0 = 109�0,
tp0 = 1.1 ms, and τp = 0.1 ms.
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negatively detuned by 
 = 108�0 from the levels |3/2, 3/2〉
and |3/2,−1/2〉 respectively, and that all the population is
initially in the ground state ρ33(0) = 1. The decoherence rates
are taken as γd12 = 2π × 45 Hz, γd1 = 2π × 158 Hz, and
γd2 = 2π × 142 Hz in accordance with the estimates for 229Th
in CaF2 [23]. For numerical purposes we have assumed that
the driving field which couples the upper levels has a Gaussian
shape,

�d (t) = �d0 exp

[
−

(
t − td0

τd

)2 ]
. (16)

The dotted black curve in Fig. 9 shows the behavior of
the NFS time spectrum in the absence of any coupling of
the upper levels and after passage of the excitation pulse.
We find quantum beat features owing to intranuclei quantum
interference among the two transitions of the V configuration.
The beats are of the order of 2
 with an envelope governed
by the highest decoherence rate in the system. The red solid
curve in Fig. 9 depicts the behavior of NFS time spectra,
when the upper levels are coupled by the driving field �d

which overlaps with the probe for a short period of time
(∼0.1 ms). The quantum beat pattern that we find in this
case is similar to that found in absence of the driving field,
however now with enhanced amplitudes. Thus the presence
of coupling among the upper doublet does not show any
significant influence on the probe NFS spectrum. This can
be understood as follows. The probe field overlaps with the
driving field for a very short time during its propagation
through the medium, and thus any influence on the NFS
spectrum will be transient and may be visible only at small
scattering times. Furthermore, the decoherence of ρ12 spoils
the coherence effects within ms of the its creation thereby
erasing any signature of possible interplay of the two fields
in the NFS spectra. Finally, considering the drive field to be
strong enough to form a dressed state of the upper doublet like
that discussed earlier for the � configuration, for parameters
used in the figure the dressed frequency would be on the same
order as the probe detuning 
. Hence, no additional beating
induced during the pulse overlap would be observed.

Although we do not see any dominant signature of the
coherence among the upper doublet in the NFS spectra, a
study of the population dynamics of the upper states shows
that population trapping is achieved. In Fig. 10 we plot the
populations of the upper states ρ11 and ρ22 in the presence
(b),(d) and absence (a) of the driving field. Without driving
field among the states |1〉 and |2〉 we find in Fig. 10(a)
that for a strong excitation probe (�p0 = 109�0 = 0.1 MHz)
the populations undergo Rabi oscillations between the states
|1〉 → |3〉 and |2〉 → |3〉 during the pulse duration. The
population dynamics is seen to be exactly the same for the two
upper states. When the excitation pulse is gone, the ground
state |3〉 remains mainly populated with about 5% of popu-
lation in the upper states. The flat tail arises because these
remaining population decays with the isomeric half-life that is
much longer than our (ms) timescale. However, this behavior
changes significantly in presence of the driving field coupling
the states |1〉 and |2〉, and the population dynamics becomes
dependent on the relative strength of the drive and the probe.

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

0.5

t ms

ρe
xc

τ,
L

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

t ms

ρe
xc

τ,
L

(c)

2 4 6 8 1010 8

10 6

10 4

0.01

1

t ms

Iτ
,L
I 0

(d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

t ms

ρe
xc

τ,
L

FIG. 10. (Color online) Population dynamics of the upper state
doublets in V -configuration in (a) the absence and (b),(d) the presence
of coherent coupling among the upper states. The solid (blue) and
dashed (red) curves illustrate ρ11 and ρ22. The amplitude of the driving
field is different in (b) and (d), being respectively �d = 108�0 and
�d = 109�0. All other parameters are the same as in Fig. 9. In (a) the
dashed (red) line is shifted along the time axis by 0.5 ms for better
visibility. (c) shows the NFS spectra corresponding to the population
dynamics in (d).

For a weaker driving field compared to the probe �d =
0.1�p0, we see in Fig. 10(b) that the population dynamics
of the upper doublet is no longer symmetric for the probe
pulse duration. The drive creates a coupling between the states
|1〉 and |2〉 via the coherence ρ12 which leads to population
exchange among the states once any one of them is populated.
The time-dependent dynamics then shows pronounced asym-
metry in the Rabi oscillations of the two states as can be seen in
the figure. The generated coherence is strongly influenced by
the decoherence of the |1〉 ↔ |2〉 transition and depends on
the Rabi frequency of the driving field. In the present case it
is weak due to a weaker Rabi coupling and is short lived due
to the decoherence effect. Thus at later times, when the probe
and drive cease to overlap, we find only 10% and 5% of the
initial population still remaining in the upper states |1〉 and |2〉,
respectively. The remaining population then decays with the
isomeric half-life (∼ hours) that is much longer than our (ms)
timescale. Thus effectively we have moderately enhanced the
trapped population in |1〉 due to the initial coherence among
the doublet upper states.

The behavior of the upper states populations dramatically
changes, however, when the driving field has a strength of the
order of the probe field. The created coherence is stronger and
leads to strong coupling between the upper doublet states even
though it is short lived due to decoherence. Figures 10(c) and
10(d) illustrate the NFS spectra and the population dynamics,
respectively. From Fig. 10(d) we see that the population of ρ11

increases gradually during the overlap of the probe and drive
fields but then starts decreasing as the fields separate. Here ρ11

essentially shows a Lorentzian absorption peak in the presence
of both the fields with small amount of population left in their
absence. The population that goes in ρ11 due to strong coupling
to |2〉 gets quickly distributed between the two upper states.
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FIG. 11. (Color online) (a) NFS time spectra in the absence
(dashed black line with shading) and presence (solid red line) of an
external DC field coupling of the upper level doublet. (b) The solid
(blue) and dashed (red) curves illustrate ρ11 and ρ22 when the upper
states are coupled by a DC field with Rabi frequency �d = 108�0.
All other parameters are considered to be same as for Fig. 9.

In addition, state |2〉 becomes more and more populated as
ρ11 decreases due to decoherence of ρ12. As such, while ρ22

increases gradually when drive and probe overlap and attains
a value similar to ρ11 when the fields gradually separate, it
does not decrease and rather accumulates further population
which eventually gets trapped due to long isomeric lifetime.
We see from Fig. 10(d) that almost 70% of the total population
gets trapped in state |2〉. The obtained trapping persists for a
long time as seen by the flat tail of the population since |2〉
decays with isomeric half-life which is much longer than the
(ms) timescale considered for our NFS calculations.

In Fig. 11 we plot the NFS time spectrum and the population
dynamics for the V configuration with a DC drive field
coupling the upper-level doublets. The behavior of the NFS
spectra as seen from the red solid curve in Fig. 11(a) is similar
to that of Fig. 9 for a pulsed driving field. In the DC field case
the only difference is a larger beating amplitude. The similarity
arises due to the fact that the dressing of the upper doublets with
the DC field gives a dressed frequency of the same order of 

for the considered parameters and thus no additional features
appear in the NFS spectra. If, however, the Rabi frequency of
the DC field were such that the dressed frequency were �
,
then the beating frequency would be given by the dressed
frequency in the NFS spectra. The population dynamics of the
upper state doublet in the presence of the DC field coupling is
shown in Fig. 11(b). We find the behavior of the population to
be similar to the case when the doublet was coupled by a pulse
driving field for the probe duration; see Fig. 10(b). However,
for longer times we find population oscillation of the states
|1〉 and |2〉 otherwise absent in the pulsed field coupling case.
Furthermore, we find almost 15% and 10% of initial population
trapped in the |1〉 and |2〉 states.

In practice, one can achieve population trapping in the
overlap region of the two laser focal spots. Considering
experimentally realizable spot sizes for VUV lasers [37], we
expect about 1011 nuclei to be addressed for a 0.1 cm ensemble
depth. Thus almost 1010 nuclei can be trapped in state |2〉 and
decay with the natural lifetime of the isomeric state despite the
NFS setup. This in principle can be harnessed towards creating
controlled subradiance in such nuclear isomers. Note that a
similar subradiance phenomenon has been recently shown in
a dilute cloud of cold atoms [67]. Thus, further studies in this
direction contribute to the new field of collectivity-induced
quantum optical phenomena in nuclear isomers.

D. Nuclear ensemble in a four-level configuration

In the case of 229Th, the nuclear level structure will have
more than two or three specific levels owing to the hyperfine
interactions with the possibility of multiple transitions sharing
the same polarization. Additionally, the spacing between
hyperfine levels for a particular angular momentum I can be
such that they cannot be resolved with the current bandwidth
of lasers. All these conditions warrant the study of NFS
from nuclear ensembles with multiple transitions which are
either degenerate or near degenerate. Such studies have been
already done extensively in 57Fe—which is also a favorable
test bed of several other studies related to NFS in nuclei.
Here, we investigate the NFS time spectra of 229Th in a
similar spirit with the objective to find signatures of coherence
and quantum interference present due to multiple transition
pathways. We consider in the following a basic model of
four-level nuclei with two upper and two lower nuclear
levels as shown in Fig. 12(a). The nuclear levels are chosen
such that given the selection rules and polarization of the
incident VUV pulse only two parallel and near degenerate
magnetic dipole transitions |1〉 → |3〉 and |2〉 → |4〉 are
driven. For 229Th such a four-level model can be formed
by the states {|3/2, 3/2〉, |3/2, 1/2〉, |5/2, 5/2〉, |5/2, 3/2〉} =
{1, 2, 3, 4} driven by a left circularly polarized VUV laser
pulse. Since for now we consider only one doping site in the
VUV crystal we drop the index α on the density operator in
the further discussion.

The interaction Hamiltonian for our four-level model in
the dipole approximation and in a frame rotating with the
probe laser frequency ωp is given by Eq. (2) with j = 1, 2
for the two possible transitions. The nuclear raising (lowering)
operators are now defined in a four-level basis as S+

1 = |1〉〈3|,
S+

2 = |2〉〈4|, S−
k = (S+

k )†, (k = 1, 2). The laser detunings
in the Hamiltonian are 
1 = ω13 − ωp, 
2 = ω24 − ωp,
respectively, and the Rabi frequency is assumed to be the
same for both transitions, �1 = �2 = �p. The population
relaxation of the hyperfine levels of the isomeric state is
included in the dynamics by the Louivillian operator (3) with
j = 1, 2, where now γ1 and γ2 are the decay rates of the
levels |1〉 and |2〉 to |3〉 and |4〉, respectively. The effect of
environmental decoherence is incorporated in the dynamics of
the model phenomenologically via the decoherence matrix

Ldρ = −

⎡
⎢⎢⎣

0 0 γd1ρ13 0
0 0 0 γd2ρ24

γd1ρ31 0 0 0
γd2ρ42 0 0 0

⎤
⎥⎥⎦ , (17)

where γd1 and γd2 are the decoherence rates of the transitions
|1〉 → |3〉 and |2〉 → |4〉, respectively.

To obtain the time spectra of the NFS signal from the nuclear
ensemble in such a four-level scheme we numerically evaluate
the output field from the Maxwell-Bloch equations (4) and (5)
where now the field equation (5) contains contributions from
coherences along both transitions,

∂z�1 + 1

c
∂t�1 = i(a13η13ρ13 + a24η24ρ24). (18)
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FIG. 12. (Color online) (a) VUV excitation of the doped 229Th
in the crystal lattice in the case of a single doping site. The laser
with frequency ωc is tuned near the |5/2, 5/2〉 → |3/2, 3/2〉 and
|5/2, 3/2〉 → |3/2, 1/2〉 transitions. The relaxation and decoherence
rates γ1, γd1 γ2 and γd2 are assumed for the addressed transitions.
(b) The case of two doping sites. The blue group of thorium nuclei
is influenced by a different environment than the yellow one which
experiences the additional detunings δ1 and δ2 as a function of the
magnetic field. See text for further explanations.

We numerically solve Eq. (18) with the initial condition that
the hyperfine levels of the lower state are equally populated,
i.e., ρ33(0, z) = 0.5, ρ44(0, z) = 0.5 and with the initial and
boundary conditions on the probe field given by Eq. (7). We
consider the decoherence rates of γd1 = 2π × 84 Hz and γd2 =
2π × 251 Hz which have been estimated for these transitions
in 229Th:CaF2 [23].

For an incident probe field of Rabi frequency 106�0 detuned
to the transition |2〉 → |4〉 and |1〉 → |3〉 by 
2 = −
1 =
109�0 respectively, we obtain the scattered NFS intensity
as shown by the thin (black) curve with shading (yellow)
in Fig. 13. The signal shows quantum beat features with a

1 2 3 410 7

10 5

0.001

0.1

t ms

Iτ
,L
I 0

FIG. 13. (Color online) NFS time domain spectra for a multilevel
sample with near degenerate transitions. The thin (black) and thick
(red) curves with yellow shading are for samples with one and
two doping sites, respectively, with laser detuning of 
 = 109�0.
A magnetic-field-dependent detuning of δi(B) = 108�0 in the case
of two doping sites is considered. Here, we have considered η

(1)
13 =

η
(2)
13 = η13/2 � 227 Hz/cm and η

(1)
24 = η

(2)
24 = η24/2 � 137 Hz/cm for

ξ � 106. The spontaneous decay rates of the relevant transitions
are, respectively, γ1 = 0.899�0 and γ2 = 0.533�0. The probe pulse
has a duration of τ = 0.01 ms with a Gaussian shape centered on
t0 = 0.1 ms.

frequency of the order of 109�0. The origin of this beating
is attributed to the intranuclei quantum interference between
the two transition pathways the probe field interacts with.
The envelope of the beating is seen to be governed by the
largest of the two decoherence rates involved, i.e., by e−2γd2t .
Additionally, from the figure we see that the beating gets
damped with time.

E. Different doping sites

For the case of two different doping sites we assume that
the VUV crystal now comprises of two groups of dopant
nuclei represented by the blue and yellow dots in Fig. 12. Thus
the index α on the density operator in Eqs. (3)–(5) takes the
values 1 and 2 for the two groups. The effect of environmental
perturbation on the coherences is included via the decoherence
matrix (17) for each group of nuclei. The nuclei of the second
group have an additional shift δk(B) (k = 1, 2) of the isomeric
level as shown in Fig. 12(b). In the Hamiltonian description
in Eq. (2) of the four level system the detunings will now
be replaced by 
1 → 
1 + δ1(B) and 
2 → 
2 + δ2(B),
respectively. As the probe VUV pulse will now simultaneously
interrogate the nuclei in both crystal unit cell sites, the field
equation will have contributions from the coherences related
to both nuclear sites as well as from both transitions of each
group. The field equation thus involves several coherences in
this case and takes the form

∂z�p + 1

c
∂t�p = i

[
a13

(
η

(1)
13 ρ

(1)
13 + η

(2)
13 ρ

(2)
13

)
+ a24

(
η

(1)
24 ρ

(1)
24 + η

(2)
24 ρ

(2)
24

)]
, (19)

where ρ(1) and ρ(2) are the density matrices for the first
and second doping sites, respectively. The dynamics of the
coherences from each group are governed by Eq. (4) with the
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Hamiltonian containing the modified detuning for the second
group.

As before, the probe pulse is assumed to be positively and
negatively detuned to the transition |2〉 → |4〉 and |1〉 → |3〉
by 109�0 in the first group of nuclei. We furthermore assume
that the nuclei in the second doping site have an additional
hyperfine shift of the levels by δk(B) = 108�0 (k = 1, 2) which
corresponds to a magnetic field of about 100 gauss. Thus,
the nuclei in the second doping site have a laser detuning of
(108 − 109)�0 for the |1〉 → |3〉 transition and (109 + 108)�0

for the |2〉 → |4〉 transition. The other parameters of the probe
field are the same as in the previously studied case. For
computational purpose we consider equal doping of the two
groups of nuclei such that η

(1)
13 = η

(2)
13 and η

(1)
24 = η

(2)
24 .

The NFS time spectrum evaluated numerically by means
of Eq. (19) and the respective Bloch equations is shown
by the solid (red) curve in Fig. 13. We find a signature
of intra- and internuclei quantum interference in the NFS
signal. From Fig. 13 we find that the intranuclei quantum
interference which leads to beats of order 
1,2, owing to the
two transition pathways in each nucleus, is modulated by
internuclei quantum interference of beat frequency ∼δk(B).
The origin of internuclei quantum interference is the different
hyperfine splitting of the two groups of nuclei. Similar to
the uniform doping case here we again see that the envelope
of the combined beating pattern is governed by the largest
decoherence rate of the system.

V. CONCLUSION

We have carried out an extensive theoretical study of
NFS time spectra from a multilevel nuclear ensemble of
229Th doped in a VUV-transparent crystal. Explicit results
for three- and four-level configurations interacting with one
and two optical fields were presented. In the three-level
case we have considered two different configurations, namely
the � and V -level schemes interacting with two different
VUV fields. We have shown that interference effects occur-
ring in such configurations offer signatures of the isomer
excitation advantageous for the more precise experimental
determination of the transition energy. Our study shows that
it is possible to coherently manipulate the signature of the
quantum interference in the NFS signal by externally tuning
the laser intensity and detuning. Furthermore, the possibility of
population trapping in the isomeric state has been investigated.
This can be utilized towards controlled subradiance generation
in such nuclear isomers thereby opening a new direction in
quantum optical manipulation of collective phenomena in
nuclear systems. Our study theoretically sustains the concept
of nuclear coherent control and paves the way for further
nuclear quantum optics applications with 229Th.
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[9] K.-J. Boller, A. Imamoğlu, and S. E. Harris, Phys. Rev. Lett. 66,

2593 (1991).
[10] E. Arimondo, Prog. Opt. 35, 257 (1996).
[11] K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys. 70,

1003 (1998).
[12] O. Kocharovskaya and Ya. I. Khanin, Pis’ma Zh. Eksp. Teor.

Fiz. 48, 581 (1988) [JETP Lett. 48, 630 (1988)].
[13] M. O. Scully, S. Y. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62,

2813 (1989).
[14] M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, Phys.

Rev. Lett. 77, 4326 (1996).
[15] M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).

[16] M. Macovei, J. Evers, and C. H. Keitel, Phys. Rev.
Lett. 91, 233601 (2003); Phys. Rev. A 71, 033802
(2005).

[17] S. Das, G. S. Agarwal, and M. O. Scully, Phys. Rev. Lett. 101,
153601 (2008).

[18] S. Das, A. Rakshit, and B. Deb, Phys. Rev. A 85, 011401(R)
(2012).

[19] G. C. Baldwin, J. P. Neissel, J. Terhune, and L. Tonks, Proc.
IEEE 51, 1247 (1963).

[20] D. Marcuse, Proc. IEEE 51, 849 (1963).
[21] S. Matinyan, Phys. Rep. 298, 199 (1998).
[22] E. Peik and C. Tamm, Europhys. Lett. 61, 181 (2003).
[23] G. A. Kazakov, A. N. Litvinov, V. I. Romanenko, L. P. Yatsenko,

A. V. Romanenko, M. Schreitl, G. Winkler, and T. Schumm,
New J. Phys. 14, 083019 (2012).

[24] V. V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006).
[25] E. V. Tkalya, Phys. Rev. Lett. 106, 162501 (2011).
[26] O. Kocharovskaya, R. Kolesov, and Y. Rostovtsev, Phys. Rev.

Lett. 82, 3593 (1999).
[27] W.-T. Liao, A. Pálffy, and C. H. Keitel, Phys. Rev. Lett. 109,

197403 (2012).
[28] B. Adams, C. Buth, S. M. Cavaletto, J. Evers, Z. Harman, C. H.

Keitel, A. Pálffy, A. Picón, R. Röhlsberger, Y. Rostovtsev, and
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