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Systematic study of the symmetry energy under the local density approximation
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The nuclear matter symmetry energy Csym(ρ) and its slope parameter L are studied using local density
approximation. With this method, the symmetry energy of nuclear matter can be deduced from matter density
distributions of finite nuclei. By systematically analyzing the extracted L for different isotopes, the variation
trends of values of extracted L along isotopic chains can be obtained. The study can explain why the neutron rich
nuclei in isotopic chains such as 208Pb can be used to extract L under local density approximation. By studying
the regularity of extracted L for different isotopic chains, we finally obtain the value of L and its error bar:
L = 66 ± 7 MeV. Besides, the density dependence parameter γ is constrained to be 0.69 ± 0.07 for the ansatz
of symmetry energy Csym(ρ) = Csym(ρ0)( ρ

ρ0
)γ .
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I. INTRODUCTION

The symmetry energy Csym(ρ), which represents the energy
cost per nucleon to convert all the protons to neutrons in
symmetric nuclear matter at the density, ρ, is a currently
active field in nuclear physics and astrophysics [1]. Though
the equation of state (EOS) of symmetric nuclear matter with
equal fractions of neutrons and protons can be relatively well
determined over a wide range of densities, our knowledge
about asymmetric nuclear matter is very limited because the
symmetry energy is undetermined [2,3]. A precise knowledge
of EOS of asymmetric nuclear matter is very important for
understanding the heavy-ion reactions [3–5], the radioactive
nuclei properties [6,7], and many interesting issues in astro-
physics [8–12].

The value of slope parameter L of the symmetry energy
Csym(ρ) at saturation density ρ0 is a key point to determine
the EOS of asymmetric nuclear matter. In recent years, great
efforts have been devoted to determine the value of slope
parameter L of the symmetry energy Csym(ρ) at saturation
density, however, it is still fraught with many uncertainties.
From heavy ion collisions (HIC) method, L is constrained in
the range of 50–80 MeV by using the flow of Sn isotopes
[13–17]. The refinement of the droplet model (the finite-range
droplet model) fixes L to be 70 ± 15 MeV [7]. Fitting the
available data on the isobaric analog states predicts L =
78–111 MeV [18]. With the method of isospin diffusion,
L is estimated to be 88 ± 25 MeV [8,19]. By analyzing
the pygmy dipole resonances of 68Ni and 132Sn, the value
of L is extracted to be 64.8 ± 15.7 MeV [20–22]. Besides,
astrophysical observations of neutron star masses and radii
provide other constraints to 43 < L < 52 MeV [23].

Information on the density dependence of nuclear symme-
try energy can also be obtained from the neutron skin thickness
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of heavy nuclei because there is strong correlation between L
and neutron skin thickness [24–27]. Several experiments of
neutron radius have been carried out during the last decade
with the hadronic probes [28–32]. In order to obtain the neutron
skin thickness in a model independent method, the lead radius
experiment (PREx) has been carried out in Jefferson Lab
which aims to determine the neutron radius by using the parity
violating electron scattering. Last year they reported neutron
skin of 208Pb �Rnp = 0.33+0.16

−0.18 fm [33]. A reanalysis predicts
the value to be �Rnp = 0.302 ± 0.175 fm [34]. The recent
high resolution measurement of electric dipole polarizability
can also provide constraint on neutron skin thickness and a
value of �Rnp = 0.168 ± 0.022 fm for 208Pb is obtained with
this method [35–38].

Recently, a new effective theoretical method for deter-
mining the slope parameter L has been proposed [39]. In
this method, the authors deduce the symmetry energy of
nuclear matter with the new formula, which is based on the
local density approximation [39]. By this approximation, the
properties of nuclear matter can be calculated with the density
distributions of finite nuclei. Many properties of finite nuclei,
such as binding energies, charge radii, and charge distributions,
can be determined precisely from experiments and also be
described well with the nuclear effective interactions theoret-
ically. Then with local density approximation, the properties
of finite nuclei can be used to constrain L. It is reasonable to
deduce the symmetry energy of nuclear matter with properties
of finite nuclei because the initial constraints on the nuclear
symmetry energy are few.

In this paper, the symmetry energy of nuclear matter is
systematically studied under the local density approximation.
The symmetry energy of nuclear matter is deduced by density
distributions of different finite nuclei. In Ref. [39], the authors
determined the slope parameter L by choosing heavy spherical
nucleus 208Pb. In this article, we choose two isotopic chains
Sn and Pb to systematically analyze the symmetry energy.
The reason for us to choose these two isotopic chains is
because both their proton numbers are magic numbers and
they lie in the regions of medium mass nuclei and heavy nuclei,
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respectively. For each nucleus, we can extract a value of L with
local density approximation. By analyzing the extracted values
of L with different isotopes, the variation trends of L along
isotopic chains can be obtained. The researches show that the
very neutron rich isotopes in isotopic chains can be chosen to
deduce the value of slope parameter L under the local density
approximation, for example 208Pb is used in Ref. [39]. After
systematically studying the general regularity of extracted L,
we can obtain saturation values of L for different isotopes.
During this procedure, all the known even-even nuclei from
stable isotopes to neutron rich isotopes in isotopic chains are
taken into considerations.

The paper is organized as follows. In Sec. II we discuss the
general properties of asymmetry nuclear matter and present the
formula of determining symmetry energy under local density
approximation. In Sec. III we analyze the numerical results.
Finally, a summary is given in Sec. IV.

II. NUCLEAR SYMMETRY ENERGY AND LOCAL
DENSITY APPROXIMATION

The EOS of asymmetric nuclear matter, given by its binding
energy per nucleon, can be expressed as sum of power series
with isospin asymmetry δ = (ρn − ρp)/ρ:

E(ρ, δ) = E0(ρ) + Csym(ρ)δ2 + O(δ4), (1)

where ρn, ρp, and ρ are the neutron, proton, and matter
densities, respectively [40,41]. E0(ρ) is the EOS of symmetric
nuclear matter. The term Csym(ρ) is the nuclear symmetry
energy and can be expanded in Taylor series around the
saturation density ρ0:

Csym(ρ) = Csym(ρ0) − Lε + Ksym

2
ε2 + O(ε3), (2)

where ε = (ρ0 − ρ)/(3ρ0). L = 3ρ0
∂Csym(ρ)

∂ρ
|ρ0 and Ksym =

9ρ2
0

∂2Csym(ρ)
∂ρ2 |ρ0 are the slope parameter and curvature parameter

of the nuclear symmetry energy at ρ0, respectively.
The binding energy of a finite nucleus can be described by

the modified Bethe-Weizsacker mass formula [42]:

B(N,Z) = avA + asA
2/3 + aCoul

Z2

A1/3
[1 − Z−2/3]

+ a symX2
0A + apairA

−1/3δnp + EW, (3)

where X0 = (N − Z)/A and the coefficients av , as , aCoul, and
a pair are the volume, surface, Coulomb, and pairing energy
terms, respectively. The pairing term δnp can be found in
Ref. [43]. a sym corresponds to the symmetry energy term.
There are several parametrizations for a sym and in this paper
we choose the definition

a sym(A) = Cv − CsA
−1/3, (4)

where Cv and Cs are volume and surface coefficients, respec-
tively. The reason to choose this form of parametrization is
that their coefficients have been determined quite precisely by
method of the double differences of “experimental” symmetry
energies recently in Ref. [44]. The volume coefficient Cv

in Eq. (4) corresponds to the symmetry energy Csym(ρ0) of
nuclear matter because the surface contribution vanishes in

Eq. (4) if A → ∞. Therefore, Eq. (4) can be rewritten into

a sym(A) = Csym(ρ0) − CsA
−1/3. (5)

The coefficients Csym(ρ0) and Cs have been constrained to
be 32.10 ± 0.31 MeV and 58.91 ± 1.08 MeV, respectively, in
Ref. [44] with the new method.

As we know that the symmetry energy Csym(ρ) can be
represented with the ansatz

Csym(ρ) = Csym(ρ0)

(
ρ

ρ0

)γ

, (6)

where γ reflects the density dependence of the symmetry
energy. This form of ansatz is widely used in many theoretical
calculations and experimental analysis for heavy-ion collisions
[8,14,45,46]. With Eq. (6), we can obtain slope parameter

L = 3ρ0
∂Csym(ρ)

∂ρ

∣∣∣∣
ρ0

= 3γCsym(ρ0). (7)

Also, expanding the symmetry energy into Taylor series
around ρ0 and keeping terms to second order, we can obtain

Csym(ρ) � Csym(ρ0)

[
1 + γ

(
ρ − ρ0

ρ0

)

+ γ (γ − 1)

2!

(
ρ − ρ0

ρ0

)2]
. (8)

The symmetry energy term a sym(A) for finite nuclei is
always less than Csym(ρ0) because of the surface contribution
in Eq. (5). An equivalent density ρA can be defined which
makes the a sym(A) equate to Csym(ρA) [6,30,31,39,47–49].
With this definition and Eq. (5), we can obtain

CsA
−1/3 = Csym(ρ0) − Csym(ρA). (9)

Then with the relation of Eq. (8), we can deduce

Cs = 3 Csym(ρ0)A1/3
[
γ εA − 3

2γ (γ − 1)ε2
A

]
, (10)

where εA = (ρ0 − ρA)/(3ρ0).
Because the matter distributions of finite nuclei are almost

constants at inner region and the densities drop very fast near
the surface, therefore, the symmetry energy term a sym(A)
for finite nuclei can be rewritten under the local density
approximation as [50]

a sym(A)

(
N − Z

A

)2

= Csym(ρ0)

(
ρA

ρ0

)γ (
N − Z

A

)2

= 1

A

∫
d3rρ(r)Csym(ρ0)

(
ρ(r)

ρ0

)γ

×
[
ρn(r) − ρp(r)

ρ(r)

]2

. (11)

This is an important relation because by this equation, we can
associate the symmetry energy terms a sym(A) of finite nuclei
with the density distributions of finite nuclei, which can be
described by mean-field models.

The symmetry energy coefficient γ is connected with
nuclear density distributions by Eq. (11), if the equivalent
density ρA is known. Combining Eqs. (10) and (11), the
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numerical solutions of γ and corresponding ρA can be
obtained. For a certain value of γ , we can calculate the
corresponding ρA with Eq. (11). Then we substitute these two
values into Eq. (10) and check whether or not the equation is
satisfied. By this way the solutions of γ and ρA are obtained.
During this procedure, the nuclear matter distributions are
obtained from nuclear effective interactions. Csym(ρ0) and
Cs are taken as 32.10 ± 0.31 MeV and 58.91 ± 1.08 MeV,
respectively [44], as stated below Eq. (5). The saturation
density is taken as 0.155 ± 0.008 fm−3 [39], where the error is
chosen to encompass the saturation densities calculated from
different parameter sets.

III. NUMERICAL RESULTS AND DISCUSSION

In this section, the nuclear symmetry energy Csym(ρ) and
slope parameter L are systematically studied with the formula
presented in Sec. II. The proton densities and nuclear binding
energies can be well reproduced by mean-field models, how-
ever, there are uncertainties in neutron density distributions.
The nonrelativistic models and relativistic models always give
different values of neutron skins of heavy nuclei. Therefore,
in this section, both nonrelativistic and relativistic models are
used to investigate the symmetry energies. In Ref. [39], the
authors have calculated the slope parameter L with the local
density approximation and obtained a value L = 64 ± 5 MeV.
During their studies, the proton and neutron densities of 208Pb
are chosen. However, if a different nucleus is chosen, such
as 198Pb, the final result for L also changes correspondingly.
Therefore, in this section, based on the studies of Ref. [39], we
extract the values of L with local density approximation where
the corresponding nuclei are chosen to be both the medium
mass Sn isotopes and heavy Pb isotopes. Then the variation
trends of L with the isospin asymmetry X0 = (N − Z)/A is
analyzed.

First, the values of L extracted from the medium mass Sn
isotopes under local density approximation are investigated.
All the even-even nuclei with mass number ranging from 108
to 134 are chosen. The results cover the stable isotopes and very
neutron rich isotopes that are experimentally known. Different
parameter sets are used to generate the density distributions of
Sn isotopes, such as the nonrelativistic sets: SIII, SkP, SkM*,
SLy4, SLy5, as well as the relativistic sets: NL-SH, NL1, NL2,
NL3, NL3*, TM1, FSU, and IU-FSU.

In Fig. 1, we present the variations of values of L with the
isospin asymmetry X0 = (N − Z)/A where the corresponding
matter densities of Sn isotopes are calculated from FSU
and NL3 parameter sets, respectively. From this figure we
can see that the extracted L first decreases rapidly with the
increasing of isospin asymmetry X0 = (N − Z)/A. However,
when the isospin asymmetry X0 becomes larger than 0.17
(corresponding to 120Sn), the extracted L is almost unchanged
and a saturation value of L is reached. By calculating the
average of extracted L from last four even-even isotopes, we
finally obtain the saturation value L = 68.8 MeV and L =
64.7 MeV for the FSU and NL3 parameter sets, respectively.

The reason for changes of L along the isotopic chain in
Fig. 1 is due to the local density approximation in Eq. (11).
Equation (11) is mathematically strict if the nuclear matter

FIG. 1. Variations of values of L along the Sn isotopic chain. The
nuclear matter distributions of Sn isotopes in Eq. (11) are calculated
from relativistic FSU and NL3 parameter sets, respectively. The dash
lines in the figures are used to show the changing trends.

density distributions are sharp-surface density distribution
ρ(r) = ρ0�(R0 − |r|) where �(R0 − |r|) is a step function.
However, for theoretical matter density distributions obtained
from mean-field models, there are fluctuations at the inner
region and diffuseness at the surface. Therefore, Eq. (11)
is valid approximately for real nuclear matter distributions.
In Fig. 2, we present the distributions of the local density
asymmetry X(r) = ρn(r)−ρp(r)

ρ(r) and ρ(r)[X(r)]2 for some Sn
isotopes. From the left panel of Fig. 2, we can observe that
with the increasing of isospin asymmetry X0, distributions
of X(r) gradually get close to the sharp-surface distributions.
This causes ρ(r)[X(r)]2 dropping much faster at the nuclear
surface for the neutron rich Sn isotopes. In the range of nuclear
size, the term Csym(ρ0)( ρ(r)

ρ0
)γ in Eq. (11) is almost a constant.

Therefore, if distributions of ρ(r)[X(r)]2 drop faster at the
surface, the approximation Eq. (11) works better. This results
in a very small change of extracted L for the neutron rich Sn
isotopes, which can be observed in Fig. 1.

Besides the medium mass Sn isotopes, the heavy Pb
isotopes are also chosen to study the symmetry energy of
nuclear matter. All the even-even isotopes with mass number
ranging from 182 to 220 are taken into considerations. The
slope parameter L are systematically calculated by Eqs. (10)
and (11) where the corresponding matter density distributions
of Pb isotopes are calculated with different parameter sets. The
results of FSU and NL3 parameter sets are presented in Fig. 3.
In this figure we can also see firstly the extracted L decreases
rapidly with the increasing of isospin asymmetry. When the
isospin asymmetry X0 is larger than 0.21 (corresponding to
208Pb), the changes of extracted L are very small. Compared

FIG. 2. Distributions of the local density asymmetry X(r) =
ρn(r)−ρp (r)

ρ(r) and ρ(r)[X(r)]2 for 108Sn, 112Sn, 124Sn, and 132Sn, which
are calculated from FSU parameter set.
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FIG. 3. Variations of values of L along the Pb isotopic chain. The
nuclear matter distributions of Pb isotopes in Eq. (11) are calculated
from relativistic FSU and NL3 parameter sets, respectively. The
dashed lines are used to show the changing trends.

with Sn isotopes in Fig. 1, the data do not saturate very well for
the heavy Pb isotopes but the changes of extracted L are less
than 2 MeV for the last our even-even isotopes. Therefore, we
also use the averages of extracted L from last four even-even
isotopes to represent their saturation values. Finally we obtain
the saturation value L = 62.6 MeV and L = 57.9 MeV for
FSU and NL3 parameter sets, respectively.

The reason for changes of L along the Pb isotopic chain in
Fig. 3 is also due to the local density approximation in Eq. (11).
In Fig. 4, we present the distributions of the local density
asymmetry X(r) = ρn(r)−ρp(r)

ρ(r) and ρ(r)[X(r)]2 for some Pb
isotopes. It can be seen in this figure that the behavior of
X(r) and ρ(r)[X(r)]2 of Pb isotopes is very similar to that of
Sn isotopes. The approximation Eq. (11) is more accurate
for neutron rich Pb isotopes because their distributions of
ρ(r)[X(r)]2 are much closer to the sharp-surface density
distributions. Therefore the changes of extracted L are very
small if isospin asymmetry X0 is larger than a certain value for
the Pb isotopes, which can be observed in Fig. 3. In the ideal
case, L should be a constant along isotopic chains because
L = 3γ (a sym(A) + CsA

−1/3) = 3γCsym(ρ0). The changes of
extracted L along the Sn and Pb isotopic chains in Figs. 1 and
3 are close to the ideal case, when isospin asymmetry X0 is
larger than a certain value.

Besides FSU and NL3 parameter sets, the saturation values
of L for other parameter sets are also studied and the results
are presented in Fig. 5 with red squares versus the neutron
skin thickness. For purposes of comparison and analysis, we
extend the model in Fig. 5 but follow the figure styles of Fig. 1
in Ref. [39]. The shadow represents errors which are generated

FIG. 4. Distributions of the local density asymmetry X(r) =
ρn(r)−ρp (r)

ρ(r) and ρ(r)[X(r)]2 for 192Pb, 198Pb, 208Pb, and 220Pb, which
are calculated from FSU parameter set.

FIG. 5. (Color online) Saturation values of L for different
parameter sets versus neutron skins. The neutron and proton density
distributions of Sn and Pb isotopes are used in Eq. (11) to deduce
these values, respectively. The shadow represents errors which are
generated from the uncertainties of Csym(ρ0), Cs and ρ0. Triangles
represent L calculated from Eqs. (7) and (12) with different
interactions. The acceptable window for the values of L is represented
by gray rectangle.

from the uncertainties of Csym(ρ0), Cs , and ρ0 in Eqs. (10) and
(11). For comparison, we also calculate L with Eq. (7) where
Csym(ρ) are obtained directly from the calculations of infinite
nuclear matter with mean-field models:

Csym(ρ) = k2
F

6E∗
F

+ g2
ρ

12π2

k3
F

m∗
ρ

2 . (12)

L calculated from Eqs. (7) and (12) are presented in Fig. 5
with triangles. It can be seen in Fig. 5 that L calculated
from different parameter sets with Eqs. (7) and (12) differ
considerably, where the nonrelativistic nuclear interactions
predict 20 < L < 60 MeV and most relativistic nuclear
interactions lead to L > 100 MeV. However, with the local
density distribution, the properties of finite nuclei can be used
to constrain the slope parameter L. L derived from Eqs. (10)
and (11) with different parameter sets are close to each other.
The gray box projects out the region of L and Rskin that
satisfies these two models [Eqs. (10), (11) and Eqs. (7), (12)]
simultaneously. From Fig. 5 we finally obtain the value 69 ±
5 MeV for Sn isotopes and 64 ± 5 MeV for Pb isotopes.

The values of L extracted from Pb and Sn isotopes are very
close to each other, though their proton numbers differ widely.
The deviation of L mainly causes by the surface symmetry
energy coefficients Cs in Eq. (10). For medium mass Sn
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FIG. 6. (Color online) Density dependence of the nuclear symme-
try energy Csym(ρ) for different parameter sets. The LDA represents
Csym(ρ) which is deduced under local density approximation with
Eqs. (10) and (11) in this paper.

isotopes and heavy Pb isotopes, the contributions of surface
terms to the symmetry energies in Eq. (5) are different and the
value Cs = 58.91 ± 1.08 MeV is an average value which is
obtained by fitting binding energies of all nuclei. Besides L
obtained from lower panel of Fig. 5 is equal to the result of
Ref. [39] where the matter density distributions of 208Pb are
used. This is understandable because L deduced from 208Pb is
very close to the saturation value of Pb isotopic chain, which
can be seen in Fig. 3.

With the results of both Sn and Pb isotopes, we finally obtain
an average value L = 66 ± 7 MeV. Besides, with Eq. (7),
we can also obtain γ = 0.69 ± 0.07 and this value agrees
with the result γ � 0.69 which is obtained from nuclear
reaction interpreted by the dynamical and the statistical models
of multifragmentation [45]. Submitted γ into Eq. (6), the
density dependence of symmetry energy Csym(ρ) can be
estimated. Symmetry energy Csym(ρ) deduced under local
density approximation is presented in Fig. 6. For comparison,
the Csym(ρ) calculated from other parameter sets with Eq. (12)
are also presented in this figure. We can see that a stiff form of
symmetry energy Csym(ρ) is obtained under the local density
approximation.

IV. SUMMARY

In this paper, we investigate the symmetry energy Csym(ρ)
and its slope parameter L at the saturation density ρ0 under the
local density approximation. Based on this approximation, the
symmetry energy Csym(ρ) of nuclear matter can be deduced
from the density distributions of finite nuclei. It is reasonable to
deduce the symmetry energy of nuclear matter with properties
of finite nuclei because the initial constraints on the nuclear
matter are few. Under the local density approximation, the
values of L deduced with different parameter sets are very
close to each other and can be constrained in a small range.

The proton and neutron densities of Sn and Pb isotopes are
chosen to deduce L in this paper. By systematically studying
with different isotopic chains, the variation of extracted L
along isotopic chains can be analyzed. From analysis of
local density asymmetry X(r) and ρ(r)[X(r)]2 for different
isotopes, we conclude that the variation of L is due to the
local density approximation used in analysis. For different
isotopic chains, the saturation values of extracted L are
reached for neutron rich isotopes. The researches in this paper
demonstrate that the slop parameter L can be extracted from
the very neutron rich isotopes in the isotopic chains under
local density approximation, for example 208Pb in the Pb
isotopic chain. Taking into considerations of the saturation
values of L of different isotopic chains, we finally obtain the
values L = 66 ± 7 MeV and γ = 0.69 ± 0.07 for the ansatz
of symmetry energy Csym(ρ) = Csym(ρ0)( ρ

ρ0
)γ .
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