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Pseudospin symmetry in single-particle resonances in spherical square wells
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Background: The pseudospin symmetry (PSS) has been studied extensively for bound states. Recently, we
justified rigorously that the PSS in single-particle resonant states is exactly conserved when the attractive scalar
and repulsive vector potentials of the Dirac Hamiltonian have the same magnitude but opposite sign [Phys. Rev.
Lett. 109, 072501 (2012)].
Purpose: To understand more deeply the PSS in single-particle resonant states, we focus on several issues related
to the exact conservation and breaking mechanism of the PSS in single-particle resonances. In particular, we are
interested in how the energy and width splittings of PS partners depend on the depth of the scalar and vector
potentials.
Methods: We investigate the asymptotic behaviors of radial Dirac wave functions. Spherical square-well
potentials are employed in which the PSS breaking part in the Jost function can be well isolated. By examining the
zeros of Jost functions corresponding to small components of the radial Dirac wave functions, general properties
of the PSS are analyzed.
Results: By examining the Jost function, the occurrence of intruder orbitals is explained and it is possible to
trace continuously the PS partners from the PSS limit to the case with a finite potential depth. The dependence
of the PSS in resonances as well as in bound states on the potential depth is investigated systematically. We find
a threshold effect in the energy splitting and an anomaly in the width splitting of pseudospin partners when the
depth of the single-particle potential varies from zero to a finite value.
Conclusions: The conservation and the breaking of the PSS in resonant states and bound states share some
similar properties. The appearance of intruder states can be explained by examining the zeros of Jost functions.
Origins of the threshold effect in the energy splitting and the anomaly in the width splitting of PS partners,
together with many other problems, are still open and should be further investigated.
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I. INTRODUCTION

More than 40 years ago, the pseudospin symmetry (PSS)
was found to be approximately conserved in atomic nuclei and
it was shown that doublets of single-particle levels with quan-
tum numbers (nr, l, j = l + 1/2) and (nr − 1, l + 2, j = l +
3/2) in the same major shell are nearly degenerate [1,2]. Based
on the pseudospin concept, a simple but useful pseudo-SU(3)
model was proposed and later this model was generalized
to be the pseudosymplectic model [3,4]. Since the PSS was
observed, several nuclear phenomena have been interpreted
in connection with the PSS, such as nuclear superdeformed
configurations [5,6], identical bands [7,8], and pseudospin
partner bands [9,10]. The PSS may also manifest itself in
magnetic moments and transitions [11,12] and γ -vibrational
states in atomic nuclei [13]. It is, thus, an interesting topic
to investigate the origin and breaking mechanism of the PSS,
which has been done within various backgrounds. With these
studies a much better understanding of the nuclear structure
based on the PSS is anticipated.

In early years much effort was devoted to revealing
connections between the normal spin-orbit representation and
the “pseudo” spin-orbit one and to exploring the microscopic
origin of the PSS with spherical, axially deformed, and
triaxially deformed potentials of (mostly) the oscillator type
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[6,14–16]. It was found that the PSS conserves almost
exactly for an oscillator potential with one-body orbit-orbit
(vll) and spin-orbit (vls) interaction strengths satisfying the
condition vls ≈ 4vll ; moreover, this condition is consistent
with relativistic mean-field results [6]. A big step towards
the understanding of the origin of the PSS in atomic nuclei
was made in 1997 when Ginocchio revealed that the PSS is
essentially a relativistic symmetry of the Dirac Hamiltonian
and the pseudo-orbital angular momentum l̃ is nothing but
the angular momentum of the small component of a Dirac
spinor [17]. It was shown that the PSS in nuclei is exactly
conserved when the scalar potential S(r) and the vector
potential V (r) have the same size but opposite sign, i.e.,
�(r) ≡ S(r) + V (r) = 0 [17]. Later Meng et al. found that the
PSS is connected with the competition between the centrifugal
barrier and the pseudospin-orbit potential and the PSS is
exact under the condition d�(r)/dr = 0 [18]. This condition
means that the PSS becomes much better for exotic nuclei
with a highly diffused potential [19]. However, in either limit,
�(r) = 0 or d�(r)/dr = 0, there are no longer bound states;
thus, in realistic nuclei, the PSS is always broken. In this sense,
the PSS is usually viewed as a dynamical symmetry [20,21].
Following discussions for spherical nuclei, the study of the
PSS within the relativistic framework was quickly extended to
deformed ones [22,23]. One consequence of the fact that the
PSS is a relativistic symmetry of the Dirac Hamiltonian is that
the relativistic wave functions of the corresponding pseudospin
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doublets satisfy certain relations which have been tested both
in spherical and in deformed nuclei [22,24–26].

By solving the Dirac Hamiltonian, one gets not only positive
energy states in the Fermi sea but also negative energy states
in the Dirac sea. When solutions of the Dirac Hamiltonian
are used as a complete basis, e.g., in the Dirac Woods-Saxon
basis, states with both positive and negative energies must
be included [27–31]. Negative energy states correspond to
antiparticle states. In both seas, there are discrete bound states
and continuum states. The PSS study has been generalized
not only from the Fermi sea to the Dirac sea, i.e., from
single-particle states to antiparticle states, but also from bound
states to continuum states. The PSS in negative energy states
means the spin symmetry (SS) in antinucleon spectra [32,33].
The SS in single antinucleon spectra was explored and found
to be much better developed than the PSS in normal nuclear
single-particle spectra [33]. The SS in antinucleon spectra
was also tested by investigating relations between Dirac wave
functions of spin doublets with the relativistic mean-field
model [34]. Later the SS in antiparticle spectrum was studied
with the relativistic Hartree-Fock model and the contribution
from the Fock term was discussed [35]. It has been pointed
out in Ref. [33] that one open problem related to the study of
the SS in antinucleon spectra is the polarization effect caused
by the annihilation of an antinucleon in a normal nucleus.
Detailed calculations of the antibaryon (p̄, �̄, etc.) annihilation
rates in the nuclear environment showed that the in-medium
annihilation rates are strongly suppressed by a significant
reduction of the reaction Q values, leading to relatively
long-lived antibaryon-nucleus systems [36]. Recently the SS in
the anti-� spectrum of hypernuclei was studied quantitatively
[37]; this kind of study would be of great interests for possible
experimental tests.

The SS and PSS have been investigated extensively within
the relativistic framework. The readers are referred to Ref. [38]
for a review and to Ref. [39] for an overview of recent
progresses. Next we briefly mention several aspects of these
progresses. The node structure of radial Dirac wave functions
of pseudospin doublets was studied in Ref. [40], which was
helpful particularly for the understanding of the special status
of nodeless intruder states in nuclei. Although there are some
doubts about the connection between the PSS and conditions
�(r) = 0 or d�(r)/dr = 0 [41], following the idea that
under these conditions the PSS is conserved exactly, a lot of
discussions have been made about the PSS and/or SS in single-
(anti-)particle spectra obtained by exactly or approximately
solving the Dirac Hamiltonian with various potentials [42–53].
One of interesting topics is the tensor effect on the PSS or SS
which have been investigated in some of the above-mentioned
work and some others, e.g., in Refs. [54–57]. Much effort
was also devoted to the study of the perturbative feature of the
breaking of the PSS [39,58,59]. The concept of supersymmetry
(SUSY) and the similarity renormalization group method were
both used in the study of the PSS and/or SS by several
groups [39,60,61]. The relevance of the PSS in the structure
of halo nuclei [56] and superheavy nuclei [62,63] was also
found. Quite recently, the node structure of radial Dirac wave
functions in central confining potentials was studied and the
authors have shown in a general way that it is possible to have

positive energy bound solutions for these potentials under the
condition of exact PSS [64]. Note that there have been some
investigations of PSS connected with some specific forms of
confining potentials [65]. Finally, we mention that there have
been some discussions on the physics behind �(r) ≈ 0 or
d�(r)/dr ≈ 0 [66,67] and more investigations are expected.

In recent years, there has been an increasing interest in the
exploration of continuum and resonant states, especially in
the study of exotic nuclei with unusual N/Z ratios. In these
nuclei, the neutron (or proton) Fermi surface is close to the
particle continuum; thus, the contribution of the continuum
is important [28,68–75]. Many methods or models developed
for the study of resonances [76] have been adopted to locate
the position and to calculate the width of a nuclear resonant
state, e.g., the analytical continuation in coupling constant
(ACCC) method [77,78], the real stabilization method (RSM)
[79–81], the complex scaling method (CSM) [82], the coupled-
channels method [83,84], and some others [85,86]. Each of
these methods has advantages and disadvantages. For example,
the RSM is very powerful for narrow resonances and the CSM
for broad ones.

The study of symmetries in resonant states is certainly
interesting; one of the topics is the PSS in the continuum.
We note that the PSS and/or SS in nucleon-nucleus and
nucleon-nucleon scatterings have been investigated [87,88].
Meanwhile, there were also some numerical investigations
of the PSS in single-particle resonances [89,90] and the SS
in single-particle resonant states [91]. Recently, we gave a
rigorous justification of the PSS in single-particle resonant
states [92]. We have shown that the PSS in single-particle
resonant states in nuclei is exactly conserved under the
same condition for the PSS in bound states. i.e., �(r) = 0
or d�(r)/dr = 0 [92,93]. As we noted in Ref. [92], it is
straightforward to extend the study of the PSS in resonant
states in the Fermi sea to that in the negative energy states in
the Dirac sea or SS in antiparticle continuum spectra. In the
present work we will focus on several open problems related
to the exact conservation and breaking mechanism of the PSS
in single-particle resonances. To this end spherical square-well
potentials are employed in which the PSS breaking part can be
separated from other parts in the Jost function. By examining
zeros of Jost functions corresponding to small components of
radial Dirac wave functions, we examine general properties of
PSS splittings of the energies and widths.

In Sec. II, the justification of the PSS in single-particle
resonant states will be given briefly and the emphasis will be
put on the mechanism of the exact conservation and breaking
of pseudospin symmetry in single-particle resonant states in
square-well potentials. Details on the study of the PSS in
single-particle resonances will be presented in Sec. III. In
Sec. IV, we will summarize this work and mention some
perspectives.

II. PSEUDOSPIN SYMMETRY IN SINGLE-PARTICLE
RESONANT STATES IN SQUARE-WELL POTENTIALS

A rigorous justification of the PSS in single-particle
resonant states has been given in Ref. [92]. For completeness,
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we will briefly mention it before we discuss the PSS in
square-well potentials.

In relativistic mean-field models, the covariant functional
can be one of the following four forms: the meson exchange
or point-coupling nucleon interactions combined with the
nonlinear or density-dependent couplings [69,70,94–98]. The
starting point of the covariant density functional with the
nonlinear point couplings is the following Lagrangian:

L = ψ̄(iγμ∂μ − M)ψ − Llin − Lnl − Lder − LCou, (1)

where

Llin = 1

2
αSρ

2
S + 1

2
αV (jV )μj

μ
V

+ 1

2
αT S( �ρT S)2 + 1

2
αT V ( �jT V )μ · �jμ

T V ,

Lnl = 1

3
βSρ

3
S + 1

4
γSρ

4
S + 1

4
γV

[
(jV )μj

μ
V

]2
,

(2)

Lder = 1

2
δS∂νρS∂

νρS + 1

2
δV ∂ν(jV )μ∂νj

μ
V

+ 1

2
δT S∂ν �ρT S · ∂ν �ρT S + 1

2
δT V ∂ν( �jT V )μ · ∂ν �jμ

T V ,

LCou = 1

4
FμνFμν + e

1 − τ3

2
Aμj

μ
V ,

are the linear coupling, nonlinear coupling, derivative cou-
pling, and the Coulomb part, respectively. M is the nucleon
mass, αS , αV , αT S , αT V , βS , γS , γV , δS , δV , δT S , and δT V are
coupling constants for different channels and e is the electric
charge. ρS , �ρT S , jV , and �jT V are the isoscalar density, isovector
density, isoscalar current, and isovector current, respectively.
The various densities and currents are defined as

ρS = ψ̄ψ, �ρT S = ψ̄ �τψ, (3)

j
μ
V = ψ̄γ μψ, �jμ

T V = ψ̄ �τγ μψ. (4)

The equation of motion for nucleons, the Dirac equation, is
derived from the Lagrangian density as

{α · p + β[M + S(r)] + V (r)} ψ(r) = εψ(r), (5)

where α and β are Dirac matrices and M is the nucleon mass. In
Eq. (5), the scalar potential S(r) and the vector potential V (r)
are determined by densities and currents defined in Eqs. (3)
and (4). It turns out that both potentials are very deep, but
they have opposite signs: The scalar potential S(r) is attractive
and the vector potential V (r) is repulsive. This results in an
approximate PSS in nuclear single-particle spectra [17] and an
even better conserved SS in antinucleon spectra [33].

For a spherical nucleus, the Dirac spinor reads

ψ(r) = 1

r

(
iFnκ (r)Y l

jm(θ, φ)

−Gñκ (r)Y l̃
jm(θ, φ)

)
, (6)

where Y l
jm(θ, φ) is the spin spherical harmonic and Fnκ (r)/r

and Gñκ (r)/r are the radial wave functions for the upper and
lower components with n and ñ numbers of radial nodes. The
total angular momentum j , the orbit angular momentum l, and
the pseudo-orbital angular momentum l̃ are determined by κ

through

j = |κ| − 1
2 ,

l(l + 1) = κ(κ + 1), l � 0, (7)

l̃(l̃ + 1) = κ(κ − 1), l̃ � 0.

The radial Dirac equation reads(
M + �(r) − d

dr
+ κ

r

d
dr

+ κ
r

−M + �(r)

) (
F (r)

G(r)

)
= ε

(
F (r)

G(r)

)
, (8)

where �(r) = V (r) + S(r), �(r) = V (r) − S(r), and ε is the
eigenenergy. For brevity we omit the subscripts from F (r) and
G(r). This first-order coupled equation can be rewritten as two
decoupled second-order differential ones by eliminating either
the large or the small component [18,19,33],[

d2

dr2
+ 1

M+(r)

d�(r)

dr

d

dr
− l(l + 1)

r2

+ 1

M+(r)

κ

r

d�(r)

dr
− M+(r)M−(r)

]
F (r) = 0, (9)[

d2

dr2
− 1

M−(r)

d�(r)

dr

d

dr
− l̃(l̃ + 1)

r2

+ 1

M−(r)

κ

r

d�(r)

dr
− M+(r)M−(r)

]
G(r) = 0, (10)

where M+(r) = M + ε − �(r) and M−(r) = M − ε + �(r).
In Ref. [99], it has been shown that each of these
two Schrödinger-like equations, together with its charge-
conjugated one, are fully equivalent to Eq. (5). Note that
for bound states, there is always a singularity in 1/M−(r) in
Eq. (10). For resonant states we discuss here, such a singularity
does not exist.

For the continuum in the Fermi sea, i.e., ε � M, there exist
two independent solutions for Eqs. (9) or (10). The physically
acceptable one is the solution that vanishes at the origin. For
example, the regular solution for the small component G(r)
behaves like jl̃(pr) as r → 0,

lim
r→0

G(r)/jl̃(pr) = 1, p =
√

ε2 − M2. (11)

Since the PSS is directly connected with the small com-
ponent, we will mainly focus on Eq. (10) in the following
discussions. At large r potentials for neutrons vanish, the
regular solution is written as a combination of Riccati-Hankel
functions,

G(r) = i

2

[J G
κ (p)h−

l̃
(pr) − J G

κ (p)∗h+
l̃

(pr)
]
, r → ∞,

(12)

where h±
l̃

(pr) are the Ricatti-Hankel functions. Jκ (p) is the
Jost function which is an analytic function of p and can be
analytically continued to a large region in the complex p plane.
The zeros of J G

κ (p) on the positive imaginary axis of the
p plane correspond to bound states and those on the lower
p plane and near the real axis correspond to resonant states.
The resonance energy E and width � are determined by the
relation E − i�/2 = ε − M .
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In the PSS limit, Eq. (10) is reduced as[
d2

dr2
− l̃(l̃ + 1)

r2
+ (ε − M) M+(r)

]
G(r) = 0. (13)

For pseudospin doublets with κ and κ ′ = −κ + 1, the small
components satisfy the same equation because they have the
same pseudo-orbital angular momentum l̃. For continuum
states, Gκ (ε, r) = Gκ ′ (ε, r) is true for any energy ε; thus, we
have J G

κ ′ (p) = J G
κ (p). This equivalence can be generalized

into the complex p plane due to the uniqueness of the analytic
continuation. Thus, the zeros are the same for J G

κ ′ (p) and
J G

κ (p) and the PSS in single-particle resonant states in nuclei
is exactly conserved. Note that when we focus on the zeros
of Jost functions of pseudospin doublets on the positive
imaginary axis of the p plane, we come to the well-known
PSS for bound states. For bound states this is an alternative
way to justify the PSS or SS besides those ways in which the
Dirac equation and Dirac wave functions are examined in, e.g.,
Refs. [17,18,22,33] or introducing the concept of SUSY and
the similarity renormalization group method [39,60,61]. For
single-particle resonant states, to now this is the only way to
do so.

In Fig. 1 we show spherical potentials �(r) and �(r)
of 208Pb calculated using the relativistic mean-field model
with the parameter set PC-PK1 [100]. However, to extract
the energy and width of resonant states in such potentials is
relatively complex. In particular, when we want to study the
PSS and examine the origin and the splitting mechanism, it
is better to start from solvable models. In Fig. 1 we show
two types of potentials which can be used to approximate the
realistic one, the Woods-Saxon and square-well potentials. For
208Pb the radius is around 7 fm and the depths of potentials
are 650 and 66 MeV, respectively; these parameters of Woods-
Saxon potentials have been proposed in Ref. [89]. Although
the diffuseness of realistic potentials cannot be included, it is
still a good starting point to study general properties of the PSS
for the resonant as well as bound states by using square-well
potentials because the PSS-breaking term in the Jost function
is separated from the PSS-conserving term.

Spherical square-well potentials for �(r) and �(r) read

�(r) =
{

C, r < R,
0, r � R,

(14)

�(r) =
{

D, r < R,
0, r � R,

(15)

where C and D are depths and R is the width. The Jost function
J G

κ (p) is derived as [92]

J G
κ (p) = − pl̃

2ikl̃+1

{
jl̃(kR)ph+′

l̃
(pR) − kj ′

l̃
(kR)h+

l̃
(pR)

− C

ε − M − C

[
kj ′

l̃
(kR) − κ

R
jl̃(kR)

]
h+

l̃
(pR)

}
,

(16)

with k = √
(ε − C − M) (ε − D + M). The PSS in both

bound states and resonant states can be explained explicitly. If
C = 0, the second term in J G

κ (p) vanishes and the first term
only depends on the pseudo-orbital angular momentum l̃. Then
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FIG. 1. (Color online) Potentials �(r) and �(r) of 208Pb calcu-
lated using the relativistic mean-field model with the parameter set
PC-PK1 [100]. These potentials can be approximated by Woods-
Saxon (W.S.) potentials (dotted curves) or spherical square-well
(S.W.) potentials (dashed lines) with a radius around 7 fm and depths
around 650 and 66 MeV. The long tails in the proton case are due to
the Coulomb interaction.

Jost functions with different κ but the same l̃ are identical,
and energies and widths of resonant pseudospin partners are
exactly the same.

For the large component F (r) we can write a similar
expression for the asymptotic behavior,

F (r) = i

2

[J F
κ (p)h−

l (pr) − J F
κ (p)∗h+

l (pr)
]
, r → ∞.

(17)

At the origin,

lim
r→0

F (r)/jl(pr) = 1, p =
√

ε2 − M2. (18)

In square-well potentials, J F
κ (p) is derived as

J F
κ (p) = − pl

2ikl+1

{
jl(kR)ph+′

l (pR) − kj ′
l (kR)h+

l (pR)

− D

ε + M − D

[
kj ′

l (kR) + κ

R
jl(kR)

]
h+

l (pR)

}
.

(19)
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FIG. 2. (Color online) The Jost function Jκ (E) (in arbitrary unit)
on the real E axis for several pairs of pseudospin partners. The
results for pseudospin s̃ = ±1/2 are denoted as solid and dashed
curves, respectively. The zero points representing bound states with
s̃ = ±1/2 are denoted as black and red dots, respectively.

It looks similar to that of the small component J G
κ (p), with

the exception that the potential parameter C is substituted by
D and the pseudo-orbital angular momentum l̃ is substituted
by l. In the case of D → 0, this form of Jost function can be
used to investigate the spin symmetry of single-particle levels.

By examining the zeros of the Jost function, we will study
properties of single-particle bound states and resonant states
and the PSS.

III. RESULTS AND DISCUSSIONS

A. The Jost function and its zeros and the
occurrence of intruder states

Now we examine the Jost function (16) corresponding to
the small component of the radial Dirac wave function in
square-well potentials with C = −66 MeV and D = 650 MeV.
For bound states, one can draw the Jost function as a function
of either the imaginary part of p or the binding energy
E ≡ ε − M . Here we use the latter in order to have a more
intuitive picture for the energy splitting. Such Jost functions
Jκ (E) for several pairs of pseudospin partners are shown in
Fig. 2. In the following discussions, we omit the superscript
“G” from Jκ (E). The results for pseudospin s̃ = ±1/2 are
denoted as solid and dashed curves, respectively. The zero
points representing bound states with s̃ = ±1/2 are denoted
as black and red dots, respectively. For each pseudo-orbital

angular momentum l̃ there exist two κ’s, one with a positive
value κ = l̃ + 1 and the other with a negative value κ = −l̃,
respectively. For example, for l̃ = 1 (p̃) we have κ = 2
(pseudospin aligned, d3/2) or κ = −1 (pseudospin antialigned,
s1/2). There are some common features in these Jost functions
which will be detailed in the following.

First, the number of zeros for Jost functions with negative κ
is always one more than that with positive κ if the nonphysical
node at the bottom of the potential is excluded. For example,
for l̃ = 1 there are two zeros for d3/2 (κ = 2) but three for s1/2

(κ = −1); this means that there are two bound states for d3/2

and three for s1/2. Therefore, there is always one bound state
with κ < 0 which does not have a partner; this state is simply
an intruder state. The study of the node structure of radial Dirac
wave functions of pseudospin doublets has been made in which
the occurrence of nodeless intruder states has been explained
[40]. This kind of study was also extended to the Dirac sea [33]
and to the case with confining potentials [64,65]. Note that
for harmonic oscillator (HO) potentials or some combination
of HO and Woods-Saxon potentials, bound states exist even
under the condition of the exact PSS and intruder states do have
pseudospin partners [65]. The reason why there are intruder
states was also naturally explained by employing both exact
and broken SUSY within a unified scheme [39,60,101]. Here
we present a novel way to show the origin of the appearance
of intruder states: The lowest zero of the Jost function (16)
with negative κ is always isolated while the others are paired
off with those of the Jost function with positive κ .

Second, the similarity of Jost functions can also be used as
a test of the PSS or SS symmetries besides the examination
of radial wave functions of PSS or SS doublets [22,24–26,
34,57,90]. From Fig. 2, one finds that except in the energy
range around and below the first zero of the Jost function with
negative κ , Jost functions corresponding to PSS doublets, i.e.,
with the same l̃, are similar with each other. This is particularly
clear for the cases with small l̃, e.g., l̃ = 1. Furthermore, in
the low-energy range above the first zero of the Jost function
with negative κ , these Jost functions are rather smooth. When
approaching the threshold, the Jost function becomes very
steep against the energy. Although the absolute differences
between Jκ ’s are large, the zeros corresponding to PS doublets
are still not far from each other, which means a good PSS.

Third, the difference between Jost functions with the same
l̃ increases when l̃ becomes larger, as is the difference of the
positions of their paired zeros. That is, the splitting between the
energy (in short, the energy splitting) of pseudospin partners
increases with l̃, which is consistent with earlier studies, e.g.,
in Ref. [19,22]. This can be explained by the factor κ of the
pseudospin splitting term κjl̃(kR)/R in Eq. (16) which breaks
the PSS and will be discussed in the next subsection in details.

B. Single-particle spectra and pseudospin splittings
in the energy and the width

There is no analytical solution for Jκ (p) = 0. However,
because the Jost function is analytic near its zeros, one can
easily get the roots of Jκ (p) = 0 by using the secant method.
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FIG. 3. (Color online) Energies of bound states as well as
resonances with l̃ = 1, 2, . . . , 6 in spherical square-well potentials
with C = −66 MeV and D = 650 MeV. The results with pseudospin
s̃ = ±1/2 are denoted as black and red lines, respectively. The bottom
of the potential well E = −66 MeV and the threshold E = 0 are
shown as dotted lines. For each pseudo-orbital angular momentum l̃

the lowest level is an intruder state and has no pseudospin partner.

Starting from an initial guess for a root, the iteration usually
converges after a few steps [92].

In Fig. 3 we show the energies of the bound states as
well as the resonances with l̃ = 1, 2, . . . , 6 in square-well
potentials with C = −66 MeV and D = 650 MeV. The results
with pseudospin s̃ = ±1/2 are denoted as black and red lines,
respectively. To see PSS splittings more clearly, the results are
depicted with respect to the pseudo-orbital angular momentum
l̃. For example, for l̃ = 3 we have put together levels with
g7/2 (s̃ = 1/2 and κ = 4) and those with d5/2 (s̃ = −1/2 and
κ = −3).

As explained in the previous subsection, for each pseudo-
orbital angular momentum l̃, the lowest level represents an
intruder state which has no pseudospin partner. In Fig. 3, one
finds the normal energy splitting, i.e., for a pair of pseudospin
doublet states, the one with s̃ = −1/2 is higher in energy
than that with s̃ = 1/2, regardless if these states are bound
or in the continuum. For bound states, this is well known,
though in some realistic calculations, e.g., Refs. [19,22,102],
it is shown that there are some exceptions. For resonant
states, from Refs. [89,90], one finds that, in many cases, for
a pair of pseudospin doublet states, the one with s̃ = −1/2
is lower in energy. Systematic studies have been carried out
to investigate the parameter (the depth, the radius, and the
diffuseness) dependence of the PSS in resonances in Woods-
Saxon potentials and the isospin dependence of the PSS in
resonances in RMF potentials [89]. It was found that in these
more realistic potentials, the energy splitting of pseudospin
doublets in continuum has a complicated dependence on the
parameters of the potential and on the ratio of neutron and
proton numbers [89].

For bound states, when approaching the threshold, the
energy splitting becomes smaller for all l̃ as shown in Fig. 3.
This means that the PSS becomes more conserved for orbitals
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FIG. 4. (Color online) Widths of resonant states with l̃ =
1, 2, . . . , 6 in spherical square-well potentials with C = −66 MeV
and D = 650 MeV. The results with pseudospin s̃ = ±1/2 are
denoted as black and red lines, respectively. The bound-state threshold
E = 0 is shown as a dotted line.

which are closer to the continuum, which has been found and
explained [17–19,22]. In the present work, we can explain this
point by examining the Jost function (16). The pseudospin
splitting term in Eq. (16) is proportional to C/(ε − M − C)
and the denominator ε − M − C means the relative energy
with respect to the bottom of the single-particle potential.
Apparently, for less bound states, the factor C/ε − M − C is
smaller and the pseudospin splitting term in the Jost function
are less important; consequently, the PSS becomes better.

As we noticed earlier, the pseudospin splitting term in
Eq. (16) depends not only on the binding energy but also
on l̃ and κ . Thus, the energy splitting becomes larger as
the pseudo-orbital angular momentum l̃ increases. Especially
if we focus on the levels with the same number of radial
nodes, the energy splitting monotonically increases with l̃;
this behavior has been observed for bound states in many
publications [18,19,22,33].

For resonant states, not only the energies but also the
widths are of importance. In Fig. 4 we show the calculated
widths of resonances in spherical square-well potentials with
C = −66 MeV and D = 650 MeV. Comparing this figure
with Fig. 3, one finds that the width splitting shares several
similar features with the energy splitting. First, the width of
the resonant state with s̃ = −1/2 is always larger than that
of its pseudospin partner with s̃ = 1/2. Note that the width
splitting depends on the depth the potential C, as will be shown
in Sec. III C. Second, the width splitting decreases when the
energy of resonant states increases for the same l̃. For the
resonances with very high energies, the width splitting even
becomes negligible.

From Fig. 3, one finds that for resonant states, when the
energy increases, the energy splitting becomes smaller for
l̃ = 1. But it becomes a bit larger for l̃ = 3 and 5, which
seems to contradict the fact that the factor of the pseudospin
splitting term in Eq. (16), i.e., C/(ε − M − C), becomes
smaller in amplitude when the ε becomes larger. However,
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FIG. 5. (Color online) Zeros of the Jost function Jκ (E) in
spherical square-well potentials with different potential depth C =
−70, −60, . . . , 0 MeV for (a) l̃ = 2: p3/2 (κ = −2) and f5/2 (κ =
3); and (b) l̃ = 3: d5/2 (κ = −3) and g7/2 (κ = 4). When C = 0,
pseudospin doublets are degenerate and corresponding symbols
overlap each other. The results with pseudospin s̃ = ±1/2 are denoted
as solid and open circles, respectively. When C = −70 MeV, energies
of intruder states are below −40 MeV and not shown.

this is not really a contradiction because, for a resonant state,
one should take into account both the energy and the width.
For the closeness of pseudospin partners in the continuum,
one should check the distance between them in the complex
energy or momentum plane. As shown in Fig. 5, for l̃ = 2
or 3, the distance between the n-th pair of pseudospin resonant
doublets is always smaller than that between the (n − 1)-th
pair when the potential depth is fixed. Note that in Fig. 5
are presented bound states and resonant states in spherical
square-well potentials with C = −70,−60, . . . , 0 MeV.

Differing from the energy splitting which increases when l̃
increases, from Fig. 4 it is seen that when the radial quantum
number is fixed, the width splitting decreases with l̃, which
seems inconsistent with the dependence of the pseudospin
splitting term in Eq. (16) on l̃ and κ . To solve this puzzle, one
again needs to examine the distance between PS partners in the
complex energy or momentum plane. In Fig. 5, one can find
that, at fixed C and radial quantum number, e.g., comparing the
red curves in Figs. 5(a) and 5(b), the pair of l̃ = 2 pseudospin
resonant partners is always closer than those of l̃ = 3.

C. The dependence of the PSS in resonances on the depth
of the potential: A threshold effect in the energy splitting

and an anomaly in the width splitting

Since the potential depth is relevant mostly to the energy
and width of a resonant state, next we study how the PSS
evolves with the variation of the potential depth C. In Fig.
5 we show zeros of Jost functions Jκ (E) in the spherical
square-well potentials with different potential depth C =
−70,−60, . . . , 0 MeV for l̃ = 2 [p3/2 (κ = −2) and f5/2

(κ = 3)] and l̃ = 3 [d5/2 (κ = −3) and g7/2 (κ = 4)]. Results
with pseudospin s̃ = ±1/2 are denoted as solid and open dots,
respectively. For simplicity the results are shown in the com-

FIG. 6. (Color online) Energies of bound and resonant states for
p3/2 and f5/2 with l̃ = 2 in spherical-well potentials as functions of the
potential depth C. The results with pseudospin s̃ = ±1/2 are denoted
as solid and dashed curves, respectively. All the levels are paired off
except for the lowest one. The bottom of the potential E = C and the
bound state threshold E = 0 are shown as dotted lines.

plex energy plane. In the PSS limit, that is, C = V + S = 0,
the zeros are paired off and each pair of states coincide with
each other, which is consistent with the formal analysis. When
the potential depth increases, the zeros move gradually to the
up left corner, i.e., both the energy and the width become
smaller. Meanwhile, the paired pseudospin partners separate
from each other, which means the PSS is broken. However,
the distance between the paired points is not big and the PSS
is conserved approximately.

In Fig. 6 we show the calculated energies of bound and
resonant states with l̃ = 2 in the square-well potentials as
functions of the potential depth C. As the potential depth
varies from 0 to −70 MeV, the energies are always paired off
except for the lowest one. In the PSS limit, i.e., C = 0, there is
no bound state and all the levels are resonant states with finite
widths. The PSS is exactly manifested in this case. When
the single-particle potential becomes deeper, the energies of
both pseudospin partners decrease and the energy splitting
first increases and then decreases. After one of the pseudospin
partners becomes a bound state, an interesting phenomenon
appears, that is, one level is still a resonant state while the
other level becomes bound. Due to the PSS, their energies are
almost the same, except that one is a little bit higher than the
threshold while another is a little bit lower. Because a resonant
state is very close to the threshold, the corresponding width
is also rather small. In other words, the pseudospin partner of
a single-particle bound state may be another bound state or a
“quasibound” state with very long lifetime. When the depth of
the potential increases further, both of the pseudospin partners
become bound states. In this case we can discuss the usual PSS
for bound states.
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FIG. 7. (Color online) The energy splitting between PS partners
with the pseudo-orbital angular momentum l̃ = 2, p3/2, and f5/2, as
a function of the potential depth C.

There have been some investigations concerning the de-
pendence of the PSS in resonant states on parameters, e.g., the
depth, the radius, and the diffuseness, of Woods-Saxon poten-
tials [89]. Differing from those studies, now by examining the
Jost function, we are able to trace the PS partners from the
case of finite potential depth to the PSS limit continuously.
From this point of view, it is more helpful in understanding
the origin and splitting of the PSS.

The energy splitting between PS partners with the pseudo-
orbital angular momentum l̃ = 2 (p3/2 and f5/2), is shown as
a function of the potential depth C in Fig. 7. For simplicity,
only results for the lowest three pairs are shown here. First,
let us focus on the splitting of the lowest PS pair, the levels
2p3/2 and 1f5/2. When the potential depth increases from 0,
the energy splitting first increases and then decreases until
they encounter the threshold at a critical value of C, where one
of the levels becomes a bound state and the splitting takes a
minimum value. When the potential becomes even deeper, the
splitting increases again. This kind of threshold effect is also
observed for other PS pairs except that the critical value of C
differs. The origin of this threshold effect should be one of the
future topics concerning the PSS in resonant states.

In Fig. 8 we show the calculated widths of resonant
states with l̃ = 2 in square-well potentials as functions of
the potential depth C. In this figure a zero width means the
corresponding state has become a bound state. Similarly to the
case of energies, the widths are also paired off when C = 0.
Starting from the PSS limit, the width is a monotonically
decreasing function of the potential depth. When the potential
depth is finite, widths of a pair of pseudospin doublets differ.
First, the level with s̃ = 1/2 is wider. But at a critical value of
C, there occurs a crossing between the two curves at which the
two widths are the same. When the potential depth becomes
even larger, the level with s̃ = −1/2 becomes wider and the
difference between two widths increases until it reaches a
maximum value. Afterwards, the width splitting decreases
until it becomes zero when both states become bound. This

FIG. 8. (Color online) Widths of resonant states for p3/2 and f5/2

with l̃ = 2 in spherical-well potentials as functions of the potential
depth C. The results with pseudospin s̃ = ±1/2 are denoted as solid
and dashed curves, respectively.

anomalous variation tendency can be seen more clearly in
Fig. 9 in which the width difference between PS partners,
�� ≡ �s̃=−1/2 − �s̃=+1/2, is presented. The width splitting
first decreases from zero to a maximum value with a negative
sign and then increases and becomes zero. After the inversion
of the width splitting, the splitting increases and reaches a
maximum value and then becomes smaller again. For each PS
pair, the width splitting assumes its largest value at some point
above the corresponding threshold.

To now, we have examined the dependence of the PSS on
the depth of the single-particle potential. From Eq. (16) one
can also learn the dependence of the PSS on the radius of
the potential R: With R increasing, the splitting term becomes
smaller and the PSS is more conserved. There is no diffuseness
in a square-well potential. It would be more useful to get

FIG. 9. (Color online) The width splitting between the PS
partners with the pseudo-orbital angular momentum l̃ = 2 (p3/2 and
f5/2) as a function of the potential depth C.
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analytic results for more realistic potentials. One then can
discuss the PSS in single-particle resonant states in more
realistic potentials.

IV. SUMMARY AND PERSPECTIVES

The pseudospin symmetry in single-particle resonant states
is analyzed in detail in spherical square-well potentials. We
built the Jost function for the small component of the Dirac
wave function and studied resonant states as well as bound
states by examining the zeros of the Jost function. The exact
conservation and breaking of the PSS are investigated and
a novel way is used to show the origin of the appearance
of intruder states: The lowest zero of the Jost function with
s̃ = −1/2 is always isolated while the others are paired off with
those of the Jost function with s̃ = +1/2. When parameters of
square-well potentials are fixed, we studied the dependence of
the PSS on the energy and l̃ of pseudospin doublet states. It is
found that the energy splitting is larger for higher pseudo-orbit
angular momentum and at very high energies the splittings
between PS partners are negligible. By examining the Jost
function, we are able to trace continuously the PS partners
from the PSS limit to the case with a finite potential depth. As
the depth of the single-particle potential becomes deeper, the
exact PSS begins to be broken and a threshold effect in the
energy splitting is found: The energy splitting first increases
and then decreases until the pseudospin doublets encounter
the threshold where one of the levels becomes a bound state
and the splitting takes a minimum value. When the potential
becomes even deeper, the splitting increases again. When the
depth of the single-particle potential increases from zero, an
anomaly appears in the width splitting of PS partners: It, first,
decreases from zero to a maximum value with a negative sign
and then increases and becomes zero again; after the inversion
of the width splitting, the splitting increases and reaches a
maximum and positive value and then it becomes smaller and
finally reaches zero.

Finally, we mention that the work presented in Ref. [92] and
here extends the study of relativistic symmetries to resonant

states. Although we have addressed several issues concerning
the exact conservation and breaking mechanism of the PSS
in single-particle resonant states, there are still many open
problems [93], and we list several of them as follows:

(i) Are there any experimental evidences of the PSS or SS
in single-particle resonant states?

(ii) Having in mind that the centrifugal barriers differ
markedly for pseudospin doublets of single-particle
resonant states, how to understand intuitively that their
widths are exactly the same in the PSS limit?

(iii) Is the threshold effect found in the energy splitting of
PS partners in spherical square-well potentials general
for other potentials? If yes, what is its origin?

(iv) Is the anomaly found in the width splitting of PS
partners in spherical square-well potentials general for
other potentials? If yes, what is its origin?

(v) What about the relations between Jost functions of
pseudospin partners?

(vi) How about the PSS or SS in resonant states in
antinucleon or antihyperon spectra?

(vii) How about the PSS or SS in resonant states in deformed
systems?

(viii) What is the effect of the Coulomb interaction (e.g., for
protons) on the PSS or SS symmetries?
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