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I. INTRODUCTION

New and upgraded experimental facilities (DAFNE, FAIR,
JLab, J-PARC, . . .) now offer the possibility to determine
the properties of single- and double-� hypernuclei better
than ever before [1]. This also challenges the development
and improvement of theoretical approaches for hypernuclear
structure and of (nonrelativistic potential) models [2–8] for the
underlying bare nucleon-hyperon (NY) and hyperon-hyperon
(YY) interactions.

We examine in this article the predictions of the recently
completed Nijmegen extended soft-core 08 (ESC08) NY and
YY potentials [8], which for the first time are based on a unified
theoretical framework involving also the nucleon-nucleon
(NN) sector, minimizing the number of free parameters. Apart
from features regarding the � hyperon, of particular interest
are also the properties of the � and (S = −2) � hyperons, for
which better experimental constraints are expected to become
available soon, too.

Our theoretical method for this purpose is a two-step
process: First, a reliable NY + YY in-medium interaction (G
matrix) is computed within a Brueckner-Hartree-Fock (BHF)
approach of hypernuclear bulk matter [9,10]. This in-medium
interaction is then used in a local-density approximation within
a generalized Skyrme-Hartree-Fock (SHF) model for finite
hypernuclei [11–13].

We first briefly review the ESC08 potentials in Sec. II, the
BHF calculations of hypernuclear bulk matter in Sec. III, and
the extended SHF approach for hypernuclei in Sec. IV. We
then present the theoretical results for single- and double-�
hypernuclei in Sec. V, and estimate in Sec. VI the required
corrections to our formalism by fitting experimental data
within the same framework.

II. THE NIJMEGEN ESC08 POTENTIAL

The ESC08 model [8] for baryon-baryon interactions of
the SU(3) flavor octet of baryons (N , �, �, and �) provides
a presentation of the forces in terms of (i) meson exchange,
using generalized soft-core Yukawa functions; (ii) multiple
gluon exchange (pomeron and odderon); and (iii) structural
effects due to the quark core of the baryons, the so-called
Pauli-blocking. Relativistic effects are included via expansions

in inverse baryon masses 1/mB . The ESC meson-exchange
interactions contain local and nonlocal potentials due to (a)
one boson exchanges (OBE), which are members of nonets of
pseudoscalar, vector, scalar, and axial mesons; (b) pomeron
and odderon exchanges; (c) two pseudoscalar exchanges
(TME); and (d) meson pair exchanges (MPE). The OBE and
MPE vertices are regulated by gaussian form factors, where
the assignment of the cut-off masses for the baryon-baryon-
meson (BBM) vertices depends on the SU(3) classification
of the exchanged mesons for OBE, and a similar scheme
for MPE.

The ESC models describe the NN, NY , and YY interactions
in a unified way using broken flavor SU(3) symmetry. This
serves to connect the NN, NY , and YY channels and is utilized
to make a simultaneous fit to the NN and NY data with a
restricted set (�20) of free coupling constants, etc., see [8]
for details. In particular, the BBM coupling constants are
calculated via SU(3), using, together with the meson mixing
angles, the fitted constants in the NN ⊕ NY analysis as input.
In ESC08 no breaking of SU(3) is assumed for the couplings
with the exception of the following cases: (i) NN: the isospin
breaking for the ρ meson is exploited phenomenologically in
order to account for the difference between 1S0(pp), 1S0(np),
and 1S0(nn); (ii) Charge symmetry breaking in the �p and �n
channels, where we include the SU(2) isospin breaking in the
OBE, TME, and MPE potentials.

In this paper solution ESC08b [8] is used as a basis for
the NY interactions. This model achieves, with single sets
of parameters and without ad hoc changes of the rules in
particular channels, excellent results for the NN and NY
data: (i) For the selected 4233 NN data of the Nijmegen
phase shift analysis [14] with energies 0 � Tlab � 350 MeV
a χ2/data = 1.157 is realized, which is close to that of the
multienergy phase shift analysis [14]. (ii) For the set of 38 NY
S = −1 data, also used in previous Nijmegen studies, in
ESC08b χ2/data ≈ 0.65 was reached, without bound states in
these NY channels. As regards the U� well-depth there is some
overbinding, making room for, e.g., three-body repulsion.
(iii) For YY there is a weak �� attraction, e.g., in ESC08
|a��(1S0)| < 1.0, which matches experimental indication from
the Nagara event [15]. Among the predictions for the S = −2
sector (N�,��,��,��) are the existence of bound states
in the N�(3S1 − 3D1, T = 1) channel.
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TABLE I. Meson coupling constants (at k2 = 0) and parameters
employed in the ESC08b OBE potentials. The masses and �’s are
given in MeV.

Meson Mass g/
√

4π f/
√

4π � SU(3)

π 138.04 0.2652 872.09 αP = 0.4281
η 547.45 0.1655 893.74 θP = −23.00◦

η′ 957.75 0.1104 ”

ρ 768.10 0.7783 3.9335 707.62 αe
V = 1.0000

φ 1019.41 –0.9043 3.7689 ” αm
V = 0.5411

ω 781.95 3.3928 –0.5681 1116.48 θV = 37.50◦

a1 1270.00 –1.1875 0.1888 1254.79 αA = 0.0211
f1 1420.00 0.0180 –0.2423 ” θA = −40.50◦

f ′
1 1285.00 –0.9455 –0.1300 ”

b1 1235.00 –0.0404 872.09 αB = 0.4281
h1 1380.00 –0.0378 893.74 θB = −23.00◦

h′
1 1170.00 –0.0464 ”

a0 962.00 1.1018 1193.39 αS = 0.7514
f0 993.00 –1.5277 ” θS = 37.50◦

ε 760.00 4.0890 1146.09

Pomeron 267.93 3.3347 aPB = 0.149
Odderon 454.55 0.5390 –1.1610

In Tables I and II the OBE and MPE couplings are
given for the solution of the ESC08b model, which is the
basis for the computations of the present paper. See Ref. [8]
for the definition of the model parameters. The SU(3) α =
F/(F + D) parameters and meson-mixing angles θ enable
the calculation of all BBM-couplings, etc. The aPB parameter
gives the fraction of the pomeron coupling that is related to
the PB effect.

III. BHF CALCULATION OF HYPERNUCLEAR MATTER

Our results are based on generalized BHF calculations
[9,16] [employing continuous single-particle (s.p.) potentials
in the computation of the G matrices] of � hypermatter, i.e.,
baryonic matter characterized by partial densities ρq ; q =
p, n,�. The basic input quantities in the Bethe-Goldstone
equation are the NN, NY , and YY potentials. In the current
work we use the Argonne V18 NN potential [17] supplemented
by the microscopic nucleonic three-body forces (TBF) of
Ref. [18] in order to ensure good saturation properties of pure

TABLE II. Pair-meson coupling constants (at k2 = 0) employed
in the ESC08b MPE potentials.

J PC SU(3)-irrep (αβ) g/4π F/(F + D)

0++ {1} g(ππ )0 – –
0++ ” g(σσ ) – –
0++ {8}s g(πη) −0.0210 1.000
1−− {8}a g(ππ )1 0.0012 1.000
1−− ” f (ππ )1 −0.2345 0.400
1++ ” g(πρ)1 0.6197 −0.278
1++ ” g(πσ ) −0.0298 −0.278
1++ ” g(πP ) – –
1+− {8}s g(πω) −0.0689 0.428

nuclear matter, and the ESC08 [8] NY and YY potentials. For
comparison some results obtained before [11] with the older
NSC89 [3] and NSC97 [7] potentials will also be shown. We
recall that the NSC89 potential contains no YY components,
whereas the ESC08 model comprises the full set of interactions
in the strangeness S = −1 and S = −2 channels, namely in
the isospin basis it treats the coupled states

S = −1 : T = 1/2 : N�,N�, (1)

T = 3/2 : N�, (2)

S = −2 : T = 0 : ��,N�,��, (3)

T = 1 : ��,N�,��, (4)

T = 2 : ��. (5)

Using these potentials we have to solve the Bethe-
Goldstone integral equation [9,19] for the correlated wave
functions u in the various NN, NY , and YY channels:

uCC′,LL′ (k, r) = jL(kr)δCC′δLL′

+ 2

π

∫ ∞

0
dr ′r ′2DCC′,L′(k, r, r ′)

×
∑
C ′′,L′′

VC ′C ′′,L′L′′(r ′) uCC′′,LL′′(k, r ′) (6)

with the intermediate propagator

DCC′,L′ (k, r, r ′) =
∫ ∞

0
dk′k′2 jL′(k′r)jL′(k′r ′)fC ′(k′)

EC(k) − EC ′(k′) + iε
(7)

and

EC(k) = ec1 (k1) + ec2 (k2), ec(k) = k2

2Mc

+ Re Uc(k) + Mc.

(8)

Here C = c1c2, C ′, C ′′ denote channel indices representing
baryon pairs, k and k′ denote the relative momenta of the
initial C and the intermediate C ′ state, EC(k) and EC ′(k′)
are the corresponding pair energies, and fC ′ (k′) is the angle-
averaged Pauli operator in the intermediate states. More details
on these quantities are given in Ref. [9]. The equation has to
be solved for a set of states with definite quantum numbers
T , S, J , which have not been indicated explicitly. In practice
we consider all partial waves up to L = 7 in the NN and L =
5 in the NY and YY sectors. The Bethe-Goldstone equation
has thus a 1 × 1, 2 × 2, or 3 × 3 matrix structure according
to the relevant isospin channel, Eqs. (1)–(5); for example in
schematic notation (now 1,2,3 denote pairs of baryons)⎛
⎝u11

u12

u13

⎞
⎠ =

⎛
⎝jL

0
0

⎞
⎠ +

⎛
⎝D11V11 D11V12 D11V13

D12V21 D12V22 D12V23

D13V31 D13V32 D13V33

⎞
⎠

⎛
⎝u11

u12

u13

⎞
⎠ ,

(9)

with possible permutations, and an additional 2 × 2 structure
when the mixing of angular momentum states through the
tensor potential applies.

The solutions of the Bethe-Goldstone equation determine
the diagonal G-matrix elements

〈k1k2|GT SJ
C,L |k1k2〉

= 4π

∫ ∞

0
dr r2jL(kr)

∑
C ′,L′

VCC ′,LL′(r) uCC ′,LL′(k, r), (10)
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and the s.p. potentials (in the so-called continuous choice) are
then given by

U (b)
a (ka) =

∑
T ,S,J,L

(2T + 1)(2J + 1)

(2ta + 1)(2sa + 1)

×
∫ k

(b)
F d3kb

(2π )3
〈kakb|GT SJ

ab,L|kakb〉, (11)

where the notation U (b)
a denotes the s.p. potential of particle

a due to the interaction with particles b in the medium.
Carrying out the calculation for the relevant combinations
a = N,�,�,� ; b = N,�, we obtain the total s.p. potentials
of nucleons and hyperons as

Ua(k) = U (N)
a (k) + U (�)

a (k) . (12)

Due to the occurrence of the Ua in Eq. (8), the set of
equations (6)–(12) constitutes a coupled system that has to
be solved in a self-consistent manner.

We are interested in the total binding energy per baryon
B/A, or equivalently the energy density εBHF of the bulk
matter. In the BHF approximation this quantity and the baryon
number A per unit volume, i.e., the baryon density ρ, are
given by

εBHF = B

A
ρ = 4π

(2π )3

[
4
∫ k

(N)
F

0
dk k2

(
k2

2MN

+ 1

2
UN (k)

)

+ 2
∫ k

(�)
F

0
dk k2

(
k2

2M�

+ 1

2
U�(k)

)]
(13)

and

ρ = ρN + ρ� = 1

3π2

(
2k

(N)
F

3 + k
(�)
F

3)
. (14)

In the following we will make use of the principal results of
the calculations, which are the energy density as function of the
nucleon and � partial densities, εBHF(ρN, ρ�), as well as the
momentum-dependent s.p. potentials of all types of particles
involved, Ua(k).

A. Results

In order to illustrate the basic features, Fig. 1 shows
the complete set of nucleon and hyperon s.p. potentials in
pure symmetric nuclear matter at saturation density ρN =
ρ0 = 0.17 fm−3 (left panel) and in hypernuclear matter with
densities ρN = ρ0, ρ� = ρ0/2 (right panel), resulting from
our calculations with the ESC08 potential. One notes that the
hyperon s.p. potentials are much less attractive than the nucle-
onic ones, reflecting the weaker strength of the NY compared
to the NN potentials. Within the ESC08 model, the well-depths
U (k = 0) in normal nuclear matter of the �, �, and �
hyperons are, respectively, −39,+16,−8 MeV, and thus in
reasonable agreement with current experimental estimates of
these quantities [20,21]. The partial wave decompositions of
these values are given in Table III which also lists explicitly
the contributions of the different (isospin) channels according
to Eqs. (10) and (11). One notes, in particular for the � and �
hyperons, strong cancellations between the individual partial
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FIG. 1. (Color online) Nucleon and hyperon, B = N,�, �, �,
s.p. potentials (real parts) for ρN = 0.17 fm−3 and ρ� = 0 (left panel)
or ρ� = ρN/2 (right panel). The right panel displays UB (thick curves)
and U

(N)
B (thin curves). The hatched areas thus represent U

(�)
B .

wave contributions. For example, in the case of the �, the
most important contributions are the N� − N� (T = 1) 3S1

and the N� − �� (T = 1) 3SD1 channels with magnitudes
of about 50 MeV, but opposite sign, while the final (T = 1)
result is of the order of 1 MeV. Clearly a sufficient numerical
accuracy is required to handle this feature reliably, and it
is also obvious that none of the coupled channels can be
disregarded.

The effect of the presence of �’s in nuclear matter can be
seen in the right panel of Fig. 1: The attractive N� interaction
provides a deeper mean field for the nucleons (thick vs. thin
solid black curves), whereas the (T = 0) �� − �� − N�
interaction has a small repulsive effect on the � (dashed
red curves), while the (T = 1) �� − �� − N� channel
generates substantial attraction for low-momentum �’s (dotted
green curves). The �� (S = −3) interaction is not considered
in the present model and thus the � s.p. potential (dash-dotted
blue curve) is only affected indirectly (via the modification
of the various s.p. potentials) by the presence of �’s, which
yields a somewhat repulsive effect, as can be seen comparing
the left and right panels of Fig. 1.

The most relevant features that can be extracted from
plots like Fig. 1 are the � effective mass, Eq. (18), and
the “well depth” [22] U 0

� ≡ Re U�(k = 0). This quantity is
slightly more attractive than the relevant SHF potential V�,
Eq. (23), due to rearrangement contributions to the latter [11].
The corresponding results are displayed in Fig. 2 (top and
central panels) as a function of the nucleonic density for pure
nuclear matter (ρ� = 0). Comparing the new ESC08 results
with the old NSC89 ones, one notes a slightly stronger effective
N� attraction, namely, the � is more bound (V� ≈ −36 vs.
≈ −28 MeV at ρN = ρ0) and its effective mass is lower
(0.74 vs. 0.82) with the former potential. This will have
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TABLE III. The contributions (in MeV) of various partial waves to the s.p. potentials Re UY (k = 0) at ρN = 0.17 fm−3 and ρ� = 0. Entries
denoted “0” vanish in the isospin basis. The total sums include partial waves up to L = 5.

U�(k = 0) U�(k = 0) U�(k = 0)

State N�(1/2) N�(1/2) Sum N�(1/2) N�(1/2) N�(3/2) Sum N�(0) ��(0) ��(0) N�(1) ��(1) ��(1) Sum

1S0 −12.2 −1.2 −13.4 10.0 0.0 −11.3 −1.3 5.6 −2.4 −0.7 17.4 −3.1 0 16.8
3SS1 6.0 −2.8 3.1 11.3 −0.8 54.4 64.8 11.3 0 0 52.5 −6.2 0.8 58.4
3SD1 −11.3 −14.9 −26.1 −21.6 −7.9 −10.2 −39.7 −20.0 0 0 −3.7 −48.2 −12.6 −84.4
3P0 −0.1 −0.1 −0.2 2.6 0.0 −2.3 0.3 −0.6 0.0 0.0 1.4 −0.5 0 0.8
1P1 2.9 −0.3 2.6 3.0 −0.2 −7.0 −4.2 −0.2 0 0 2.4 −0.4 −0.0 1.8
3P1 1.8 −0.3 1.5 −8.8 −0.0 7.6 −1.2 1.7 −0.1 −0.1 −1.3 −0.5 0 −0.3
3PP2 −3.3 −0.4 −3.7 −0.1 −0.2 1.2 0.9 −0.3 −0.0 0.0 1.2 −0.2 0 0.7
3PF2 −0.1 −0.6 −0.7 −1.1 −0.3 −0.5 −1.9 −0.6 0.0 −0.2 −0.1 −0.4 0 −1.3
3DD1 −0.22 −0.01 −0.23 0.58 0.00 −0.67 −0.09 −0.29 0 0 0.17 0.00 0.00 −0.12
3DS1 −0.01 −0.01 −0.01 −0.01 0.01 −0.01 −0.02 −0.02 0 0 0.00 −0.04 −0.01 −0.07
1D2 −0.54 −0.01 −0.54 0.69 0.00 −1.12 −0.41 −0.26 0.00 0.00 0.23 −0.01 0 −0.04
3D2 −0.56 −0.02 −0.58 −1.80 0.01 1.55 −0.24 0.46 0 0 −0.63 −0.01 0.00 −0.18

Sum −38.8 −14.9 31.2 16.3 −6.5 −1.7 −8.1

obvious effects on the predicted s.p. spectra of �-hypernuclei
that we investigate now.

For later use we also plot in the lower panel of Fig. 2 the
s.p. potential component Re U

(�)
� (k = 0), Eqs. (11) and (12),

0.8
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FIG. 2. � effective mass (upper panel), � well depth (central
panel), and Re U

(�)
� (k = 0) with different contributions (lower panel)

in symmetric nuclear matter of density ρN , obtained with the ESC08
(thick curves) and NSC89 (thin curves, upper and central panels)
potentials.

of the ESC08 model in hypernuclear matter with varying ρN

and fixed ρ� = ρ0/2, and its contributions from the different
coupled channels (T = 0) ��,��,N�. The total result
(solid curve) changes from weak attraction (−1.1 MeV) in free
space to repulsion in nuclear matter (+3.2 MeV at ρN = ρ0)
and is the result of strong compensation of the individual
contributions, in particular ��-�� (repulsive) and ��-N�
(attractive). This balance changes with increasing nuclear
density, and the overall effect turns from attraction to repulsion.
The free �� interaction can therefore not be used to estimate
the in-medium behavior of two �’s.

IV. SHF CALCULATION OF HYPERNUCLEI

In our approach the local energy density functional of
hypernuclear matter depends on the one-body densities ρq ,
kinetic densities τq , and spin-orbit currents Jq ,

[ρq, τq, Jq] =
Nq∑
i=1

ni
q

[∣∣φi
q

∣∣2
,

∣∣∇φi
q

∣∣2
, φi

q

∗(∇φi
q × σ

)/
i
]
,

(15)

where φi
q (i = 1, Nq ) are the s.p. wave functions of the Nq

occupied states for the species q = n, p,� in a hypernucleus.
The functional is written as εSHF = εN + ε�, where εN is the
standard purely nucleonic SHF functional [23,24], and

ε� = τ�

2m�

+ εN�(ρN, ρ�) (16)

is the functional accounting for the presence of �’s, due to the
action of NY and YY forces.

It can be constructed from the BHF energy density of bulk
matter, Eq. (13), as

εN�(ρN, ρ�) = εBHF(ρN, ρ�) − εBHF(ρN, 0) − Cρ
5/3
�

2m�

,

(17)

where the last term corresponds to the kinetic energy
contribution of the �’s in bulk matter. The constant C =
(3/5)(3π2)2/3 ≈ 5.742 has been introduced. However, we
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consider more realistic to work with a Schrödinger equation
that involves, instead of the bare � mass m�, the hyperon
effective mass m∗

�, as extracted from the BHF s.p. potential
U�(k) (see Fig. 1),

m∗
�

m�

=
(

1 + U�

(
k

(�)
F

) − U�(0)

k
(�)
F

2
/2m�

)−1

. (18)

For this purpose the energy density functional is written instead
as

ε� = τ�

2m∗
�(ρN, ρ�)

+ ε̃N�(ρN, ρ�) (19)

with

ε̃N�(ρN, ρ�) = εN�(ρN, ρ�) −
(

m�

m∗
�(ρN, ρ�)

− 1

)
Cρ

5/3
�

2m�

.

(20)

Minimizing the total energy of the hypernucleus, E =∫
d3r εSHF(r), one arrives with Eq. (19) at the SHF Schrödinger

equation[
∇ · 1

2m∗
q(r)

∇ − Vq(r) + iWq(r) · (∇ × σ )

]
φi

q(r) = ei
q φi

q(r)

(21)

with the mean fields

VN = V SHF
N + ∂ε̃N�

∂ρN

, (22)

V� = ∂ε̃N�

∂ρ�

, (23)

where V SHF
N is the nucleonic Skyrme mean field without

hyperons and WN the nucleonic spin-orbit mean field [23].
At the present level of approximation we do not include
a spin-orbit force for the �, which is justified by the
experimental observation of very small (� 0.2 MeV) N�
spin-orbit splittings [25]. An approximate center of mass
correction is applied as usual [23] by replacing the bare masses:

1

mq

→ 1

mq

− 1

M
, (24)

where M = (Nn + Np)mN + N�m� is the total mass of the
hypernucleus.

Solving the equation provides the wave functions φi
q(r) and

the s.p. energies −ei
q for the different s.p. levels i and species

q. We use in this work the standard nucleonic Skyrme force
SLy4 [26], but the results for hyperonic observables hardly
depend on that choice.

For an efficient numerical procedure we provide
parametrizations of the numerical results for the key quantities
εN�, Eq. (17), and m∗

�, Eq. (18), in the following functional
forms (ρN and ρ� given in units of fm−3, εN� in MeV fm−3):

εN�(ρN, ρ�) ≈ − (
ε1 − ε2ρN + ε3ρ

2
N

)
ρNρ�

+ (
ε4 − ε5ρN + ε6ρ

2
N

)
ρNρ

5/3
�

− (
ε7 − ε8ρ� + ε9ρ

2
�

)
ρ2

�, (25)

m∗
�

m�

(ρN ) ≈ μ1 − μ2ρN + μ3ρ
2
N − μ4ρ

3
N . (26)

TABLE IV. Parameters of the functionals of energy density and
� effective mass, Eqs. (25), (26), and (29), for the different NY
potentials.

NSC89 NSC97a NSC97f ESC08

ε1 327 423 384 390
ε2 1159 1899 1473 1269
ε3 1163 3795 1933 1356
ε4 335 577 635 470
ε5 1102 4017 1829 1472
ε6 1660 11061 4100 2293
ε7 0 38 50 20
ε8 0 186 545 298
ε9 0 22 981 383

ε̃1 −116 204
ε̃2 745 1230
ε̃3 0 0

μ1 1 0.98 0.93 0.95
μ2 1.83 1.72 2.19 1.80
μ3 5.33 3.18 3.89 3.24
μ4 6.07 0 0 0

The parameters εi and μi are listed in Table IV for the different
NY potentials that we use. These parametrizations have been
obtained from BHF calculations of symmetric nuclear matter
and therefore depend only on the total nucleonic density ρN .
This is a fairly good approximation for the isoscalar � hyperon
and the nearly symmetric nuclei that we will consider here.

The functional form of Eq. (26) is purely phenomenologi-
cal, whereas that of Eq. (25) is guided by the fact that the energy
density functional can be related to the BHF s.p. potentials in
the following manner [11]:

εN�(ρN, ρ�) =
∑

k<k
(�)
F

[
2U

(N)
� (k) + U

(�)
� (k)

]

+ 2
∑

k<k
(N)
F

[
U

(N)
N (k)

∣∣
ρ�

− U
(N)
N (k)

∣∣
ρ�=0

]
, (27)

which follows directly from Eqs. (12), (13), and (17).

V. RESULTS

The most significant results are the � s.p. energies ei
� (i =

1s, 1p, 1d, 1f, 1g) of various single-� hypernuclei, for which
experimental results are available [27,28]. Figure 3 (top panel)
compares the values obtained with the different potentials.
Consistent with the results displayed in Fig. 2, the ESC08
force provides more binding than the NSC89, such that heavy
hypernuclei result overbound with the former and underbound
with the latter potential. Nevertheless the discrepancies are not
dramatic in view of the microscopic, parameter-free approach
that we are following here. In the next section we will discuss
this issue further.

Of particular interest for current and future hypernuclear
experiments are the properties of double-� hypernuclei,
since they might provide access to features of the ��
interaction. Recent experimental results [15] point to a fairly
weak (attractive) effective �� force. The ESC08 potential
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FIG. 3. (Color online) � s.p. energies in different single-�
hypernuclei. Markers indicate experimental data [27,28] and lines
the theoretical predictions obtained with different NY potentials (top
panel) and with the fitted versions of Sec. VI (bottom panel).

comprises the complete set of S = −2 YY interactions, and it
is therefore of interest to examine its predictions for double-�
hypernuclei, while the NSC89 model without YY interaction
serves for a reference calculation.

We list in Table V the bond energy

�B�� = 2E
(
A−1

�Z
) − E

( A

��
Z

) − E(A−2Z) , (28)

TABLE V. Bond energies, Eq. (28), of several double-� hyper-
nuclei, obtained with different potentials.

�B�� [MeV]
A

��Z NSC89 NSC97a NSC97f ESC08

6
��He −0.23 +0.10 −0.25 −0.57
10
��Be −0.34 +0.37 −0.35 −0.41
14
��C −0.41 +0.32 −0.47 −0.53
18
��O −0.41 +0.32 −0.41 −0.37
30
��Si −0.33 +0.25 −0.35 −0.31
42
��Ca −0.31 +0.19 −0.32 −0.23
92
��Zr −0.21 +0.09 −0.24 −0.15
142
��Ce −0.14 +0.05 −0.18 −0.07

210
��Pb −0.12 +0.01 −0.15 −0.09

evaluated for several double-� hypernuclei with the different
potentials. From Figs. 1 (right panel) and 2 (lower panel)
one notes that the effective �� interaction in nuclear matter
is weakly repulsive and consequently the bond energy turns
out negative (repulsive) with the ESC08 force. In fact it is
very similar to the results obtained with the NSC89 model
without any YY interaction, which yields also small negative
bond energies originating from the momentum dependence of
the � s.p. potential [the ε4 term in Eq. (25)], see Ref. [11].
The NSC97 potentials do contain YY forces, but predict also
repulsive (NSC97f) or too small (NSC97a) results compared
to the recent experimental value for the 6

��He nucleus [15],
�B�� ≈ +0.67 ± 0.17 MeV, indicating a rather weak ��
attraction.

One should remark that the treatment of the lightest nuclei
( 6
��He, 10

��Be) is probably not reliable in the mean-field SHF
method, and a cluster [29,30] or shell-model [31] approach
should be followed. Also, in view of the very large cancel-
lations observed for the decomposition of the s.p. potentials,
and the resulting strong in-medium dependence of the effective
�� interaction, see Fig. 2 (lower panel), careful fine-tuning
of the various components of the S = −2 YY interaction will
be necessary in order to reliably reproduce the very weak
effective interaction observed experimentally. This is certainly
a difficult problem for the future, when also reliable data for
heavier �� hypernuclei will become available.

VI. FIT OF HYPERNUCLEAR DATA

Our approach so far is not devised to provide perfect
reproduction of present hypernuclear data, but rather to assess
the consistency of the bare NY and YY potentials with those
data. The theoretical method involves necessarily several
approximations: The BHF approach of bulk hypernuclear
matter is based on the summation of ladder diagrams and
neglects in particular higher-order correlations (three-hole line
diagrams [32]), hyperonic TBF [33], and relativistic effects
[34], for example. Going from bulk matter to finite nuclei
involves a local-density approximation, currently neglecting
surface effects, spin-orbit forces, etc. Also the SHF approach
itself is of course a phenomenological one, involving several
approximations [24].

Of all these items, hyperonic TBF (NNY , NYY , YYY) are
currently conjectured to be an essential class of corrections
that could in particular have important implications at large
baryon density and therefore for astrophysical applications
[16]. We therefore would like to estimate the required size
of these corrections within our current theoretical approach
for hypernuclear structure. For this purpose we extend the
energy density functional, Eq. (25), with terms that mimic
the effects of hyperonic TBF. Obviously the TBF depend on
the chosen baryon-baryon potential, ESC08 or NSC89. In fact
in the former case it is clear from Fig. 3 (top panel) that the
effect of TBF on the effective N� interaction must be overall
repulsive, while attractive in the latter case.

A natural choice for the leading corrections to the energy
density caused by hyperonic TBF is an expression of the
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functional form

εTBF
N� (ρN, ρ�) = ε̃1ρNρNρ� + ε̃2ρNρ�ρ� + ε̃3ρ�ρ�ρ�,

(29)

where the ε̃i are fit parameters, to be adjusted by a bet-
ter reproduction of the hypernuclear spectra, Fig. 3, for
example.

Note that terms of the functional form ∼ε̃1, ε̃3 are already
contained in the original functional Eq. (25) (∼ε2, ε8; also
the ε̃2 term corresponds roughly to the ε5 one), but they
(and higher-order terms) stem from the nonlinear density
dependence of the s.p. potentials caused solely by two-body
forces within the BHF method. The last contribution in Eq. (29)
does not depend on ρN and thus the � s.p. energies in single-�
hypernuclei are not very sensitive to it. We therefore reserve it
for a future fit of heavy double-� hypernuclei, once available,
whereas with the two parameters ε̃1, ε̃2 alone an excellent
reproduction of single-� spectra can be achieved.

For definiteness, in order to adjust these parameters we
choose the experimental data on the single-� s, p, d, f, g
levels of the nuclei 13

�C, 16
�O, 28

�Si, 89
�Y, 139

�La, 208
�Pb, published

in Ref. [28]. Currently the experimental accuracy is generally
not much better than about 1 MeV for heavy nuclei, and
therefore a precision fit, eventually involving a bigger data set,
is not feasible for the moment. This will hopefully improve
in the nearer future. In practice rather convincing results can
be obtained that are plotted in Fig. 3 (lower panel) for the
NSC89 and ESC08 forces together with the data set of the
selected nuclei. In fact the results for both potentials are
nearly indistinguishable. The corresponding fit parameters ε̃i

are listed in Table IV. As expected, the leading correction

∼ε̃1 compared to the original term ∼ε2 is about 10% and
attractive for the NSC89 model, and about 20% and repulsive
for the ESC08. The rms deviation of the theoretical and
experimental s.p. energies is about 0.4 MeV and thus within
present experimental accuracy.

VII. CONCLUSIONS

We confronted the predictions of the new ESC08 NY + YY
model with current experimental data on single- and double-
� hypernuclei. A two-step BHF + SHF theoretical approach
that allows to treat the complicated coupled-channel structure
was employed and we discussed the results obtained for bulk
hypernuclear matter and various hypernuclei. In particular we
found some overbinding of single-� hypernuclei and a weakly
repulsive �� bond energy with the ESC08 model.

In the future, more precise experimental data on heavy
single- and double-� hypernuclei are needed in order to
(a) fine-tune the bare NY ,YY interactions and (b) better estimate
the empirical corrections due to three-body forces and other
many-body effects. The presented theoretical framework is
ready for this task. A high-precision energy density functional
could then be used to make predictions for other hypernuclei
and also provide hints for the hypernuclear matter calculations
relevant for astrophysical applications.
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[18] P. Grangé, A. Lejeune, M. Martzolff, and J.-F. Mathiot, Phys.
Rev. C 40, 1040 (1989); W. Zuo, A. Lejeune, U. Lombardo, and
J.-F. Mathiot, Nucl. Phys. A 706, 418 (2002); Eur. Phys. J. A 14,
469 (2002); Z. H. Li, U. Lombardo, H.-J. Schulze, and W. Zuo,
Phys. Rev. C 77, 034316 (2008).

[19] K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 (1958);
J.-P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep. 25, 83
(1976); M. Baldo, Nuclear Methods and the Nuclear Equation
of State (World Scientific, Singapore, 1999).

[20] H. Noumi et al., Phys. Rev. Lett. 89, 072301 (2002); P. K. Saha
et al., Phys. Rev. C 70, 044613 (2004); M. Kohno, Y. Fujiwara,
Y. Watanabe, K. Ogata, and M. Kawai, ibid. 74, 064613 (2006);
M. Agnello et al. (Finuda Collaboration), Nucl. Phys. A 835,
398 (2010).

[21] P. Khaustov et al. (AGS E885 Collaboration), Phys. Rev. C 61,
054603 (2000).

[22] D. J. Millener, C. B. Dover, and A. Gal, Phys. Rev. C 38, 2700
(1988).

[23] D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972);
D. Vautherin, ibid. 7, 296 (1973).

[24] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.
75, 121 (2003); J. R. Stone and P.-G. Reinhard, Prog. Part. Nucl.
Phys. 58, 587 (2007); J. Erler, P. Klüpfel, and P.-G. Reinhard,
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(2009); T. Motoba, P. Bydžovský, M. Sotona, and K. Itonaga,
Prog. Theor. Phys. Suppl. 185, 224 (2010).

[26] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Scha-
effer, Nucl. Phys. A 627, 710 (1997); 635, 231 (1998);
643, 441 (1998).

[27] R. E. Chrien et al., Nucl. Phys. A 478, 705c (1988); P. H.
Pile et al., Phys. Rev. Lett. 66, 2585 (1991); S. Ajimura
et al., Nucl. Phys. A 585, 173c (1995); T. Hasegawa et al.,
Phys. Rev. C 53, 1210 (1996); H. Hotchi et al., ibid. 64,
044302 (2001); D. H. Davis, Nucl. Phys. A 754, 3 (2005); M.
Agnello et al. (Finuda Collaboration), Phys. Lett. B 698, 219
(2011).

[28] O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57, 564
(2006).

[29] A. R. Bodmer and Q. N. Usmani, Nucl. Phys. A 468, 653 (1987);
Q. N. Usmani, A. R. Bodmer, and B. Sharma, Phys. Rev. C 70,
061001(R) (2004); A. A. Usmani and Z. Hasan, ibid. 74, 034320
(2006).

[30] E. Hiyama, M. Kamimura, Y. Yamamoto, and T. Motoba, Phys.
Rev. Lett. 104, 212502 (2010); E. Hiyama, M. Kamimura,
Y. Yamamoto, T. Motoba, and T. A. Rijken, Prog. Theor. Phys.
Suppl. 185, 152 (2010); E. Hiyama, Few-Body Syst. 53, 189
(2012).

[31] A. Gal and D. J. Millener, Phys. Lett. B 701, 342
(2011).

[32] H. Q. Song, M. Baldo, G. Giansiracusa, and U. Lombardo, Phys.
Rev. Lett. 81, 1584 (1998); M. Baldo, A. Fiasconaro, H. Q. Song,
G. Giansiracusa, and U. Lombardo, Phys. Rev. C 65, 017303
(2001).

[33] A. A. Usmani, Phys. Rev. C 52, 1773 (1995); A. A. Usmani
and F. C. Khanna, J. Phys. G 35, 025105 (2008); T. Takatsuka,
S. Nishizaki, and Y. Yamamoto, Eur. Phys. J. A 13,
213 (2002); I. Vidaña, D. Logoteta, C. Providência,
A. Polls, and I. Bombaci, Europhys. Lett. 94, 11002
(2011).

[34] R. Brockmann and W. Weise, Nucl. Phys. A 355, 365 (1981);
G. E. Walker, ibid. 450, 287 (1986).

024322-8

http://dx.doi.org/10.1103/PhysRevC.40.1040
http://dx.doi.org/10.1103/PhysRevC.40.1040
http://dx.doi.org/10.1016/S0375-9474(02)00750-9
http://dx.doi.org/10.1140/epja/i2002-10031-y
http://dx.doi.org/10.1140/epja/i2002-10031-y
http://dx.doi.org/10.1103/PhysRevC.77.034316
http://dx.doi.org/10.1103/PhysRev.109.1023
http://dx.doi.org/10.1016/0370-1573(76)90017-X
http://dx.doi.org/10.1016/0370-1573(76)90017-X
http://dx.doi.org/10.1103/PhysRevLett.89.072301
http://dx.doi.org/10.1103/PhysRevC.70.044613
http://dx.doi.org/10.1103/PhysRevC.74.064613
http://dx.doi.org/10.1016/j.nuclphysa.2010.01.228
http://dx.doi.org/10.1016/j.nuclphysa.2010.01.228
http://dx.doi.org/10.1103/PhysRevC.61.054603
http://dx.doi.org/10.1103/PhysRevC.61.054603
http://dx.doi.org/10.1103/PhysRevC.38.2700
http://dx.doi.org/10.1103/PhysRevC.38.2700
http://dx.doi.org/10.1103/PhysRevC.5.626
http://dx.doi.org/10.1103/PhysRevC.7.296
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1016/j.ppnp.2006.07.001
http://dx.doi.org/10.1088/0954-3899/38/3/033101
http://dx.doi.org/10.1103/PhysRevC.65.034607
http://dx.doi.org/10.1016/j.nuclphysa.2008.01.026
http://dx.doi.org/10.1016/j.nuclphysa.2008.01.026
http://dx.doi.org/10.1103/PhysRevLett.103.202501
http://dx.doi.org/10.1103/PhysRevLett.103.202501
http://dx.doi.org/10.1143/PTPS.185.224
http://dx.doi.org/10.1016/S0375-9474(97)00596-4
http://dx.doi.org/10.1016/S0375-9474(98)00180-8
http://dx.doi.org/10.1016/S0375-9474(98)00570-3
http://dx.doi.org/10.1016/0375-9474(88)90908-6
http://dx.doi.org/10.1103/PhysRevLett.66.2585
http://dx.doi.org/10.1016/0375-9474(94)00562-2
http://dx.doi.org/10.1103/PhysRevC.53.1210
http://dx.doi.org/10.1103/PhysRevC.64.044302
http://dx.doi.org/10.1103/PhysRevC.64.044302
http://dx.doi.org/10.1016/j.nuclphysa.2005.01.002
http://dx.doi.org/10.1016/j.physletb.2011.02.060
http://dx.doi.org/10.1016/j.physletb.2011.02.060
http://dx.doi.org/10.1016/j.ppnp.2005.07.001
http://dx.doi.org/10.1016/j.ppnp.2005.07.001
http://dx.doi.org/10.1016/0375-9474(87)90186-2
http://dx.doi.org/10.1103/PhysRevC.70.061001
http://dx.doi.org/10.1103/PhysRevC.70.061001
http://dx.doi.org/10.1103/PhysRevC.74.034320
http://dx.doi.org/10.1103/PhysRevC.74.034320
http://dx.doi.org/10.1103/PhysRevLett.104.212502
http://dx.doi.org/10.1103/PhysRevLett.104.212502
http://dx.doi.org/10.1143/PTPS.185.152
http://dx.doi.org/10.1143/PTPS.185.152
http://dx.doi.org/10.1007/s00601-011-0296-8
http://dx.doi.org/10.1007/s00601-011-0296-8
http://dx.doi.org/10.1016/j.physletb.2011.05.069
http://dx.doi.org/10.1016/j.physletb.2011.05.069
http://dx.doi.org/10.1103/PhysRevLett.81.1584
http://dx.doi.org/10.1103/PhysRevLett.81.1584
http://dx.doi.org/10.1103/PhysRevC.65.017303
http://dx.doi.org/10.1103/PhysRevC.65.017303
http://dx.doi.org/10.1103/PhysRevC.52.1773
http://dx.doi.org/10.1088/0954-3899/35/2/025105
http://dx.doi.org/10.1140/epja1339-35
http://dx.doi.org/10.1140/epja1339-35
http://dx.doi.org/10.1209/0295-5075/94/11002
http://dx.doi.org/10.1209/0295-5075/94/11002
http://dx.doi.org/10.1016/0375-9474(81)90533-9
http://dx.doi.org/10.1016/0375-9474(86)90562-2



