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Asymmetric nuclear matter studied by time-dependent local isospin density approximation
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The dynamic response of asymmetric nuclear matter is studied by means of a time-dependent local isospin
density approximation (TDLIDA) approach. Calculations are based on a local density energy functional derived by
an auxiliary field diffusion Monte Carlo (AFDMC) calculation of bulk nuclear matter. Three types of excited states
emerge: collective states, a continuum of quasiparticle-quasihole excitations and unstable solutions. These states
are analyzed and discussed for different values of the nuclear density ρ and isospin asymmetry ξ = (N − Z)/A.
An analytical expression of the compressibility as a function of ρ and ξ is derived which shows explicitly an
instability of the neutron matter around ρ � 0.09 fm−3 when a small fraction of protons are added to the system.
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I. INTRODUCTION

The dynamic response function and the dynamic structure
factor of nuclear matter at β equilibrium are key ingredients
to understand several mechanisms related to interaction pro-
cesses occurring in the interior of neutron stars. As it is well
known since the seminal works of Sawyer [1,2], the structure
factor is related to the mean free path of neutrinos in the nuclear
medium [3]. The opacity of nuclear matter to neutrinos, and
its implication in the neutrino emission in the early phases of
existence of a neutron star, have been widely reviewed in the
paper of Burrows et al. [4].

Another interesting piece of information that can be
extracted from the knowledge of the dynamic structure factor
concerns the mechanical instability of the system, that can
be related to divergences in the response function and to
a nonphysical negative value of the compressibility. This
analysis becomes particularly interesting at values of the
density where homogeneous matter is supposed to give way
to more exotic inhomogeneous phases, before reaching the
regime in which neutron-rich nuclei are dominant [4,5]. An
interesting attempt to compute the structure factor of neutron
matter by means of semiclassical simulations in this regime
was recently performed by Horowitz et al. [6,7].

In general, several calculations of the low momentum
structure factor of neutron matter have been performed using
different methods. In particular we want to mention the
results based on Brueckner-Hartree-Fock and random phase
approximation theories, both at zero and finite temperature [8],
and on the Landau theory approach starting from correlated
basis functions effective interactions [9].

In this paper we propose a different route to the compu-
tation of the dynamic structure factor in the isoscalar and
isovector channels for infinite nuclear matter with an arbitrary
asymmetry.

The approach is based on first deriving a reasonable isospin-
density functional from an equation of state (EoS) computed by
means of the auxiliary field diffusion Monte Carlo (AFDMC)
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[10] method by Gandolfi et al. [11]. In that paper the EoS is
derived from a density-dependent interaction, effectively in-
cluding many-body contributions. This Hamiltonian was fitted
to correctly reproduce the saturation properties of symmetric
nuclear matter. The corresponding predictions of the EoS of
pure neutron matter and matter at β equilibrium, including
both electrons and muons, yield realistic values of quantities
of astrophysical interest such as the mass/radius relation of a
neutron star, in the same range of accuracy of, i.e., the well
known Akmal-Pandharipande-Ravenhall (APR) EoS [12].

Obviously the range of densities that can be safely in-
vestigated relying on this EoS is limited. In the low-density
limit symmetric nuclear matter becomes unstable, and neutron
matter should be described including pairing correlations [13].
At densities of order 2ρ0, where ρ0 = 0.16 fm−3 is the
nuclear matter saturation density, one can expect the onset
of hypernuclear degrees of freedom [14], or the transition to
exotic matter phases which completely changes the scenario.

The obtained isospin-density functional is then used in a
generalized linear response framework based on the time-
dependent local density approximation (TDLDA). Following
the idea of the local spin density approximation (LSDA; see,
e.g., [15]), and its extension to the study of the dynamics
of the system [16], we derive the response function in
a time-dependent local isospin approximation (TDLIDA),
and compute all the relevant physical quantities such as
the frequency and strength of the collective modes and the
compressibility for various values of the density and of the
asymmetry at T = 0.

The paper is organized as follows. In Sec. II we will
introduce in detail the derivation of the energy density
functional; in Sec. II the extension of the TDLDA to the case
of excitation in the isovector channel is discussed; Sec. IV
contains the description of the results, and Sec. IV is devoted
to conclusions.

II. DERIVATION OF THE ENERGY
DENSITY FUNCTIONAL

By following the Kohn-Sham method [17], we introduce
the local isospin density approximation (LIDA) for nuclear
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matter defining the energy functional as

E(ρ, ξ ) = T0(ρ, ξ ) +
∫

εV (ρ, ξ )ρ dr, (1)

where T0(ρ, ξ ) is the kinetic energy of the noninteracting
system with density ρ(r) = ρn(r) + ρp(r) and isospin polar-
ization ξ = ρ1/ρ with ρ1(r) = ρn(r) − ρp(r), and where ρn

and ρp are the neutron and proton densities, respectively.
Note that T0 is the kinetic energy of the noninteracting
system, therefore it is missing the contributions related to
dynamical quantum correlations. However, it has a compa-
rable magnitude and is consistently treated in this method.
Equation (1) defines the interaction-correlation energy per
particle εV (ρ, ξ ) of the asymmetric nuclear matter with
density ρ and isospin polarization ξ . This quantity can be
extracted by any independent calculation of the total energy
per particle of asymmetric nuclear matter after subtraction
of the free kinetic energy contributions at each value of ρ
and ξ .

In this work we will use for εV (ρ, ξ ) the following
parametrization based on the auxiliary field diffusion Monte
Carlo (AFDMC) calculations of Ref. [11]:

εV (ρ, ξ ) = ε0(ρ) + ξ 2 [ε1(ρ) − ε0(ρ)] , (2)

where

εq(ρ) = ε0
q + aq(ρ − ρ0) + bq(ρ − ρ0)2

+ cq(ρ − ρ0)3eγq (ρ−ρ0) (3)

are the interaction correlation energies of symmetric nuclear
(ξ = 0, q = 0) and neutron matter (ξ = 1, q = 1), respec-
tively. We have assumed the saturation density value ρ0 = 0.16
fm−3. The values of the parameters in Eq. (3) we have extracted
from the fit are given in Table I.

The parametrization (2) reproduces very well the AFDMC
calculations in a wide range of densities ρ (from ρ0/2 to 3ρ0)
and polarizations ξ .

By minimizing the energy functional (1) with the constraint
that the number of neutrons and protons remains constant, we
can derive a set of self-consistent equations by exactly treating
the kinetic energy functional T0. The detailed derivation can be
found in Ref. [18]. The resulting set of coupled self-consistent
equations for neutron and protons wave functions, assuming
h̄ = c = 1, is given by[

− 1

2m
∇2

r + v(r) + w(r)ητ

]
ϕτ

i (r) = εi,τ ϕτ
i (r), (4)

TABLE I. Coefficients of the parametrization of the interaction-
correlation energy of symmetric nuclear matter (q = 0) and pure
neutron matter (q = 1) derived by fitting the equation of state of
Ref. [11].

q ε0
q aq bq cq γq

(MeV) (MeV fm3) (MeV fm6) (MeV fm9) (fm3)

0 −38.1 −92.1 630.1 −1717.2 −2.360
1 −19.8 −21.0 533.0 −1327.7 −2.201

where i stands for the set of quantum numbers, excluding
isospin, that characterize the single-particle wave functions.
The nuclear neutron and proton densities are given by

ρτ =
∑

i

∣∣ϕτ
i (r)

∣∣2

with ητ = 1(−1) if τ = n(p) and n, p stands for neutrons
and protons, respectively. The effective potentials in Eq. (4)
are derived from the interaction-correlation energy functional
deriving with respect to the density and isospin polarization:

v(r) = ∂ρεV [ρ(r), ξ ]

∂ρ(r)
, w(r) = ∂εV [ρ(r), ξ )]

∂ξ (r)
. (5)

As it is well known, the Kohn-Sham method sketched
here gives an exact solution of the variational principle
which minimizes the energy functional (1). The theory is still
approximate in the sense that the exact interaction-energy
functional is unknown, and one needs to rely on some
expression derived by independent calculations. Concerning
our choice for εV (ρ, ξ ), we want to point out again that the
functional (1), as discussed in Ref. [11], gives an equation
of state of asymmetric nuclear matter providing realistic
predictions for neutron stars properties when the β-equilibrium
condition is imposed. We can therefore be confident that
both the density and isospin polarization dependence are
sufficiently accurate to yield reasonable values also for the
first and second derivatives of εV with respect to ρ and ξ .
These are the main ingredients of the Kohn-Sham method
and of its time-dependent version described in the next
section.

Finally, we notice that, when applied to infinite nuclear
matter, the static equations (4) are satisfied by plane-wave
solutions for ϕτ

i (r), since in this case all the densities are
constant as well as the density-dependent potentials (5). As a
consequence, the Kohn-Sham equilibrium density and energy
per particle are obviously the same as that of the starting
interaction used to derive the energy functional. Hence, the
static Kohn-Sham equations do not give any information in
infinite systems. However, as described in the next section, the
time-dependent versions of them give new and useful solutions
for the nuclear response even starting from the same simple
ingredients.

III. TDLIDA RESPONSE OF INFINITE ASYMMETRIC
NUCLEAR MATTER

In this section we derive the TDLIDA density-density
[χs(q, ω)] and isovector-density/isovector-density [χv(q, ω)]
response functions of a three-dimensional (3D), spin-
unpolarized, uniform gas of N neutrons and Z protons
(N + Z = A), with isospin polarization ξ = ρ1/ρ.

We start writing the time-dependent Kohn-Sham (KS)
equations in an external, time-dependent field along the r
direction:

A∑
k=1

λk
τ (ei(q·rk−ωt) + e−i(q·rk−ωt)), (6)
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with λk
τ = λ for density excitations and λk

τ = λητ for
isovector-density excitations. The KS equations read

i
∂

∂t
ϕτ

i (r, t) =
{
− 1

2m
∇2

r + +v[ρn (r, t) , ρp (r, t)]

+w[ρn (r, t) , ρp (r, t)]ητ

+ λτ [ei(q·r−ωt) + e−i(q·r−ωt)]

}
ϕτ

i (r, t) . (7)

In the uniform 3D nucleon gas, the nuclear density
oscillations induced by the external field are given by

ρn(r, t) = ρn + δρn (r, t) ,
(8)

ρp(r, t) = ρp + δρp (r, t) ,

where ρn and ρp are the neutron and proton constant densities
of the unperturbed initial state, respectively, and

δρn(r, t) = δρn(ei(q·r−ωt) + e−i(q·r−ωt)),
(9)

δρp(r, t) = δρp(ei(q·r−ωt) + e−i(q·r−ωt)),

as follows from translational invariance. The quantities δρn

and δρp are constants to be determined. Equations (7) and (9)
have solutions describing density fluctuations in the den-
sity operator F = ∑A

k=1 eiq·rk , and isovector-density operator
Fτ = ∑A

k=1 eiq·rk ηk
τ , given by

δF (Ô, ω) = 〈ψ(t)|F |ψ(t)〉 − 〈0|F |0〉
=

∫
dr eiq·r[ρ(r, t) − ρ]Ô = V eiωt (δρn + δρp),

(10)

and

δFτ (Ô, ω) = 〈ψ(t)|Fτ |ψ(t)〉 − 〈0|Fτ |0〉
=

∫
dr eiq·r[ρ1(r, t) − ρ1]Ô

= V eiωt (δρn − δρp), (11)

where V is the volume of the gas and Ô = ∑A
k=1 e−iq·rk .

The density-density response is given by [18]

χs(q, ω) = V (δρn + δρp)

λ
≡ χn(q, ω) + χp(q, ω), (12)

and the isovector-density/isovector-density response is

χv(q, ω) = V (δρn − δρp)

λ
≡ χn(q, ω) − χp(q, ω). (13)

In order to determine δρn and δρp, we then insert ρn(r, t),
ρp(r, t) of Eqs. (8) and (9) into (7) and linearize the equations.
This procedure determines the self-consistent KS mean-field
potential entering Eq. (7) to be

VKS[ρn(r, t), ρp(r, t)]

= VKS(ρn, ρp) + ∂VKS

∂ρn(r, t)

∣∣∣∣
ρn,ρp

δρn(r, t)

+ ∂VKS

∂ρp(r, t)

∣∣∣∣
ρn,ρp

δρp(r, t). (14)

Eventually, from Eqs. (7) and (14) we obtain

i
∂

∂t
ϕn

i (r, t) =
{
− 1

2m
∇2

r + const.+ [δρnVn,n + δρpVn,p + λ]

× (ei(q·r−ωt) + e−i(q·r−ωt))

}
ϕn

i (r, t),

i
∂

∂t
ϕ

p
i (r, t) =

{
− 1

2m
∇2

r + const.+ [δρnVn,p + δρpVn,n ± λ]

× (ei(q·r−ωt) + e−i(q·r−ωt))

}
ϕ

p
i (r, t), (15)

where in the second equation one must keep the plus sign
when calculating the density-density response, and the minus
sign when calculating the isovector-density/isovector-density
response. In Eqs. (15) we have defined the mean-field
potentials

Vnn = ∂(v + w)

∂ρn(r, t)

∣∣∣∣
ρn,ρp

=
(

∂

∂ρ
+ 1

ρ

∂

∂ξ

)
(v + w)

∣∣∣∣
ρ,ξ

,

Vnp = ∂(v + w)

∂ρp(r, t)

∣∣∣∣
ρn,ρp

=
(

∂

∂ρ
− 1

ρ

∂

∂ξ

)
(v + w)

∣∣∣∣
ρ,ξ

,

(16)

Vpn = ∂(v − w)

∂ρn(r, t)

∣∣∣∣
ρn,ρp

=
(

∂

∂ρ
+ 1

ρ

∂

∂ξ

)
(v − w)

∣∣∣∣
ρ,ξ

,

Vpp = ∂(v − w)

∂ρp(r, t)

∣∣∣∣
ρn,ρp

=
(

∂

∂ρ
− 1

ρ

∂

∂ξ

)
(v − w)

∣∣∣∣
ρ,ξ

.

Equations (15) can be rewritten as

i
∂

∂t
ϕn

i (r, t) =
{
− 1

2m
∇2

r + C

+ λ′
n [ei(q·r−ωt) + e−i(q·r−ωt)]

}
ϕn

i (r, t),
(17)

i
∂

∂t
ϕ

p
i (r, t) =

{
− 1

2m
∇2

r + C

+ λ′
p [ei(q·r−ωt) + e−i(q·r−ωt)]

}
ϕ

p
i (r, t),

where C is a constant, and

λ′
n = δρnVn,n + δρpVn,p + λ,

(18)
λ′

p = δρnVp,n + δρpVp,p ± λ.

Equation (17) coincides with that of a noninteracting system
coupled to an external time oscillating field, with a coupling
constant λ′ given by Eq. (18). For such a system, the density
response functions are the single-particle free responses
χn

0 (q, ω), χ
p
0 (q, ω). From Eqs. (12) and (13) and from the

analogous relations for the free response functions

χn
0 (q, ω) = V δρn

λ′
n

,

(19)
χ

p
0 (q, ω) = V δρp

λ′
p

we obtain

λ χn(q, ω) = λ′
n χn

0 (q, ω) = Lδρn,
(20)

λ χp(q, ω) = λ′
p χ

p
0 (q, ω) = Lδρp.
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The solution of these equations, finally gives the TDLIDA response functions

χs =V
χn

0

[
V − (Vp,p − Vn,p)χp

0

] + χ
p
0

[
V − (Vn,n − Vp,n)χn

0

]
(
V − Vp,pχ

p
0

)(
V − Vn.nχ

n
0 ]

) − Vn,pχn
0 Vp,nχ

p
0

,

(21)

χv =V
χn

0

[
V − (Vp,p + Vn,p)χp

0

] + χ
p
0

[
V − , (Vn,n + Vp,n)χn

0

]
(
V − Vp,pχ

p
0

)(
V − Vn,nχ

n
0

) − Vn,pχn
0 Vp,nχ

p
0

.

Equations (21) allow study of the response of partially
isospin-polarized nuclear matter (N �= Z), which is the aim
of the present work.

Note that for fully isospin-unpolarized systems (N = Z)
the above equations are drastically simplified. In fact,
in this case, one has ρn = ρp = ρ/2, χn

0 = χ
p
0 = χ0/2

and Vn,n = Vp,p = ( ∂v
∂ρ

+ 1
ρ

∂w
∂ξ

)|ρ,ξ=0, Vn,p = Vp,n = ( ∂v
∂ρ

−
1
ρ

∂w
∂ξ

)|ρ,ξ=0 and one gets from Eqs. (21)

χs(q, ω) = χ0(q, ω)

1 − ∂v
∂ρ

∣∣
ρ,ξ=0

χ0(q,ω)
V

, (22)

and

χv(q, ω) = χ0(q, ω)

1 − 1
ρ

∂w
∂ξ

∣∣
ρ,ξ=0

χ0(q,ω)
V

, (23)

which have the same form of the RPA responses of isospin
unpolarized systems, but not the same meaning, since they
have as main ingredients the derivative of the self-consistent
KS potentials, and not the Fourier transform of an effective
nucleon-nucleon interaction as in the RPA theory.

The same simplifications occur in the case of pure neutron
matter. In this case one finds that χ

p
0 = 0. Consequently,

χs(q, ω) = χv(q, ω) = χn
0 (q, ω)

1 − Vn,n
χn

0 (q,ω)
V

. (24)

Since the time-dependent density functional approach only
holds in the low-q, low-ω limits [18], in the following we will
use as the free response functions χn

0 and χ
p
0 entering Eqs. (21)

the following simple expressions valid in these limits:

χ
n,p
0 (q, ω) = −V νn,p

[
1 + s

2(1 ± ξ )1/3
ln

s − (1 ± ξ )1/3)

s + (1 ± ξ )1/3)

]
,

(25)

where νn,p =mk
n,p
F /π2 =mkF (1 ± ξ )1/3/π2, kF = ( 3π2

2 ρ)1/3,
s = ω/(qvf ). The plus sign holds for χn

0 and the minus sign
for χ

p
0 . Note that in the low-q, low-ω limits, χn

0 and χ
p
0 depend

on q and ω only through the combination s = ω/(qvf ). Since
χs,v of Eqs. (21) depends on q and ω only via the dependence
of χn

0 and χ
p
0 on these variables, also the interacting responses

turn out to be functions of s only. As in Landau theory, also in
TDLIDA the nuclear responses are functions of s = ω/(qvf )
and not of q and ω separately.

IV. RESULTS

A. Mean-field potential

From Eqs. (21), by taking the imaginary part of χ , it
is possible to calculate the excitation strength Ss,v(q, ω) =
−(1/π ) Im χs,v and the moments m

s,v
k of the density (s) and

isovector density (v) excitation operators F s,v , with F s =∑A
k=1 eiq·rk and Fv = ∑A

k=1 eiq·rk ηk
τ . The moments are given

by

m
s,v
k =

∫ ∞

0
dω ωkSs,v(q, ω) =

∑
n

ωk
no|〈0|F s,v|n〉|2. (26)

By setting the mean-field potentials Vnn, Vpp, Vnp equal to zero
it is possible to write

S
s,v
free(q, ω) = V mkF

π2

s

2

[
�

(
1 − s

(1 + ξ )1/3

)

+�

(
1 − s

(1 − ξ )1/3

)]
, (27)

which gives the one-particle–one-hole excitation strength,
and, by integration, the Fermi gas energy moments of the
asymmetric noninteracting nuclear matter.

In Figs. 1–3 and Tables II–IV thevalues of the adimen-
sional interaction parameters Gn = νnVnn, Gp = νpVpp, and
Gnp = √

νnνpVnp are reported as a function of the isovector
polarization ξ = (N − Z)/A for three values of the density ρ.
These quantities show a strong ξ and ρ dependence, giving rise
to excitations strengths and moments which are quite different
from the non interacting cases.

0 0.2 0.4 0.6 0.8 1
ξ

0.0

0.5

1.0

1.5

2.0

G
p

ρ =0.1 fm -3

ρ =0.16 fm -3

ρ =0.30 fm-3

FIG. 1. Adimensional interaction parameter Gp = νpVpp as a
function of the isospin asymmetry ξ = (N − Z)/A for three different
values of the density ρ.
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0 0.2 0.4 0.6 0.8 1
ξ

0.0

0.5

1.0

1.5

2.0
G

n

ρ =0.1 fm-3

ρ =0.16 fm-3

ρ =0.30 fm-3

FIG. 2. Same as in Fig. 1 for the interaction parameter Gn = νnVnn.

B. Energy-weighted sum rules

We first consider the moments m−1, m1, m3 of the density
(s) and isovector density (v) operators, F s and Fv . These
quantities still have analytical expressions, given by

m
s,v
−1 = V

2

νn(1 + Gp) + νp(1 + Gn) ∓ 2
√

νpνnGnp

(1 + Gp)(1 + Gn) − G2
np

, (28)

m
s,v
1 = N

2

q2

m
, (29)

m
s,v
3 = V

2

q4

m8

{
1

5

(
ν5

n + ν5
p

)
+ 1

9

[
ν5

nGn + ν5
pGp ± 2ν5/2

n ν5/2
p Gnp

]}
, (30)

where the minus sign applies to density excitations and the
plus sign to the isovector-density ones.

The m−1 moment is known as the hydrodynamic sum rule
because in the N = Z case it is directly related to ordinary
sound velocity. The m1 moment is the f -sum rule, and the
m3 moment is related to the elastic properties of the Fermi
systems (for a wide illustration of the properties of these sum
rules see Ref. [18]). In the case of pure neutron matter, the m−1

moment is related to the neutron matter compressibilty Kn by
the relation

m−1

m0
−1

= Kn

Kn
0

= 1

1 + Gn

, (31)

0 0.2 0.4 0.6 0.8 1
ξ

-1.5

-1

-0.5

0

0.5

1

G
np

ρ =0.1 fm-3

ρ =0.16 fm-3

ρ =0.30 fm-3

FIG. 3. Same as in Fig. 1 for the interaction parameter
Gnp = √

νnνpVnp .

where m0
−1 = V νn/2 and Kn

0 = 9π2m/kn5
F respectively are

the Fermi gas static polarizability and compressibility. Sim-
ilar expressions also hold in the symmetric nuclear matter
(N = Z), where νn = νp, and Gp = Gn = G. In this case the
moments read

ms
−1

m0
−1

= K

K0
= 1

1 + G + Gnp

, (32)

and

mv
−1

m0
−1

= 1

1 + G − Gnp

, (33)

for the isoscalar and isovector cases, respectively.
Expressions (31) and (32) are quite similar to the results of
Landau theory for neutron and symmetric nuclear matter [18].
The true novelty of Eqs. (21) and (28)–(30) stands in their
explicit dependence on N , Z which allows us to study the
properties of the nuclear response when a fraction of protons
is present in the neutron matter, as happens in the neutron star
interior.

Note that, in the local isospin density approximation used
here, the f -sum rule m1 is the same for both the isoscalar
and isovector excitation operators, whereas calculating mv

1
directly from the original interaction used to derive the local
energy functional would have yielded for mv

1 an interaction
contribution. This reflects a failure of the model in reproducing
quantities in the high-ω region. The sum rules (28)–(30) are

TABLE II. Numerical results at density ρ = 0.10 fm−3 and various isospin polarizations for (a) the energy s̄ of the collective mode in the
isoscalar (s) or isovector (v) channels, and corresponding fraction of the f -sum rule exhausted by such modes; (b) the centroids of the collective
peaks excitations predicted by the energy-weighted sum rules [see Eq. (34)]; and (c) interaction parameters giving the mean-field potential.

ξ s̄s % ms
1 s̄v % mv

1 ss
1,−1 sv

1,−1 ss
3,1 sv

3,1 Gp Gn Gnp

0.0 1.1036 81.4 0.115 0.915 0.529 1.051 0.2757 0.2757 −1.2363
0.3 1.1154 7.7 1.1154 58.2 0.142 0.925 0.472 1.088 0.3991 0.1422 −1.2031
0.5 1.1466 5.5 1.1466 15.1 0.183 0.890 0.472 1.131 0.4611 0.0561 −1.1409
0.8 0.269 0.891 0.564 1.105 0.4690 −0.0599 −0.9578
0.9 0.313 0.915 0.632 1.129 0.4093 −0.0937 −0.8408
1.0 0.681 0.681 0.942 0.942 0.0000 −0.1247 0.0000
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TABLE III. Same as Table II for density ρ = 0.16 fm−3.

ξ s̄s % ms
1 s̄v % mv

1 ss
1,−1 sv

1,−1 ss
3,1 sv

3,1 Gp Gn Gnp

0.0 1.1008 80.9 0.609 0.911 0.799 1.047 0.8012 0.8012 −0.6877
0.3 1.1316 17.8 1.1316 60.7 0.614 0.909 0.793 1.076 0.8759 0.7077 −0.6610
0.5 1.1685 26.8 1.1685 46.9 0.623 0.904 0.820 1.102 0.8953 0.6464 −0.6125
0.8 1.2281 29.6 1.2281 33.6 0.650 0.901 0.916 1.150 0.7997 0.5669 −0.4826
0.9 1.2481 29.1 1.2481 30.7 0.667 0.908 0.967 1.167 0.6751 0.5455 −0.4106
1.0 1.2680 28.5 1.2680 28.5 0.899 0.899 1.110 1.110 0.0000 0.5271 0.0000

only valid in the low-q and low-ω limits, where the TDLIDA
is expected to work. They only account for one-particle–
one-hole and collective excitations. Many-particle–many-hole
excitations are important in the high-energy part of the
excitation spectrum [19], and give an important contribution
to mv

1. Following this argument, since the m−1 moment is
mainly determined by the low-energy part of the spectrum,
one expects that this sum rule should be the closest to the the
exact value that might in principle be computed by directly
solving the many-body Schroedinger equation.

C. Collective modes and dynamic structure factors

We now turn to the interacting excitation strength
S(s = ω/qvF ). The interaction produces new types of exci-
tations beyond the usual one-particle–one-hole ones which
are the only excitations of the noninteracting case. These ex-
citations are given by the poles of the response functions (21),
which are the solutions of the equations

(1 + Gp�p)(1 + Gn�
n) − G2

n,p�n�p = 0, (34)

where �n,p = [1 + s
2(1±ξ )1/3 ln s−(1±ξ )1/3)

s+(1±ξ )1/3) ], with the plus sign
holding for �n and the minus sign for �p. Depending on the
strength of the interaction, these new solutions are essentially
of three types: (a) real solutions such that s > (1 ± ξ )1/3

(collective modes), producing a discrete peak in the dynamic
form factor S(s) with no attenuation; (b) solutions with

some imaginary component, and corresponding modes which
decay by exciting single quasiparticle-quasihole pairs (Landau
damping); and (c) unstable solutions which are associated with
the divergence of the polarizability sum rules m

s,v
−1.

In Tables II–IV we report the values s̄ of s at which the
collective states occur in the isoscalar (s̄s) and isovector (s̄v)
strengths, the percentage ms

1 and mv
1 of the energy-weighted

sum rule exhausted by the collective states in the isoscalar and
isovector channels, respectively, and the two mean s values

s̄
s,v
1,−1 = ω

s,v
1,−1

qvF

=
√

m
s,v
1

m
s,v
−1

1

qvF

,

(35)

s̄
s,v
3,1 = ω

s,v
3,1

qvF

=
√

m
s,v
3

m
s,v
1

1

qvF

,

obtained by Eqs. (28)–(30). The energy ω
s,v
1,−1 is hereafter

referred to as the hydrodynamic energy in analogy to what
happens in liquid He3, where v1 = ωs

1,−1/q reproduces the
predictions of the hydrodynamical model for the ordinary
(first-) sound wave. Conversely the energy ω

s,v
3,1 is referred to as

the elastic energy since in liquid He3 v0 = ωs
3,1/q reproduces

the predictions of the elastic model for the zero-sound wave
[18].

The strength of the collective state at s = s̄ can be
computed from the following (adymensional) expression for
the response:

χs,v

Nm
/(

2k2
F

) = −3
(1 + ξ )1/3�n

[
1 + (

Gp ∓ ( 1−ξ
1+ξ

)1/6
Gnp

)
�p

] + (1 − ξ )1/3�p
[
1 + (

Gn ∓ ( 1+ξ
1−ξ

)1/6
Gnp

)
�n

]
(1 + Gp�p)(1 + Gn�n) − G2

n,p�n�p
, (36)

TABLE IV. Same as Table II for density ρ = 0.30 fm−3.

ξ s̄s % ms
1 s̄v % mv

1 ss
1,−1 sv

1,−1 ss
3,1 sv

3,1 Gp Gn Gnp

0.0 1.1188 83.6 1.0958 80.1 0.937 0.903 1.070 1.040 1.5414 1.5414 0.0935
0.3 1.2072 58.2 1.2072 48.0 0.943 0.902 1.099 1.059 1.5260 1.5267 0.1091
0.5 1.2643 64.3 1.2643 57.8 0.953 0.900 1.148 1.094 1.4732 1.5146 0.1351
0.8 1.3420 74.6 1.3420 71.7 0.986 0.902 1.263 1.188 1.2229 1.5064 0.1829
0.9 1.3666 78.0 1.3666 76.5 1.011 0.909 1.310 1.232 1.0106 1.5084 0.1893
1.0 1.3907 81.4 1.3907 81.4 1.153 1.153 1.324 1.324 0.0000 1.5134 0.0000
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FIG. 4. Quasiparticle-quasihole excitation strengths in units of
Nm/2k2

F as a function of s = ω/qvF for three different values of the
density (ρ = 0.30 fm−3, ρ = 0.16 fm−3, ρ = 0.10 fm−3) at fixed
isospin asymmetry ξ = 0. The positions of the collective states,
when present, are indicated by an arrow. The dashed and full lines
stand for the isoscalar and isovector excitation strengths, respectively.
The fraction of the energy-weighted sum rule exhausted by the two
strengths is also reported near the curves. The remaining fraction
of the energy-weighted sum rule is exhausted by the collective
states.

derived from Eqs. (21) and (25) by expanding χs,v around
the pole at s̄. Naming N (s) and D(s) the numerator and the
denominator of Eq. (36), respectively, one obtains

S(s)

Nm
/(

2k2
F

) = N (s)
∂D(s)

∂s

δ(s − s̄). (37)

The fraction of the f -sum rule m1 exhausted by the collective
state is easily calculated to be

s̄
N (s̄)

∂D(s)
∂s

∣∣
s=s̄

. (38)

In Figs. 4–8 we then plot the quasi-particle-quasi-hole exci-
tation strengths Ss,v(s = ω/qvF ) in units of Nm/(2k2

F ) for dif-
ferent values of the density ρ and s at fixed values of the isospin
polarization ξ . This quantity has been obtained by numerically
computing the imaginary part of expression (36). In the
figures the fraction of the energy-weighted sum rule exhausted
by the continuum of quasi-single-particle states is explicitly
indicated, and the position of the collective state, if present, is
indicated by an arrow. In all the calculations presented in the
following, we have numerically checked that the particle-hole
and collective contributions to the strength completely exhaust
the m1 sum rule. Let us start the discussion of the two
extreme cases corresponding to ξ = 0 (symmetric nuclear
matter N = Z) and ξ = 1 (pure neutron matter Z = 0).
In the first case (N = Z), isoscalar and isovector modes
are decoupled in the sense that the isoscalar and isovector
density operators F s and Fv give rise to distinct isoscalar
and isovector strengths Ss(s = ω/qvF ) and Sv(s = ω/qvF ).
This is different from what happens when N �= Z where F s

and Fv can indifferently excite modes both in the isoscalar
and in the isovector channels, with strengths and weights
depending on the values of ξ and ρ. Obviously, for neutron
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39.3 %

52.0 %

41.8 %

ξ = 0.3

FIG. 5. Same as in Fig. 4 at isospin asymmetry ξ = 0.3. The
collective state, indicated with an arrow, has the same energy both
in the isoscalar and isovector channels. The dashed and full lines
stand for the isoscalar and isovector excitation strengths, respectively.
The fraction of the energy-weighted sum rule exhausted by the two
strengths is also reported near the curves. The arrow is dashed or full
depending on whether the collective state exhausts more strength in
the isoscalar or in the isovector channel.

matter (Z = 0) it makes no sense to speak of isoscalar and
isovector modes since in this case there is only one type of
excitation.

For symmetric nuclear matter (ξ = 0) at density ρ =
0.30 fm−3, in the isoscalar strength Ss(s) a strong collective
state is present at s̄s = 1.1188, exhausting about 83.6% of
the energy-weighted sum rule m1. A continuum of single-
particle-type excitations is instead predicted at lower s values.
A similar situation occurs for Sv(s). Here the collective
state is at at s̄v = 1.0958, and exhausts about 80.1% of the
energy-weighted sum rule m1. The collective states in both the
cases occur at energies which are closer to the mean excitation
energies ω

s,v
3,1 than to the ω

s,v
1,−1 ones, showing that the collective

modes are of mainly of elastic type. This situation is analogous
to what happens, for instance, in liquid He3. By decreasing the
density, we still predict the existence of a strong collective
state in the isovector channel, exhausting about 80% of
the energy-weighted sum rule m1. On the other hand, the
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FIG. 6. Same as in Fig. 5 at isospin asymmetry ξ = 0.8.

024318-7



ENRICO LIPPARINI AND FRANCESCO PEDERIVA PHYSICAL REVIEW C 88, 024318 (2013)

2

4

1

2

3

S
(s

)(
2k

F
)2

/N
m

0 0.5 1 1.5 2
s = ω/qv

F

0

0.5

 ρ = 0.10  fm-3

 ρ = 0.16  fm-3

 ρ = 0.30  fm-3

100.0 % 100.0 %

70.9 % 69.3 %

23.5 %

22.0 %

ξ = 0.9

FIG. 7. Same as in Fig. 5 at isospin asymmetry ξ = 0.9.

collective mode disappears in the isoscalar channel, due to
Landau damping.

The situation is similar, but not exactly the same, in the
case of pure neutron matter (ξ = 1). At high density (ρ = 0.3
fm−3) the dynamic form factor shows a strong collective state
of elastic nature at s̄ = 1.3907, exhausting about 81.4% of
the energy-weighted sum rule, together with a continuum
of single-particle excitations at lower s values. Decreasing
the density to ρ = 0.16 fm−3, the energy of the collective
state decreases, likewise the percentage of the m1 sum rule
exhausted by this state. Eventually, at some density below
ρ = 0.16 fm−3, the collective completely decays in one-
particle–one-hole excitations.

When N �= Z, isoscalar and isovector probes excite an
admixture of isoscalar and isovector modes. In all cases we
predict a single collective state, when present, having different
weights in m1 for the isovector and isoscalar channels.

The neutron star core is supposed to be largely made up
of neutrons, with the presence of a small quantity of protons.
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FIG. 8. Same as in Fig. 5 at isospin asymmetry ξ = 1. In this
case, pure neutron matter, there is only one type of excitation and
the distinction between isoscalar and isovector channels does not
apply.
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FIG. 9. Isoscalar and isovector compressibility ratios ms
−1/m0

−1

and mv
−1/m0

−1 as a function of the density ρ for values of ξ

close to 1.

This situation corresponds to a value of ξ close to 1. Rather
than considering the proton fraction predicted for each value
of the density by the AFDMC equation of state, we have
considered the cases ξ = 0.8 and ξ = 0.9 for all densities,
in order to have an idea of the evolution of the collective
modes with this parameter. For such values of the asymmetry,
a clean collective state in both channels is present only at high
density, where it exhausts about 70%–80% of the m1 sum rule.
Already at saturation density ρ = 0.16 fm−3, this state has
almost completly decayed into particle-hole excitations, since
it exhausts only about the 30% of the m1 sum rule in both
channels. At ρ = 0.10 fm−3 it is completely damped. This
suggests that collective modes in the isoscalar or isovectors
channels can be present going inward from the interface
between the inner crust and the outer core.

Another interesting analysis can be made by looking at
the compressibility (in units of the compressibility of the free
Fermi gas) as a function of the density for different values of
the proton fraction. This quantity is given by ms

−1/m0
−1 and

mv
−1/m0

−1, and is plotted in Fig. 9. It can be noticed that a
strong divergence for a density near ρ = 0.085 fm−3 appears
at ξ = 0.9, and that it moves to a larger density, increasing
the proton fraction. We interpret this divergence as a sort of
mechanical instability of matter towards the formation of an
inhomogeneous phase, as expected in the inner crust of the
neutron star.

It is also interesting to look at the regime that would
correspond to asymmetries typical of neutron-rich nuclei
close to the drip line, i.e. ξ = 0.3. At (unphysical) high
density, a collective state exhausting about 50%–60% of m1 at
s̄ = 1.2072 is present both in Ss(s) and Sv(s). At the same time
the quasiparticle-quasihole strength is practically concentrated
in one state at a value of s slightly smaller than 1 and exhausting
about 50%–40% of m1. By lowering the density, we observe
that at ρ = 0.16 fm−3 the collective state appears at a lower
energy, and remains collective only in the isovector channel,
where it still exhausts more than 60% of the energy-weighted
sum rule. In the isoscalar channel most of the strength is taken
by the one-particle–one-hole excitations, though concentrated
in a narrow region of s, and the “collective” solution exhausts
only about 17.8% of the m1 sum rule. At ρ = 0.10 fm−3 the
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FIG. 10. Isoscalar and isovector compressibility ratios ms
−1/m0

−1

and mv
−1/m0

−1 as a function of the isospin asymmetry ξ for three
different values of the density.

collective mode can be excited only by an isovector probe, and
in the isoscalar channel it is practically completely damped.
The quasiparticle-quasihole strength is distributed in a wide
range of s in the isoscalar channel, whereas in the isovector
one it continues to see a substantial concentration at s ∼ 1.

This situation might be interpreted in analogy to what
happens in nuclei with a large excess of neutrons, where a
low-energy peak beyond the usual giant resonance is observed
in the isovector channel.

Finally, in Fig. 10 we plot the compressibility ratio for three
different values of the density. At ξ = 0 and ξ = 1, ms

−1/m0
−1

gives the compressibility of symmetric nuclear matter and pure
neutron matter, respectively. These values are not far from the
results computed by other authors starting from a microscopic
AV8′ Hamiltonian [20]. From the figures one also sees that,
differently from what happens at low density, at normal and
high densities ms

−1/m0
−1 is practically independent of ξ . On

the contrary, mv
−1/m0

−1 turns out to be always an increasing
function of the isospin asymmetry.

V. CONCLUSIONS

We have studied the dynamic form factor of asymmetric
nuclear matter by using a time-dependent local isospin density
approximation approach based on a local density energy
functional derived by an auxiliary field Ddiffusion Monte
Carlo calculation. The more relevant results we have found
are the following:

(i) We find the presence of a strong collective state at
high density at an energy which increases with the value of
the nuclear asymmetry ξ = (N − Z)/A. By decreasing the
density to the saturation value (ρ = 0.16 fm−3), this state
tends to decay in quasiparticle-quasihole states. The decay is
faster in the isoscalar channel, where it remains very collective
only at values of ξ close to 0. When the density is further
decreased, the collective states survives only in the isovector
channel at small values of ξ , typical of the neutron star
interior.

(ii) When a small fraction of protons is added to neutron
matter, when ξ is equal to 0.8, 0.9, and at values of the
density near or slightly smaller of 0.09 fm−3, the system
becomes unstable. This instability is seen in the isoscalar
and isovector compressibilities, which at such densities
diverge.

(iii) When ξ is around 0.3 (small asymmetry), in the
isovector channel at all the densities two states cohexist, one
of collective and the other of quasiparticle-quasihole nature,
practically sharing the fraction of exhausted energy-weighted
sum rule. This is similar to what is observed in the
photodisintegration of large neutron-excess nuclei.
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