
PHYSICAL REVIEW C 88, 024314 (2013)

β-decay properties for neutron-rich Kr–Tc isotopes from deformed pn-quasiparticle random-phase
approximation calculations with realistic forces

Dong-Liang Fang,1,2 B. Alex Brown,1,2,3 and Toshio Suzuki4,5

1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
2Joint Institute for Nuclear and Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA

3Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
4Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan

5National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
(Received 26 November 2012; revised manuscript received 17 June 2013; published 16 August 2013)

In this work we studied β-decay properties for deformed neutron-rich nuclei in the region Z = 36–43.
We use the deformed pn-QRPA (quasiparticle-random-phase approximation) methods with the realistic
CD-Bonn forces, and include both the Gamow-Teller and first-forbidden types of decays in the calculation.
The obtained β-decay half-lives and neutron-emission probabilities of deformed isotopes are compared with
experiment as well as with previous calculations. The advantages and disadvantages of the method are
discussed.
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I. INTRODUCTION

Decay properties such as the half-lives and β-delayed
neutron emission probabilities are important inputs for the
simulations of the r-process nucleosynthesis which is believed
to be responsible for the production of heavy elements in
our universe. In order to understand the observed elements
abundance, one needs measurements together with models
for making accurate predictions for these global properties
of atomic nuclei out to the neutron driplines, especially those
neutron-rich nuclei along r-process paths [1,2].

Recently, a group from RIKEN has performed a series of
half-life measurements for the neutron-rich Kr-Tc isotopes [3].
For some of these nuclei, some differences from the previous
measurement has been found, while for others, the half-lives
are measured for the first time. These measurements give
us more information for exotic neutron-rich nuclei and also
offer us more information relevant for the r-process flow path
around the A = 130 peak.

These new measurements serve as good tests or constraints
for theories. The theory for such calculations from gross to
microscopic have been developed for decades. There have
been global estimations of half-lives from the gross theories
such as those in Ref. [4] which treats the half-lives as functions
of the Q values and proton (Z) and neutron (N ) numbers.
More microscopic methods have been developed in Ref. [1,5],
with deformed pn-QRPA (quasi-particle-random-phase
approximation) methods for Gamow-Teller (GT) type decays
with the residual interaction from phenomenological pn forces
in the Jπ = 1+ channel. Because of the phenomenological
nature of the forces designed only for the GT channel, the
first-forbidden (FF) part was estimated by gross theory instead
of direct calculations [1]. Despite these approximations,
Ref. [1] gives a reasonable average agreement with half-lives
over the nuclear chart and for the new RIKEN data, but there
are order-of-magnitude deviations between experiment and
theory in many cases.

Reference [1] is the one that is widely accepted and used
in astrophysical simulations. For this reason we will make

comparisons to the results of [1]. There are other more
recent calculations that we will comment on in comparison
when appropriate. In a spherical basis with QRPA there have
been improvements for the continuum effects [6], and the
self-consistent density-functional theory (DFT) [7] has been
used. In the deformed basis Ref. [8] made improvements with
the introduction of particle-particle residual interactions and
interactions in the negative parity channels, but the results are
close to those of Ref. [1].

A new aspect of our method is that we use realistic
forces for the residual interactions using the G-matrix for-
malism. This differs from the idea of using the same force
everywhere in the calculation as in [7]; we will discuss
why we think our approach is better. This method was first
developed by the Tübingen group [9,10] for ββ decay to solve
the problem of multi-spin-parity channels for neutrinoless
ββ-decay intermediate states. However, the idea of realistic
forces to be used in the QRPA calculations can be traced
back for decades. Previous publications for beta decay include
the pioneer work of QRPA with realistic forces for β+/EC
calculation from Ref. [11], the 110Cd β−-decay calculations in
Ref. [12], and the comparison of low-lying spectra between
shell model and QRPA calculations in Ref. [13]. Previous
publications for double beta decay are more extended: they in-
clude [14,15] by the Tübingen group and [16] by the Jyvaskyla
group. In all of these works, we see predictions which are
comparable to the measurements and similar to the predictions
from other methods. The advantage of this method is that
we are not restricted to GT channels, and exact treatments
of excitation energy are available. With just two parameters
for the residual interactions, we can calculate all possible
decay channels, such as the transitions from 0+ ground states
to 0−, 1−, 2− final states. This gives explicit results from
microscopic calculations for FF decays which in some nuclei
may play an important role. On the other hand, inclusion of all
spin-parities can give us better determinations of the spectra
of odd-odd nuclei that make the decay energy required for
phase-space factors much more accurate. Both are advantages
which can lead to better predictions for β-decay properties.
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This article is arranged as follows: in Sec. II we introduce
the formulations of the calculations for β-decay properties and
the many-body approach we adopt; in Sec. III the results and
comparison to experiment and other models are discussed. The
conclusions are given in Sec. IV.

II. FORMALISM

The half-lives of β-decaying isotopes can be expressed as

t1/2 = ln 2/�, (1)

where � is the decay width and has the form

� =
∑

j

�j =
∑

j

1

2π3

m5
ec

4

h̄7

×
∫ ωj

1
C(ω)F (Z,R,ω)pω(ω0 − ω)2dω. (2)

Here the sum runs over all the possible states j for the final
nuclei, and F (Z,R,ω) is the phase-space factor for state j ,
which is a function of the nucleus radius R, nuclear charge
Z, and the energies of the emitted electron ωj = Ee/me =
(Q − Ej )/me in units of the electron mass me. In this work,
we consider two kinds of decays, the Gamow-Teller (GT) and
first-forbidden (FF) decays. For GT decay, C(ω) = B(GT−). It
is the square of nuclear matrix elements describing the nuclear-
structure part of the GT β decay, which can be expressed in
the form

Mj = 〈j |τ+σ |i〉, (3)

where |i〉 is the ground state for the parent nucleus and σ is the
transition operator (Pauli matrices) for GT β decay. For the FF
decay, the nuclear transition part C(ω) has more complicated
expressions as sums over products of different matrix elements,
as presented in [17–20]:

C(ω) = K0 + K1ω + K−1/ω + K2ω
2, (4)

where K0, K1, K−1, and K2 are the nuclear matrix elements
of various operators which depend on the multipoles, 0−, 1−,
and 2−. From the expression in (2) for the half-lives for decays
to each final state, one needs the information for the excitation
energies of the final states and the matrix element between the
initial and final states. For different types of nuclei, we will
use different many-body treatments as explained below.

Various methods have been applied to this calculation, each
with some limitations. The large-basis shell model can account
for many of the correlations, but the number of orbitals that can
be considered is restricted by the computational limitations to
dimensions of on the order of 1010, and in practice is used only
for the Gamow-Teller decay in light nuclei (A � 60). All of
the nuclei considered here are outside of this range.

Thus one needs other methods that involve various ap-
proximations. In our case, we adopt the deformed version of
pn-QRPA with realistic forces as first introduced in Ref. [9].
With the adiabatic Bohr-Mottelson approximation, one can
prove the equivalence of the calculations performed in the
laboratory systems and intrinsic systems [21] (in the intrinsic
system, the z axis is attached to the symmetric axis of the

nucleus). Thus we will perform our calculation in the intrinsic
system without the consideration of rotations of the nucleus,
and adopt the axially symmetric wave functions in the intrinsic
frame. Details of the wave function calculation is described in
Ref. [9] as well as the treatment of BCS pairing in the deformed
nuclei. With the BCS pairing, one defines the Boglyubov
quasiparticle creation and annihilation operators(

α†
τ

α̃τ

)
=

(
uτ vτ

−vτ uτ

)(
c†τ
c̃τ

)
, (5)

where the annihilation operators annihilate the BCS vacuum,
ατ |BCS〉 = 0. Here c and c† are single-particle annihilation
and creation operators, and u’s and v’s are BCS coefficients
from the solutions of BCS equation.

The intrinsic excited states |Kπ,m〉 are then generated by
the QRPA creation operators acting on the ground states [10]:

|Kπ,m〉 = Q
†
Kπ ,m|0+

g.s.〉,
(6)

Q
†
Kπ ,m =

∑
p,n

Xm
pn,Kπ A

†
pn,Kπ − Ym

pn,Kπ Ãpn,Kπ .

Here the two quasi particle creation and annihilation operators
are defined as A

†
pn,Kπ = α

†
pα

†
ñ and Ãpn,Kπ = αp̃αn, with the

selection rule K = 	p − 	n. In order to obtain the forward
and backward amplitudes X’s and Y ’s, one needs to solve the
QRPA equations(

A(Kπ ) B(Kπ )

B(Kπ ) A(Kπ )

)(
Xm

Kπ

−Ym
Kπ

)
= ωKπ ,m

(
Xm

Kπ

−Ym
Kπ

)
. (7)

The expression of matrices A and B and the details of the
interactions are discussed in Refs. [9,10]. The QRPA equations
can be solved by diagonalizing following the method in
Ref. [22]. The solutions contain the information of the energies
from the eigenvalues and the structure information from the
forward and backward amplitudes. With the states constructed
from the solutions of QRPA equations, we can calculate the
beta-decay half-lives. Here we briefly introduce the details of
the calculations for different types of nuclei.

First, for the decays of even-even nuclei [the first even
(odd) refers to the proton number Z and second even (odd)
refers to the neutron number N ], the parent nuclei have ground
states with all the neutrons and protons paired. Thus it is the
BCS vacuum with Jπ = 0+ (In intrinsic systems, the angular
momentum is no longer conserved, but the projection on the
z axis, K remains a good quantum number and the BCS
vacuum is with Kπ = 0). The excited states for daughter nuclei
in the pn-QRPA formalism are just those we constructed
above; we choose the states with the lowest eigenvalues to
be the ground states of the corresponding odd-odd nuclei
which are the decay products. (This requires a calculation
over all the possible spin projections and parities Kπ .) The
excitation energies for each states are EKπ ,m = ωKπ ,m − ωg.s..
The reason for such a choice instead of the direct use of
QRPA energies is that with these excitation energies we can
calculate the β-delayed neutron emission probability Pn. On
the other side, due to the accuracy of QRPA solution, the
obtained Q values from the parent side of excitations are less
reliable than experimental measurements or some mass model
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predictions. The matrix elements of the decay to the mth states
with spin-parity Kπ can then be derived as follows:

MI
Kπ ,m = 〈

Kπ,m|OI
M |0+

g.s.

〉
=

∑
pn

δKM

〈
p|OI

M |n〉(
Xm

pn,Kπ upvn + Ym
pn,Kπ vpun

)
.

(8)

Here 〈p|OI
M |n〉 is the single-particle transition matrix

element in the deformed basis, which can be written
as a decomposition over the reduced matrix elements
in spherical harmonic oscillator basis [9]: 〈p|OI

M |n〉 =∑
ηp,ηn

F I ′M
pηp,nηn

〈ηp||OI ||ηn〉/
√

2I + 1. Here for GT decay the

operator has the form OGT
K = σKτ+ as we mentioned before,

with the selection rules �K = 0, ±1 and �π = 1, while
the expressions for the first-forbidden beta decay are more
complicated, with nine components with different spin-parities
as introduced in Ref. [23]. We will not give the explicit
expression for these components here, but mention that two
have the selection rules �K = 0, �π = −1, three have
the selection rules �K = 0, ±1, �π = −1, and one has
�K = 0, ±1, ±2, �π = −1.

For odd-mass nuclei, we follow the method in Ref. [1],
except for the �v = 0 case (defined in Ref. [21]), we consider
only the single-particle transitions without the corrections
from particle-vibration couplings for simplicity. The states of
the odd-mass nuclei can be described as one corresponding
quasiparticle (proton or neutron) excitation on the even-even
ground states:

|Z ± 1, N, i〉 = α
†
p,i |Z,N, 0+〉,

(9)
|Z,N ± 1, i〉 = α

†
n,i |Z,N, 0+〉,

or a pn-QRPA excitation state with one spectator single
particle (or hole):

|Z + 1, N, I ′m〉 = α
†
n,i |Kπ ; m〉 = α

†
n,iQ

†
Kπ ,m|Z,N, 0+〉,

|Z,N − 1, I ′m〉 = α
†
p,i |Kπ ; m〉 = α

†
p,iQ

†
Kπ ,m|Z,N, 0+〉.

(10)

Here the label i is the spectator nucleon which doesn’t partic-
ipate in the decay process. The ground states of these nuclei
are the one-quasiparticle states with the lowest quasiparticle
energies Eτ,0; here τ can be a proton or neutron. Energies
for the states in (9) are simply the differences between the
quasiparticle energies E = Ei − E0. For the states in (10), we
use different treatments for the energies than that in Ref. [1]:
E = Q − QEE + Em; Em is the actual pn-QRPA excitation
energy in the even-even system and Q − QEE accounts for the
difference of the Q values between the odd-mass isotope and
the corresponding even-even one. The matrix elements for the
�v = 0 single-particle transitions are then expressed as the
leading order terms [21]

〈Z + 1, N, i|OI
M |Z,N + 1, 0〉 = vp,ivn,0〈p, i|OI

M |n, 0〉,
〈Z,N − 1, i|OI

M |Z − 1, N, 0〉 = up,iun,0〈p, i|OI
M |n, 0〉,

(11)

and for the �v = 1 spectator case (also defined in Ref. [21]),

〈Z + 1, N, 0m|OI
M |Z,N + 1, 0〉

=
∑

p,n�=n0

δKM

(
Xm

pn,Kπ upvn + YM
pn,Kπ vpun

)〈p|OI
M |n〉,

〈Z,N − 1, 0m|OI
M |Z − 1, N, 0〉

=
∑

p �=p0,n

δKM

(
Xm

pn,Kπ upvn + YM
pn,Kπ T Vpun

)〈p|OI
M |n〉.

(12)

Here contributions from the orbit occupied by the spectator
particle (hole) are excluded.

Finally, we discuss the case of odd-odd nuclei following
the treatment from Fig. 3 in Ref. [21]. In this scenario, the
collective effect is excluded, and for the ground states of the
odd-odd nuclei one has simply a one-neutron particle and a
one-proton hole acting on the even-even ground states. For
the daughter even-even nuclei, the ground states are obviously
the BCS vacuum, while for the excited states, there exist two
different types: the first case is the two-quasiparticle excitation
neglecting the collectivity; the excitation energies are E =
Ep,i + Ep,0 (lower left panel in Fig. 3 of Ref. [21]) or E =
En,i + En,0 (upper right panel in Fig. 3 of Ref. [21]); the
second case is the pn-QRPA excitation acting on the odd-
odd ground; the energies are E = Q − QEE + Em (upper left
panel in Fig. 3 of Ref. [21]), where QEE and Em have the
same meanings as in the odd-mass case. In the first case,
the transition matrix elements are just those of (11) with one
spectator proton hole or neutron particle. The special case is
when the final states are the ground states with all neutrons
and protons paired; in this case, the excitation energies are 0
instead of 2E0 (lower right panel in Fig. 3 of Ref. [21]).

The same matrix elements as in (12) are adopted with the
exclusion of contributions from the orbits occupied by the
unpaired neutron (particle) and proton (hole) of the odd-odd
ground states. In this approximation, the result is independent
of the odd-odd ground state spin, but the lack of collectivity
will give an overestimation on the excitation energy of the
two-quasiparticle final states. This makes the beta-decay Q
values too low, and increases the beta lifetime. However, as
discussed further below, the β-decay lifetimes for odd-odd
nuclei are not so important for the r-process path.

The neutron emission probabilities are defined in Ref. [1]
simply as

Pin =
∑

Ej >Ein
�j

�
. (13)

Here Pin is the i neutron emission probability, where i is the
number of neutrons emitted and can be 1, 2, 3, or more, and
Ein is the i neutron separation energy for i neutrons.

Following the definition in Ref. [1], the overall measure of
error in the deviation of theory from experiment is defined by

r = log10

(
t1/2,calc

t1/2,exp

)
, 
r =

[
1

n

n∑
i=1

(ri)2

]1/2

,


10
r = 10
r . (14)

Here, 
10
r is defined to be the total “error.” This will be used

later for quantitative estimation of the quality of calculations.
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III. RESULTS AND DISCUSSION

The single-particle wave functions and energy levels
are obtained by solving the Schrödinger equation with
the deformed Woods-Saxon potentials. The parameters of
the Woods-Saxon potential are taken from Ref. [25]. For the
choice of the model space, based on previous experience,
we start from the 0h̄ω to one major shell above the Fermi
surface of either proton or neutron, depending on which is
close to zero energy, so for most isotopes here with N � 70,
the model space is 0–5 h̄ω. For the deformation parameters,
we choose either the experimental ones if available (using
the treatment for deformation in Ref. [10]) or those predicted
by Ref. [26]. The Q values and the neutron separation
energies were taken from the experimental masses in Ref. [27],
if available, and otherwise from the theoretical masses of
Ref. [1]. For the pairing interaction, we adopt the Brückner
G matrix with the charge-dependent Bonn force. The detailed
calculation procedure and choice of parameters are described
in Refs. [9,10,28]. The same interaction is used as the residual
interaction for pn-QRPA phonons.

Ideally one would use the Skyrme or relativistic mean-
field (RMF) method to generate both binding energies and
single-particle energies self-consistently. In this paper we
concentrate on the r-process beta-decay strengths which
depend upon the use of reasonable single-particle energies
and realistic residual interactions. For this purpose we use the
same binding energies as used in previous finite-range droplet
model (FRDM) calculations. We use single-particle energies
obtained from a Woods-Saxon potential as stated above with
parameters adjusted to observed single-particle energies in
nuclei near stability (the present version of the deformed code
is limited to a Woods-Saxon basis). For the future, all types of
calculations for the single-particle energies in nuclei far from
stability will need to include a consideration of the tensor
component of the mean field that can modify the effective
spin-orbit splittings [29].

As mentioned in the introduction, one of the new aspects of
our work is the introduction of a microscopic calculation for
the first-forbidden decays. Figure 1 shows the region of nuclei
covered in this paper. For each nucleus we show the branching
ratio for the forbidden decay. They vary from several percent to

FIG. 1. (Color online) Illustrations of calculated branching ratios
of the first-forbidden decay for different isotopes. The diagonal line
indicates the approximate r-process path.

at most 30% in this region. Thus our discussions below apply
mainly to the Gamow-Teller decay aspects of calculations. In
other regions, the FF contributions are more important and
an accurate determination of these decay widths can give a
better accuracy; an example is given in [17] for N = 126
isotones where, for some isotones, the first-forbidden decays
contribute more than 80% of the decay width. Overall, an
explicit calculation of FF decay is required for a complete
account of the beta-decay in the r-process path.

Two parameters are introduced as described in Refs. [9,10]:
the renormalized particle-hole (gph) and particle-particle (gpp)
strengths. However, the fitting procedure of these parameters is
a bit different from Refs. [9,10]. For the renormalized particle-
hole strength gph, the usual way is to fit the position of the
Gamow-Teller resonance. Since we do not have enough data
in the Kr-Tc region of interest, we adopt the same value as that
derived in Ref. [9] for double-beta-decay emitter 76Ge (In fact,
the β decay depends on the low-lying strength distributions and
the choice of gph does not affect the final results too much).

The calculated half-lives are sensitive to the renormalized
particle-particle strength gpp. But we must also consider the
possibility of quenching of the axial-vector coupling constant
due to short-range correlations and to multiphonon effects
which are excluded in QRPA calculations. Due to the lack of
experimental data on logf t values of single-decay branches
in our mass region of interest, we take the one used in
Ref. [10] that was derived from experiment [30] for 150Nd,
gA = 0.75gA0 = 0.95, where gA0 = 1.26 is the bare value in
the vacuum.

The relation between the calculated half-lives and values of
gpp is illustrated in Fig. 2. When gpp is increased, we obtain
an enhanced GT strength to low-lying states, and therefore
smaller calculated half-lives. From Fig. 2 , we find that without
quenching, the half-lives are underestimated, and the fitted gpp

values are around zero. If the quenching is included, realistic
values from 0.6 to 0.9 which reproduce the half-lives of the

FIG. 2. (Color online) The half-life dependence on gpp for
different even-even isotopes. The upper panel shows results with
quenched axial vector coupling constant gA = 0.75gA0, while the
lower panel shows the bare one gA0 = 1.26.
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FIG. 3. A comparison of the calculated half-lives from Ref. [1] [(panels (a) and (b)] and this work [(panels (c) and (d)] with the experimental
ones from RIKEN [3] and [24]. The experimental errors are taken into account for several isotopes with large error bars. The total errors are
defined in (15). The left panels are comparison for even-even isotopes, and the right panels are for other types denoted by different symbols
for the three cases of (Z, N ). The three horizontal lines in each panel correspond to the ratios of 2, 1, and 0.5 respectively. Here, sep. is the
abbreviation for separable force and rea. for realistic force.

isotopes are obtained; this agrees well with the fitted gpp

values of ββ-decay half-lives in Ref. [10]. Due to the large
uncertainty in half-life of 100Kr we exclude this isotope from
Fig. 1. Another isotope which is not included in the figure
is 114Mo, because it requires a larger model space due to its
neutron number 72 (one more major shell should be added in
the calculation compared with other isotopes), hence a much
longer time is needed for calculation of the whole range of
gpp. However, as we shall see later, the results for 114Mo agree
well with those obtained with the gpp = 0.75 value we choose
from the fitting. For calculations in other deformed region, an
A dependence of gpp may be needed; however, in the current
calculation in this region, a unified gpp value seems to work
well with our choice of model space.

With the uncertainties of the choice of gpp from 0.6 to 0.9,
the errors of the half-lives vary by a factor of 2 in general. The
optimal choice is gpp = 0.75 from the trends in the upper panel
of Fig. 2. In Fig. 3, we show the ratio between calculated and
measured half-lives with gpp = 0.75. Following the definition
from (15), we obtain a total error of 2.1 compared to 2.3 in
Ref. [1] for all nuclei with lifetimes smaller than 1 s from Kr
to Tc. If we compare our results with those obtained in Ref. [1]
(upper panels in Fig. 3), we find that we have a better agreement
for even-even nuclei (a total error of 1.39 compared to 2.36 for
12 nuclei with reasonably small error bars) not simply because
we have adjusted the parameters for this region, but mainly due

to the adaption of excitation energies relative to the ground
states of the final odd-odd nuclei. This gives more accurate
phase-space factors which effectively reduce the half-lives, and
gives improved agreement with the experiment. For Ref. [1],
even without the effect of quenching, there is an overestimation
for almost all even-even nuclei due to the excitation energies
they choose and the lack of particle-particle residue interaction
in their calculation. For 38 odd-odd or odd-mass nuclei, a
comparable total error is obtained between ours and that
of Ref. [1].

A systematic analysis of the behavior for the GT distribution
has been presented in Ref. [31] for the Zr and Mo even-even
isotopes in this region. As an example, we show in Fig. 4
the low-lying GT and effective FF strength distributions for
110Zr, in order to give a general idea of how the low-lying
strength is distributed, and how they contribute to the decay
width. General agreements have been achieved between our
results in Fig. 4 and those of Fig. 5 for 110Zr in Ref. [31]
for GT strength distribution in units of g2

A0, with differences
coming from the different strength distributions which lead to
different total GT strengths included in the decay window. We
have a similar amount of total strength for both the spherical
and deformed cases which is about 1.5 times of that for the
spherical case and ∼2 times for the deformed case in Ref. [31].
If we compare the two scenarios, we have nearly the same
amount of GT strength at the same position for the spherical
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FIG. 4. (Color online) Low-lying GT (black) and effective FF
(red) strength distributions (a), (b) and GT running sums (c) for 110Zr
are shown. The effective strength C(w) for first-forbidden decay is
defined in Eq. (8) in Ref. [17]. In addition to the results in the deformed
basis (b), we also show the results for a spherical basis (a) [dashed
lines in (c)]. The three vertical lines correspond to Sn = 4.72 MeV,
S2n = 7.79 MeV, and Q = 9.79 MeV respectively, which are taken
from Ref. [27]. Here, we use gpp = 0.75, which gives a half-life
of t1/2 = 21.6 ms and β-delayed one-neutron emission probability
Pn = 1.9% for the spherical case and t1/2 = 37.9 and Pn = 10.5%
for the deformed case.

case, which leads to similar half-life and Pn for the spherical
case, since only one transition dominates the decay width. The
effect of deformation has also been explored by Ref. [31].
Here instead of a full analysis of the lifetime-deformation
relation, we compared spherical case to the deformed case
with only one deformation and obtained similar trends as
that in Ref. [31]; that is, with deformation, the half-life gets
longer. However, the change of half-life is less drastic than
theirs, since our strength for the deformed case has been
shifted down compared to theirs due to different excitation
energy spectra. For the spherical case, we see the strength has
been concentrated in several states because of the degeneracy
between different projections of the angular momentum than
that in Ref. [31]. Due to the deformations, the contributions
are split into K = 0 and K = ±1 parts (under the intrinsic
system, angular momentum is not a good quantum number);
not only their energies but also the strengths. This makes the
distribution spread out and the deformed nuclei decay slower
than corresponding spherical ones. It also leads to a larger Pn

value for the deformed case as some of the strength is shifted
to the region above Sn. In Fig. 4, we show the position for Q
value and the neutron separation energies. The strengths with
the lowest excitation energies are most important to the decay
width because of their larger phase spaces. Thus, although for
the deformed case, nearly comparable amounts of GT strengths
are located in the intervals of Sn–S2n and S2n–Q, the β-delayed
two neutron emission probability P2n is very small compared
with Pn. In this sense, one needs both accurate predictions for
the strengths and their positions. The advantage of realistic
force is that it provides a better determination of the excitation

energies. To see this, we presented some comparisons between
our calculations and the limited experimental spectra in Table I
for several states which are related to β decay. In the adiabatic
approximation, the intrinsic excitations are decoupled from the
rotations, and these exicitation energies are supposed to be the
rotational band heads. The comparisons in Table I shows that
with QRPA we could achieve errors of the excitation energies
up to 1 MeV when compared with the measured spectra, which
could give small deviations to the half-lives when the Q values
are larger than several MeV.

In this work, we also added the FF parts in the graph to show
how much the inclusion of first-forbidden decay will change
the half-lives. We see that if the low-lying states turn out to be
low-spin negative parity states, then the FF decays may become
important as their relatively smaller effective strengths now
are compensated by a large phase-space factor, which makes
them comparable to the GT part. This can be seen in panel (c)
of Fig. 4. For the spherical case (dashed lines), although the
low-lying FF effective strength is very small, it still contributes
about 20% to the total decay width just because it lies more
than 1 MeV lower than the larger GT strength. The effect
of increasing gpp is that it enhances the low-lying strength
and shifts down the excitation energies, hence reducing the
half-lives. From the definition of Pn in Refs. [1,21], more
low-lying strength below the neutron separation energies gives
much smaller Pn values, and vice versa. Thus, a comparison
with the experiments for both the half-lives and the Pn values is
a good measure of how good the nuclear structure descriptions
are. Comparison of our results to Ref. [31] and to experimental
data in Fig. 3 show good agreements among different theories
and experiments. In general, the errors for lifetimes in our
calculations for even-even nuclei can be basically controlled
within a factor of 2.

The agreement between experiment and theory for even-
odd and odd-even isotopes is about a factor of 2 worse than that
for even-even isotopes. The lack of particle-vibration coupling
in calculations of matrix element in the odd-mass systems at
this region does not seem to have too much effect on the final
half-lives, however. This is consistent with the calculations in
Ref. [1], where a weak-coupling approximation was assumed.
But the particle-vibration coupling also affects the excitation
energy by the mixing between the single-particle and collective
states, which in turn changes the effective Q values, and finally
the phase-space factors. As the phase-space factor has a Q
value dependence of Q5, this will leads to errors mentioned
above.

The agreement between experiment and theory is worse
for the odd-odd isotopes, and there exists a systematic
overestimation for the half-lives. This is due to a shortcoming
of the method we use: the lack of consideration of the
collectivity for even-even daughter nuclei. This overpredicts
the energies of the final states, and hence the calculated phase
factors are smaller than expected. However, in spite of the
shortcoming of the methods, we can still keep the error within
an order of magnitude, and for most isotopes approximately
a factor of 5. We note from [32] that the r-process path
does not depend strongly on the beta-decay properties of the
odd-odd nuclei due to their larger Sn values. Thus, instead of
improving the models for odd-odd nuclei, one alternative way
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FIG. 5. (Color online) A comparison among the calculated half-lives from Ref. [1] (red), this work (blue), and measured ones (if available)
with error bars from RIKEN [3] for Kr to Tc isotopes. The total errors are defined in Ref. [1]. Here, as before, sep. is the abbreviation for
separable force and rea. for realistic forces.

is to simply use the average of the results for the neighboring
odd-even and even-odd nuclei for their values in an r-process
database.

With the above comparisons and discussions, we extend
our calculations to all of the deformed Kr-Tc isotopes in the
region N = 50–82. We make comparisons with experimental
measurement (if available) and previous theoretical predic-
tions from Ref. [1]. The results are shown in Fig. 5. The
same set of Q values taken from FRDM model as used in
Ref. [1] is adopted for the sake of comparison. One of the
differences between our results and that of Ref. [1] is that
the latter have added an extra strength spreading for each of

TABLE I. The excitation enegies of the first 1+, 0−, 1−, 2− states
in units of MeV from our calculations and from the experimental
measurements of nuclei which are supposed to be deformed. The
calculated ground state spin-parities are also shown.

J π
g.s. E1+

1
E0−

1
E1−

1
E2−

1

98Y Expt. 0− 0.548 0 0.119 0.171
Theor. 4+ 0.108 0.014 0.194 0.395

100Y Expt. 1−, 2− 0.011 0 0
Theor. 5− 0.343 0.130 0.450 0.991

100Nb Expt. 1+ 0
Theor. 4− 0.234 0.461 0.114 0.267

108Tc Expt. 2+ 0.086
Theor. 0+ 0.027 0.404 0.300 0.269

the final states. In our calculations of even-even nuclei the
strength is already spread by the deformation effects as seen
above, and there is not as much motivation for adding more
by hand. But for our calculations of odd-mass and odd-odd
nuclei where the collective behavior has been excluded, the
transitions are just between the single-particle states with
little spreading compared to that in Fig. 4 for even-even
nuclei.

For most even-even isotope chains, shorter half-lives by
up to a factor of 2 are predicted in our calculation compared
to Ref. [1] due to the lower excitation energies for the final
states from realistic calculations. This behavior applies also to
some odd-mass nuclei. For even Z isotopes, the half-lives
decrease with the increase of neutrons with some small
staggering behavior, but overall agreement with experiment
is obtained. For odd Z, there are systematic overestimations of
the half-lives for the odd-odd isotopes with the reasons stated
in Sec. II. For the odd-even nuclei, the agreement once again
seems satisfying, however, we do find worse agreement for Tc
isotopes, this may imply that these nuclei lies in the transitional
region and a deformed QRPA description may not be proper
for these isotopes. In Ref. [1], due to the additional strength
spreading put in by hand, they obtained better agreements for
these isotopes. However, if we observe carefully, we will see
that although this artificial spreading of strength does smooth
the behavior of the isotope chains, it may introduce further
errors as in Fig. 5. With a unified value of spreading strength
width, some results for isotope chains are overestimated while
others are underestimated, and the rest curves have different
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FIG. 6. (Color online) A comparison among the calculated β-delayed neutron emission probability Pn values from Ref. [1] (red), this work
(blue), and measured ones (if available) with error bars from RIKEN [3] for Kr to Tc isotopes. Here sep. is the abbreviation for separable force
and rea. for realistic forces. The empty squares are the β-delayed one-neutron emission probabilities Pn, while the solid ones are the total
probabilities up to three-neutron emission.

slopes compared to the experimental results. It seems that
one needs to adjust this value for each isotope chains to
obtain a better agreement, hence it is not practical for global
calculation if one would like to control the systematic errors of
the calculations. This is why we have not added this spreading
effect in our calculations. As discussed in Sec. II, the r-process
results are not sensitive to the half-lives of the odd-odd nuclei,
and from a practical point of view it would be adequate to
simply use the average of the calculated half-lives of the
neighboring even nuclei for these odd-odd nuclei, since we
have generally good agreement with experiment for nuclei
with even N or Z.

Another observable from the experiments for some isotopes
is the Pn value, which with accurate neutron separation
energies gives a measure of the Gamow-Teller strength
distribution as we have shown in Fig. 4. From Fig. 6, we
find a good agreement again for even-even isotopes from
limited data, proving the reliability of our descriptions for
deformed even-even isotopes in this region. In Fig. 6, one
finds a staggering behavior in the realistic results for the
even and odd N number neutrons, especially for the odd
Z isotopes. The reason can be traced back to the treatment
of the odd nuclei with the lack of collectivity. This shifts
the excitation energies up and the strength distributions are
shifted systematically to higher energies. This behavior is more
obvious for odd-odd nuclei where nearly all the strengths are
shifted up. In applications of our calculations to the r process,

it is preferable to replace the calculated Pn results for odd N
values with the average of the neighboring even N values.

IV. IMPLICATIONS FOR THE r PROCESS

We have investigated how the r-process element abun-
dances are affected by the β-decay half-lives of various nuclei
by changing the half-lives of Moeller’s predictions [1] for all
even-even or odd-odd nuclei by one order of magnitude. These
preliminary results agrees with recent r-process simulations
[32]: for even-even nuclei, such changes of lifetimes have a
tremendous effect on the peak formations, totally changing the
patterns of the abundance distributions. In the case of odd-odd
nuclei, a one-order-of-magnitude change in all of the half-life
results essentially keeps the same r-process abundance pattern,
except for the A = 150–200 mass region where the odd-even
oscillation for elemental abundances are relatively changed by
about a factor of 2.

We can conclude from this simple simulation that the
current accuracy of the deformed QRPA method can meet
the needs of nuclear inputs for the r-process simulation. Our
next step is to extend the present calculations to other deformed
regions; for example, the heavily deformed rare-earth elements
region, where the beta-decay data is limited, and where it is
still not understood how the peak of rare-earth elements is
formed. The final goal is to calculate the β-decay properties
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over the whole nuclear chart. It is also important to have
reliable calculations for spherical nuclei, especially those
around N = 82 that are important for the abundance peak
around A = 130.

V. CONCLUSION

In this work, we investigated the β-decay properties of the
Kr-Tc isotopes recently measured at RIKEN. With the pn-
QRPA taking into account realistic forces, a good agreement
has been obtained between the theory and the experiments,
especially for even-even nuclei, with an accuracy within
a factor of 2 for most of them. The current calculations

provide improved results for the beta-decay half-lives of
even-even nuclei. We plan to apply the present method
to the rare-earth region of deformed nuclei. We also plan
to use the realistic interactions for QRPA calculations of
spherical nuclei. This will eventually provide an improved
set of predictions for the half-lives and Pn values that can
be used in r-process network calculations for the element
abundances.
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