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Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic
mass evaluation and the symmetry coefficient
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Our family of three Hartree-Fock-Bogoliubov (HFB) mass models, labeled BSk19, BSk20, and BSk21, is here
extended by (a) refitting to the 2012 Atomic Mass Evaluation (AME), and (b) varying the symmetry coefficient
J . Five new models, labeled BSk22 to BSk26, along with their mass tables, HFB-22 to HFB-26, respectively,
are presented. These models are characterized by unconventional Skyrme forces containing t4 and t5 terms, i.e.,
density-dependent generalizations of the usual t1 and t2 terms, respectively. Highly realistic contact pairing forces
are used. The Skyrme forces are constrained to fit realistic equations of state of neutron matter stiff enough to
support the massive neutron stars PSR J1614−2230 and PSR J0348 + 0432. Unphysical spin and spin-isospin
instabilities of homogeneous nuclear matter, including the transition to a polarized state in neutron-star matter,
are eliminated with the new forces. The best fits to the new database of 2353 nuclei are found for models
BSk24 (J = 30 MeV) and BSk25 (J = 29 MeV), for which the root-mean square (rms) deviations are 0.55 and
0.54 MeV, respectively. Despite the larger database this is even better than the rms deviation of 0.58 MeV that we
found with our fits to the 2003 AME. With J = 32 MeV the rms deviation rises to 0.63 MeV. The neutron-skin
thicknesses derived from antiproton scattering are shown to be consistent with the conclusions that we have
drawn from masses.
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I. INTRODUCTION

In Ref. [1] we presented a family of three Skyrme-type
functionals, BSk19, BSk20, and BSk21, along with their
corresponding mass tables, HFB-19, HFB-20, and HFB-21,
respectively, that we had constructed with a view to providing
a unified approach not only to the structure of all the different
regions of neutron stars (outer crust, inner crust, and core)
but also to other phenomena associated with the birth and
death of neutron stars, such as supernova-core collapse, the
r-process of nucleosynthesis in the neutrino-driven wind, and
nucleosynthesis via the decompression of neutron-star matter.
These three functionals are all based on effective forces with
the 16-parameter generalized Skyrme form shown in Eq. (1),
which is characterized by unconventional terms that have a
simultaneous density and momentum dependence.

The parameters of this form of force were determined
primarily by fitting measured nuclear masses, which were
calculated with the Hartree-Fock-Bogoliubov (HFB) method.
For this it was necessary to supplement the Skyrme forces with
a microscopic pairing force, phenomenological Wigner terms
and correction terms for the spurious collective energy. How-
ever, in fitting the mass data we simultaneously constrained
the Skyrme force to fit the zero-temperature equation of state
(EOS) of infinite homogeneous neutron matter (NeuM), as
determined by many-body calculations with realistic two- and
three-nucleon forces. Actually, several realistic calculations of
the EOS of NeuM have been made, and while they all agree
fairly closely at nuclear and subnuclear densities, at the much
higher densities that can be encountered towards the center
of neutron stars they differ greatly in their stiffness, and there
are very few data, either observational or experimental, to
discriminate between the different possibilities (see Fig. 1). It

is in this way that we arrived at our three different functionals,
as follows.

BSk19 is the softest of our functionals in high-density
NeuM, being constrained to the EOS of Friedman and
Pandharipande [2] (FP), which is based on a variational
calculation using the realistic Urbana v14 nucleon-nucleon
force with the three-body force TNI. BSk20 has intermediate
stiffness, as it is constrained to the EOS of Akmal et al. [3]
labeled “A18 + δ v + UIX∗”, which we refer to as APR. This
EOS, like FP, is based on a variational calculation but uses the
more up-to-date realistic Argonne A18 two-body force and the
semiphenomenological UIX∗ three-body force; there is also a
so-called relativistic boost correction δ v. Finally, our stiffest
functional, BSk21, is constrained to the EOS labeled “V18”
in Ref. [4], which we refer to as LS2. It is based on the same
A18 two-body force as is APR, but uses a much more realistic
three-body force and is calculated with the Brueckner-Hartree-
Fock (BHF) method. Ref. [5] has also drawn attention to the
question of high-density stiffness of the EOS.

We also imposed the following additional constraints: (a)
an optimal fit to the charge-radii data [6], (b) a value of
0.8M for the isoscalar effective mass M∗

s in charge-symmetric
infinite homogeneous nuclear matter (INM) at the appropriate
equilibrium density n0, this being the value indicated by
calculations on INM with realistic forces (see the discussion
in Ref. [7]), (c) an incompressibility Kv of charge-symmetric
INM falling in the experimental range 240 ± 10 MeV [8],
(d) the stability of NeuM and of β-equilibrated neutron-star
matter (i.e., the homogeneous nucleon-lepton mixture of
which neutron-star cores are comprised) against an unphysical
polarization at any density relevant to neutron-star cores [9,10],
(e) an EOS of charge-symmetric INM that is consistent with
measurements in heavy-ion collisions of nuclear-matter flow
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FIG. 1. Zero-temperature EOSs for neutron matter with models
BSk22–26. APR is the realistic EOS “A18 + δ v + UIX∗” in Ref. [3].
LS2 and LS3 correspond to the realistic EOSs referred to as V18
and BOB in Ref. [4], respectively. The shaded area represents the
constraints obtained in Ref. [32].

over the density range 1.5–4.5n0 [11,12], (f) a qualitatively
acceptable distribution of potential energy among the four
different spin-isospin channels in INM.

The form of our functionals is sufficiently flexible to allow
all these constraints to be satisfied and at the same time for
the 2149 measured masses of nuclei with N and Z � 8 given
in the 2003 Atomic Mass Evaluation (AME) [13] to be fitted
with an root mean square (rms) deviation as low as 0.58 MeV
with all three models, i.e., with all three options for the high-
density variation of the energy per nucleon of NeuM. However,
there have been two significant developments since the time
that these functionals and their associated mass models were
constructed.

The neutron star PSR J1614−2230, and more recently
PSR J0348 + 0432, have been shown to have a mass as
high as 1.97 ± 0.04 M� for the former [14] and 2.01 ±
0.04 M� for the latter [15]. Now in Ref. [16] we solved
the Tolman-Oppenheimer-Volkoff (TOV) equations [17,18] to
determine the maximum possible neutron-star mass for each
of our models. As will be seen in the first three lines of Table I,
the EOS obtained with BSk19 is definitely too soft, and is
discarded, along with the EOS of FP.

At the end of 2012 a new AME [19] was published, with
2353 measured masses of nuclei having N and Z � 8. (This set
contains both nuclei whose masses are measured for the first
time, and also nuclei whose previously quoted masses have

TABLE I. Maximum neutron-star mass for
different models.

Force Mmax/M�

BSk19 1.86
BSk20 2.15
BSk21 2.28
BSk22 2.26
BSk23 2.27
BSk24 2.28
BSk25 2.22
BSk26 2.15

been revised; 15 nuclei for which measured masses appeared
in the 2003 AME no longer have this status.) Now when we
calculate the rms deviation for HFB-20 and HFB-21 with
respect to this new data set, we find that it rises by 17 keV
for the former and falls by 5 keV for the latter, which means
that the new data distinguish between the two EOSs, favoring
LS2 over APR, at least for nuclear densities. (The fact that the
rms deviation in the case of HFB-21 is actually lower for the
larger data base of the 2012 AME than for the 2003 AME, to
which it was fitted, is an indicator of the reliability with which
this model can be extrapolated into unknown regions of the
nuclear chart.)

Clearly, it is desirable to refit the HFB-21 model to the
2012 AME. This we do in the present paper, but we also
take the opportunity of addressing an issue that was neglected
in Ref. [1], namely, that of the symmetry coefficient J .
Previously, we took J = 30 MeV, this being the most plausible
value that emerged from some preliminary trial calculations,
but here we examine the question much more thoroughly,
considering also J = 29, 31 and 32 MeV. For each of these
four values of J we shall take LS2 for the constraining EOS,
although in one case, J = 30 MeV, we shall also constrain
to APR, in order to check that our conclusion concerning the
superiority of LS2 remains valid after refitting to the larger
data set.

In Sec. II we review the essential features of our models,
while the results of our new fits are described in Sec. III, with
the impact of the new AME and the sensitivity to the symmetry
coefficient J both being discussed; this section also examines
the neutron-skin thicknesses predicted by our new models.
Section IV contains our conclusions.

II. PRINCIPAL FEATURES OF OUR HFB CALCULATIONS

The new models introduced here are identical in form to
the ones of Ref. [1]. We recall here the essential features.

(i) The form of our generalized Skyrme force is

vij = t0(1 + x0Pσ )δ(r ij ) + 1

2
t1(1 + x1Pσ )

1

h̄2

[
p2

ij δ(r ij ) + δ(r ij ) p2
ij

] + t2(1 + x2Pσ )
1

h̄2 pij .δ(r ij ) pij

+ 1

6
t3(1 + x3Pσ ) n(r)α δ(r ij ) + 1

2
t4(1 + x4Pσ )

1

h̄2

[
p2

ij n(r)β δ(r ij ) + δ(r ij ) n(r)β p2
ij

]
+ t5(1 + x5Pσ )

1

h̄2 pij .n(r)γ δ(r ij ) pij + i

h̄2 W0(σi + σ j ) · pij × δ(r ij ) pij , (1)
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where r ij = r i − rj , r = (r i + rj )/2, pij = −ih̄(∇i −
∇j )/2 (this is the relative momentum), Pσ is the two-body
spin-exchange operator, and n(r) = nn(r) + np(r) is the total
local density, nn(r) and np(r) being the neutron and proton
densities, respectively. The t4 and t5 terms are unconventional,
being density-dependent generalizations of the t1 and t2 terms,
respectively. The full formalism for this generalized Skyrme
force is presented in the Appendix of Ref. [9], but note that we
now drop all the terms quadratic in the spin current tensor and
their time-odd counterpart from the Hamiltonian density, as
discussed in Ref. [1]. We found that those terms are generally
at the origin of spurious instabilities.

(ii) Our pairing force has a δ-function form,

vpair
q (r i , rj ) = f π qv[nn(r), np(r)]δ(r ij ), (2)

where v[nn, np] is a functional of both the neutron and proton
densities, calculated analytically at each point in the nucleus
in question in such a way as to reproduce the 1S0 pairing gaps
of INM of the appropriate density and charge asymmetry, as
determined by many-body calculations with realistic two- and
three-nucleon forces [20,21]. (Note that an analytic represen-
tation of the function v[nn(r), np(r)] is now available [22].)
The INM constraint determines the strength of the pairing
force almost completely, but we introduce some fine-tuning
of the strengths in the form of the four global renormalization
parameters f π q , which allow the overall strength to be slightly
different for neutrons than for protons, and which also permit
each of these strengths to depend on whether there is an even
or odd number of nucleons of the charge type in question. In
this way we take into account Coulomb effects as well as the
slight violation of time-reversibility implicit in our treatment
of odd nuclei (see below). With the purely bulk picture of
pairing that we are adopting the renormalization parameter for
an even number of neutrons must be taken to be equal to 1.
A cutoff parameter ε	 to the single-particle (s.p.) spectrum is
introduced, as described in Ref. [20].

(iii) We subtract from the HFB energy an estimate for the
spurious collective energy. As described in Ref. [20], the form
we adopt here (and in Ref. [1]) is

Ecoll=Ecrank
rot

{
b tanh(c|β2|) + d|β2| exp

{−l
(|β2| − β0

2

)2}}
,

(3)

in which Ecrank
rot denotes the cranking-model value of the

rotational correction and β2 the quadrupole deformation. The
parameters b and c have been determined by fitting the first
term to the purely rotational correction rigorously calculated
by Bender et al. [23] on the basis of an exact projection of
angular momentum; see also Refs. [24,25]. With the first term
thus representing the rotational correction, the second term
takes account of the deformation dependence of the vibrational
correction [since Ecoll as given by Eq. (3) vanishes for spherical
nuclei we must suppose that the vibrational correction for such
nuclei is absorbed into the fitted force parameters].

(iv) To the HFB energy calculated for the Skyrme and
pairing forces we add a Wigner correction,

EW = VW exp

{
−λ

(
N − Z

A

)2}

+V ′
W |N − Z| exp

{
−

(
A

A0

)2}
, (4)

which contributes significantly only for light nuclei (A < A0)
or nuclei with N close to Z. Our treatment of this correction
is purely phenomenological, although physical interpretations
of each of the two terms can be made [20,26].

(v) For an odd number of nucleons we adopt the equal-
filling approximation [27].

(vi) We drop the Coulomb exchange term for protons. This
is a device that leads to a significant improvement in the
mass fits, especially mirror-nucleus differences, and it can be
interpreted as simulating neglected effects such as Coulomb
correlations, charge-symmetry breaking of the nuclear forces,
and vacuum polarization [28].

III. THE NEW MASS MODELS

A. Fitting procedure

We use the CERN routine MINSQ to minimize the rms
deviation of our models with respect to the mass data, but
since there are 30 parameters in all (16 Skyrme parameters,
five pairing parameters, four Wigner parameters, and five
collective parameters) and there are 2353 masses to be fitted,
some simplifying strategy has to be adopted. Since the four
Wigner parameters are calculated separately we remove the
167 nuclei with |N − Z| � 2 from the data set and then of
the remaining 2186 nuclei we take one third to form a fitting
sample of 729 nuclei, chosen to ensure a mix of spherical,
deformed, magic, light, heavy, even-even, odd-odd, and odd-A
nuclei. Such a sample is found to be sufficiently representative,
in the sense that taking a larger sample size will not change
the rms error. On the other hand, we cannot take sample sizes
that are significantly smaller without the rms error becoming
sample dependent.

But even with the reduced data sets we cannot handle 26
parameters in the automatic minimization of the rms deviation
with MINSQ. Furthermore, the minimization performed by
numerical methods remains very sensitive to the initial starting
point in the parameter space. For these reasons, of the 16
Skyrme parameters we preset t2 at a value fixed on the basis of
preliminary calculations, and adjust t4, t5, x4, x5, α, β, and γ
manually, respecting the constraints of NeuM that we impose,
along with the requirement that the incompressibility Kv fall
within a certain narrow range of values. This leaves us with
8 Skyrme parameters for the automatic optimization but, as
already explained, we impose fixed values on J and M∗

s . We
likewise hold kF0 = (3π2n0/2)1/3 fixed at a constant value
chosen for an optimal fit to charge radii, leaving us with five
Skyrme degrees of freedom for automatic optimization. Of
the five pairing parameters, ε	 and f +

n are, like t2, preset at
fixed values, while the remaining three parameters are included
in the automatic minimization, which means that MINSQ is
operated with eight degrees of freedom, the maximum that we
found convenient (for a fitting sample of the size that we have
taken), but also efficient enough to cover a large portion of the
parameter space.

Most nuclei are, of course, deformed, and we have at
our disposal both spherical and deformed HFB codes, both
of which involve an expansion of the s.p. eigenstates on a
harmonic-oscillator basis, as described in Refs. [29,30], but

024308-3



S. GORIELY, N. CHAMEL, AND J. M. PEARSON PHYSICAL REVIEW C 88, 024308 (2013)

TABLE II. Parameters of the new models of this paper; for convenience we also show model BSk21 [1]. Lines 1–16 show the Skyrme
parameters, lines 17–21 the pairing parameters, and the last four lines the Wigner parameters (see text for further details). Note that it is more
convenient to show the x2 parameter in the form t2x2, the only combination in which x2 enters into the formalism.

BSk22 BSk23 BSk24 BSk25 BSk26 BSk21

t0 [MeV fm3] −3978.97 −3974.58 −3970.29 −4068.39 −4072.53 −3961.39
t1 [MeV fm5] 404.461 400.199 395.766 431.093 439.536 396.131
t2 [MeV fm5] 0 0 0 0 0 0
t3 [MeV fm3+3α] 22704.7 22676.3 22648.6 23342.8 23369.1 22588.2
t4 [MeV fm5+3β ] −100.000 −100.000 −100.000 −200.000 −100.0 −100.000
t5 [MeV fm5+3γ ] −150.000 −150.000 −150.000 −150.000 −120.0 −150.000
x0 0.472558 0.673839 0.894371 1.20467 0.577367 0.885231
x1 0.0627540 0.0609759 0.0563535 0.111366 −0.404961 0.0648452
t2x2 [MeV fm5] −1396.13 −1392.94 −1389.61 −1387.47 −1147.70 −1390.38
x3 0.514386 0.770751 1.05119 1.44777 0.624831 1.03928
x4 2.00000 2.00000 2.00000 2.00000 −3.00000 2.00000
x5 −11.0000 −11.0000 −11.0000 −11.0000 −11.0000 −11.0000
α 1/12 1/12 1/12 1/12 1/12 1/12
β 1/2 1/2 1/2 1/2 1/6 1/2
γ 1/12 1/12 1/12 1/12 1/12 1/12
W0 [MeV fm5] 111.109 109.950 108.405 108.641 110.509 109.622
f +

n 1.00 1.00 1.00 1.00 1.00 1.00
f −

n 1.05 1.05 1.06 1.05 1.05 1.05
f +

p 1.07 1.07 1.09 1.07 1.10 1.07
f −

p 1.13 1.13 1.16 1.13 1.17 1.13
ε	 [MeV] 16.0 16.0 16.0 16.0 16.0 16.0
VW [MeV] −2.00 −1.80 −1.70 −1.60 −1.80 −1.80
λ 290 430 470 450 380 280
V ′

W [MeV] 0.90 0.84 0.90 1.02 0.84 0.96
A0 28 28 26 22 26 24

the overall computation time is reduced by more than an order
of magnitude by performing the actual automatic fitting with
just the spherical code, following a procedure developed by
Tondeur et al. [31]. First, taking the latest available set of
Skyrme, pairing and collective parameters we make a full
(unconstrained) deformed-HFB calculation of the energy Eeq

of each of the 729 nuclei in the fitting sample. Each of
these calculations is then repeated with the deformed code
constrained to the spherical configuration, the resulting energy
being denoted by Esph. We can thus define for each nucleus
a deformation energy Edef = Esph − Eeq, which is much less
sensitive to the dimensionality of the code than is either of
the two absolute energies Eeq and Esph. It is thus possible for
the deformed code to have a lower dimensionality than would
otherwise be the case; we found 21 major shells to be sufficient.
These deformation energies Edef are then used to define an
“equivalent spherical” experimental mass E

sph
exp = Eexp + Edef ,

which constitutes the pseudodata to be fitted by MINSQ with
the HFB spherical code, for which we took a dimensionality of
20 major shells. When this automatic fit is finished a manual
adjustment of the seven Skyrme parameters that were not fitted
automatically by MINSQ is performed on the 729 nuclei of
the fitting sample, and with this new set of parameters a new
automatic minimization is started. This process is reiterated
until the rms deviation for the reduced set of nuclear masses
has fallen as far as is consistent with the other constraints that
we have applied, as described in the foregoing.

At this point the performance of the current set of model
parameters on the full data set of 2353 nuclei has to be tested.
In general, the deformed code must be used, but since this
has sufficient dimensionality to calculate only Edef with the
required accuracy the spherical code must be used as well,
the final energy of each nucleus being given by E = E0 −
Edef , where E0 is the energy given by the spherical code and
Edef is calculated as already described. Both E0 and Edef are
calculated for each of the 2353 nuclei, and to the total energy E
so determined has to be added the Wigner correction given by
Eq. (4). In fitting the four Wigner parameters to the mass data
we simultaneously retune (for the first time) the five parameters
of the collective correction (3), minimizing the rms error on
the 2353 experimental masses. Actually, of the five collective
parameters, b and c have already been fixed, as described in the
previous section, while the parameters l and β0

2 are only poorly
determined by masses. (The full generality of the second term
in Eq. (3) is required only for fitting shape isomers and fission
barriers [25].)

The entire procedure that we have described in this
subsection is then reiterated in search of further improvement.

B. The mass fits

In fitting to the new data set of 2353 nuclei we generate in all
five new sets of the Skyrme, pairing, and Wigner parameters,
BSk22 to BSk26, along with the corresponding mass tables,
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TABLE III. Parameters of Eq. (3) for collective correction.

HFB-22 HFB-23 HFB-24 HFB-25 HFB-26

b (MeV) 0.80 0.80 0.80 0.80 0.80
c 10 10 10 10 10
d (MeV) 3.8 3.8 3.8 3.7 3.4
l 17 17 16 17 15
β0

2 0.1 0.1 0.1 0.1 0.1

labeled HFB-22 to HFB-26, respectively. BSk22 to BSk25 are
fitted to J = 32, 31, 30, and 29 MeV, respectively, and are
all constrained to LS2, while BSk26 is fitted to J = 30 MeV
under the APR constraint. In applying the NeuM constraints
we make sure that over the full range of densities relevant to
neutron stars there is no unphysical ferromagnetic flip to a
polarized configuration.

The values of the parameters for these five new fits are
shown in Table II. The parameters of the collective correction
of Eq. (3) are shown in Table III. Figure 1 shows how well each
of our five new models reproduces its “target” EOS of NeuM up
to core densities. In this figure we supplement the “data” points
representing the results of the realistic calculations of Refs. [3,
4] (in the case of Ref. [4] the “data” points were kindly supplied
by H.-J. Schulze) by the constraints recently obtained from
auxiliary field diffusion Monte Carlo calculations of Gandolfi
et al. [32]. For comparison, we also show the very stiff EOS
of Ref. [4] obtained from BHF calculations using the Bonn-
B potential labeled “BOB” in Ref. [4] and which we refer
to as LS3. Figure 2 is a zoom of Fig. 1 over the range of
densities relevant to nuclei. The left panel shows the four
models BSk22, BSk23, BSk24, and BSk25, all of which have
been constrained by the high-density LS2 EOS, but each with
a different value of J . The right panel compares models BSk24
and BSk26, which are constrained by the high-density LS2 and
APR EOSs, respectively, but with J = 30 MeV in both cases.
Both zooms show not only the constraints of Ref. [32] but also
those obtained by Tews et al. [33] at next-to-next-to-next-to-
leading order in chiral effective field theory. It is to be noted
that all the “data” points of Refs. [3,4] fall within the domain
delimited by these two sets of constraints. Moreover, it will be

TABLE IV. rms (σ ) and mean (ε̄) deviations between data and
predictions for models of this paper. The first pair of lines refers to
all the 2353 measured masses M that were fitted [19], the second
pair to the masses Mnr of the subset of 257 neutron-rich nuclei with
neutron separation energy Sn � 5.0 MeV, the third pair to the neutron
separation energies Sn (2199 measured values), the fourth pair to
β-decay energies Qβ (2065 measured values), and the fifth pair to
charge radii (884 measured values [6]).

HFB-22 HFB-23 HFB-24 HFB-25 HFB-26

σ (M) [MeV] 0.629 0.569 0.549 0.544 0.564
ε̄(M) [MeV] −0.043 −0.022 −0.012 0.008 0.006
σ (Mnr ) [MeV] 0.817 0.721 0.702 0.791 0.749
ε̄(Mnr ) [MeV] 0.221 0.090 0.011 0.023 0.230
σ (Sn) [MeV] 0.488 0.467 0.474 0.452 0.456
ε̄(Sn) [MeV] −0.018 −0.012 −0.009 −0.011 −0.015
σ (Qβ ) [MeV] 0.619 0.578 0.567 0.543 0.583
ε̄(Qβ ) [MeV] 0.026 0.013 0.010 0.015 0.021
σ (Rc) [fm] 0.026 0.026 0.026 0.025 0.027
ε̄(Rc) [fm] 0.002 0.00 −0.001 0.00 0.001

seen that of all our five models, only BSk25 fails to conform
to one of the other of these constraints, having too high an
energy. It should be realized that in constraining the Skyrme
forces to one or the other of the realistic EOSs of NeuM we
concentrated on supernuclear densities.

The rms and mean (data-theory) values of the deviations
between the measured masses and the predictions for the
five new models are given in the first and second lines,
respectively, of Table IV. The next two lines of this table show
the corresponding deviations for the subset consisting of the
most neutron-rich measured nuclei, here taken as those with a
neutron separation energy Sn � 5.0 MeV (there are 257 nuclei
in this subset). All five models display, not surprisingly, some
deterioration as we move into the neutron-rich region. From the
first line we see that the parameter sets BSk24 (J = 30 MeV)
and BSk25 (J = 29 MeV) give the best global fits of all the new
models, and in fact are better than any of our previous models
(see also Fig. 3). However, line 3 of Table IV shows that the
deterioration of BSk25 on moving into the neutron-rich region

FIG. 2. Low-density zero-temperature EOS in neutron matter for models BSk22–26. The shaded areas represent the constraints of Ref. [32]
(dark) and of Ref. [33] (light). Also shown are the realistic EOSs APR [3] and LS2 [4]. (a) only the Skyrme EOSs constrained to LS2 at high
density are shown. (b) only the two Skyrme EOSs fitted to the same value of the symmetry coefficient are shown, namely J = 30 MeV.
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FIG. 3. Comparison between experimental and HFB-24 masses.

is much stronger than for BSk24: for all the other models
the performance in the neutron-rich region correlates fairly
well with the global performance. This may be related to the
abnormal behavior of BSk25 in NeuM at subnuclear densities
noted in connection with Fig. 2, but in any case it means
that the apparent high performance of this model should be
interpreted with caution. Looking at BSk22 and BSk23, we
see from both lines 1 and 3 that J = 31 MeV works less well
than either 29 or 30 MeV, while J = 32 MeV is still more
strongly disfavored.

Lines 5–8 of Table IV show the deviations for the Sn and
β-decay energies Qβ of all measured nuclei; these differential
quantities are of greater astrophysical relevance than the
absolute masses, both for the r-process and the crust of neutron
stars. It will be seen that all models fit the Sn better than they
fit the absolute masses, while most models fit the Qβ worse.
BSk25 (J = 29 MeV) performs best for both Sn and Qβ , with
the J = 30 and 31 MeV models following in no unambiguous
order. Again, BSk22 (J = 32 MeV) is the worst performer in
both the Sn and Qβ categories.

Comparing BSk24 and BSk26 shows that for J = 30 MeV
the high-density LS2 constraint (BSk24) gives better fits than
APR (BSk26) in all but one of the four categories. This
is compatible with our observation in Sec. I that BSk21
performed better than BSk20 when run with the data of the
2012 AME.

Overall, the clearest conclusion that can be drawn from
Table IV is that model BSk22 is the worst performing of all
our models, ruling out J = 32 MeV. There are also very strong
indications that J = 29 or 30 MeV (the latter in both its LS2
and APR forms) are to be preferred to J = 31 MeV, although
we have already expressed some concerns with regards to
J = 29 MeV, i.e., to BSk25.

The last two lines of Table IV show that all models give
essentially identical high-quality fits to the charge-radius data,
as shown in Fig. 4 for HFB-24 predictions. Similarly, an
accurate prediction of the charge density of 208Pb is found,
as illustrated in the right panel of Fig. 4.

C. Properties of infinite nuclear matter

All parameters appearing in Table V, except L̃ and K̃sym, are
as defined in Ref. [1]. In particular, the first seven parameters

FIG. 4. (Color online) (a) HFB-24 charge radii versus experimen-
tal data [6]. (b) Comparison of the measured charge density [34] with
HFB-24 estimate for 208Pb.

are defined by first writing the energy per nucleon of INM of
density n and charge asymmetry η = (nn − np)/n in the form

e(n, η) = e(n, η = 0) + e(1)
sym(n)η2 + O(η4), (5)

in which the first term on the right-hand side is just the energy
per nucleon of charge-symmetric INM; we have neglected
charge-symmetry breaking terms, such as those arising from
the neutron-proton mass difference. We then expand e(n, η =
0) and e(1)

sym(n) about the equilibrium density n0 in powers of
ε = (n − n0)/n0, thus

e(n, η = 0) = av + 1
18Kvε

2 − 1
162K ′ ε3 + · · · (6a)

and

e(1)
sym(n) = J + 1

3Lε + 1
18Ksymε2 + · · ·, (6b)

in which

L = 3n0

(
de(1)

sym(n)

dn

)
n=n0

(7a)

TABLE V. Parameters of infinite nuclear matter for models of this
paper.

BSk22 BSk23 BSk24 BSk25 BSk26

av [MeV] −16.088 −16.068 −16.048 −16.032 −16.064
n0 [fm−3] 0.1578 0.1578 0.1578 0.1587 0.1589
J [MeV] 32.0 31.0 30.0 29.0 30.0
L [MeV] 68.5 57.8 46.4 36.9 37.5
Ksym[MeV] 13.0 −11.3 −37.6 −28.5 −135.6
Kv [MeV] 245.9 245.7 245.5 236.0 240.8
K ′ [MeV] 275.5 275.0 274.5 316.5 282.9
L̃ [MeV] 71.7 60.9 49.5 39.2 42.2
K̃sym [MeV] 12.6 −11.8 −38.2 −32.7 −130.3
M∗

s /M 0.80 0.80 0.80 0.80 0.80
M∗

v /M 0.71 0.71 0.71 0.74 0.65
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and

Ksym = 9n2
0

(
d 2e(1)

sym(n)

dn2

)
n=n0

. (7b)

1. Correlations among J, L, and Ksym

Although we have concluded that J must have a value
close to 29 or 30 MeV, with 32 MeV definitely excluded, it
is still of interest to see what happens to L and Ksym when
we vary J over the full range of 29 to 32 MeV. Table V
shows that in our models L is strongly correlated with J ,
confirming what has been affirmed many times in the past;
see, for example, Refs. [35–41].

It has also been suggested [42] that Ksym is correlated with
L (and thus with J ). However, we see from Table V that
the situation with our forces is somewhat more complex. In
particular, the value of Ksym is much more sensitive to the
constraining EOS than to the corresponding values of L (or
J ): for models BSk22,BSk23, BSk24, and BSk25, all of which
are constrained to the LS2 EOS, Ksym is considerably larger
than for the BSk26 model, which is constrained to the softer
EOS of APR. Clearly, a determination of L will not suffice to
determine Ksym, contrary to the assertion of Ref. [42].

In stressing the role of the constraining EOS on any possible
correlation between J , L, and Ksym, it should be recalled that
it is the EOS of NeuM that is involved, and that because of
the terms O(η4) in Eq. (5), the energy per nucleon of NeuM
e(n, η = 1) is not given exactly by e(n, η = 0) + e(1)

sym(n).
Rather, we should introduce, as in Ref. [1], a second symmetry
energy defined in terms of NeuM, thus

e(2)
sym(n) = e(n, η = 1) − e(n, η = 0). (8)

This can then be expanded about the density n0 according to

e(2)
sym(n) = J̃ + 1

3 L̃ε + 1
18 K̃symε2 + · · · , (9)

where

J̃ = e(n0, η = 1) − av, (10a)

L̃ = 3n0

(
de(2)

sym(n)

dn

)
n=n0

, (10b)

and

K̃sym = 9n2
0

(
d 2e(2)

sym(n)

dn2

)
n=n0

. (10c)

Then the variation of the energy per neutron of NeuM
with respect to density in the region of n0 can be written
as

e(n, η = 1) = e(n, η = 0) + e(2)
sym(n)

= e(n0, η = 1) + 1
3 L̃ε + 1

18 (Kv + K̃sym)ε2.

(11)

It will be seen here that the second derivative of the NeuM
curve is determined by the combination Kv + K̃sym, rather
than by just K̃sym. It is only because the models presented here
all lead to a Kv close to the experimental value that K̃sym takes

more or less the same value for all those models that have been
constrained by the same EOS of NeuM.

We have not used these quantities L̃ and K̃sym before but
for generalized Skyrme forces of the form (1) it follows from
Eq. (A26) of Ref. [9] that

L̃ = 3h̄2

5Mn

k2
Fn0 + 3

4
t0(1 − x0)n0 + 3

8
[t1(1 − x1)

+ 3t2(1 + x2)]n0 k2
Fn0 + 1

8
(α + 1)t3(1 − x3)nα+1

0

+ 3

40
(3β + 5)t4(1 − x4)nβ+1

0 k2
Fn0

+ 9

40
(3γ + 5)t5(1 + x5)nγ+1

0 k2
Fn0 (12a)

and

K̃sym = − 3h̄2

5M
k2
Fn0 + 3

4
[t1(1 − x1) + 3t2(1 + x2)]n0 k2

Fn0

+ 3

8
(α + 1)α t3(1 − x3)nα+1

0

+ 3

40
(3β + 5)(3β + 2)t4(1 − x4)nβ+1

0 k2
Fn0

+ 9

40
(3γ + 5)(3γ + 2)t5(1 + x5)nγ+1

0 k2
Fn0 − Kv,

(12b)

where

kFn0 = (3π2n0)1/3. (13)

The eighth and ninth lines of Table V show the values of L̃
and K̃sym, respectively, for the models of this paper; it will be
seen that they are not exactly equal to the corresponding values
of L and Ksym [the difference arises from the terms O(η4) in
Eq. (5)], but are closely correlated with them, so that L and
Ksym can indeed serve as meaningful measures of the slopes
and second derivatives of the NeuM curves at density n0.

If we look now at the values of L for the first five models, all
of which have been constrained to LS2, we see an almost linear
correlation with J . This correlation can easily be understood
from Eq. (5): since ε is negative over most of the nucleus,
an increase in J must be accompanied by an increase of L,
regardless of any constraining EOS. Since an increase of L
implies an increase of L̃, it follows that the fit of our Skyrme
forces to the constraining EOS of NeuM, if ever exact for one
value of J , cannot remain exact as J changes, given that L̃
takes a fixed value for a given constraining EOS. Nevertheless,
the value of L̃ for the constraining EOS must have some impact
on the model L, which means that if the constraining EOS is
changed then L must change even if J remains unchanged.
This explains why L takes different values for models BSk24
and BSk26, even though J is the same in both cases. However
the impact of a change in the constraining EOS on the value of
L is small, since it is the mass fits that determine primarily the
value of L for a given J . On the other hand, nuclear masses are
relatively insensitive to Ksym, which explains why the value of
Ksym is determined almost entirely by the constraining EOS,
through its value of K̃sym.
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2. Effective masses

The values of the isoscalar and isovector effective masses,
M∗

s and M∗
v , respectively, shown in Table V, are calculated

at the equilibrium density n0 of charge-symmetric INM. The
value M∗

s = 0.8M for all the models was, as already explained,
a constraint imposed on the fit to the data, but the various values
of M∗

v were left free and emerged from the fit. Experimental
estimates of this quantity vary widely: measurements of the
isovector giant dipole resonance (IVGDR) in heavy nuclei, as
summarized in Fig. 47 of Ref. [43], indicate that the value of
M∗

v /M can range from 0.7 to 1 (this figure in effect plots
M/M∗

v ). However, the subsequent discussion in Ref. [43]
points out that lower values are possible, which means that
none of our models is in clear conflict with experiment.
Moreover, all five models have M∗

v < M∗
s , which implies that

the neutron effective mass M∗
n is larger than the proton effective

mass M∗
p in neutron-rich matter, since the effective mass of a

nucleon of charge type q in nuclear matter at density n is given
by

M

M∗
q

= 2nq

n

M

M∗
s

+
(

1 − 2nq

n

)
M

M∗
v

. (14)

This prediction is consistent with measurements of the
IVGDR [44], and has been confirmed in many-body calcu-
lations with realistic forces [45]. With these latter calculations
giving M∗

s = 0.825M and M∗
v = 0.727M , we see that the

magnitude of the splitting given by the new models is quite
realistic.

Figure 5 shows for the five new models how M∗
s and

M∗
v vary with density. 1/M∗

s and 1/M∗
v vary nonlinearly

with density for all these models, essentially because of the

FIG. 5. (Color online) Variation with density of (a) M∗
s /M and

(b) M∗
v /M .

terms in t4 and t5. However, for all models but BSk25 the
variation of M∗

s and M∗
v with density is monotonic almost

everywhere, in accordance with many-body calculations using
realistic two- and three-nucleon forces [2,45,46]. Actually,
some nonmonotonicity, visible in Fig. 5 in the form of very
weak peaks in the case of M∗

s , occurs at very low densities, but
is of no direct physical interest, since at such densities INM is
unstable. But in the case of model BSk25 the nonmonotonicity
is pronounced and occurs at densities where INM is stable.
This is one further respect in which BSk25 shows abnormal
behavior.

3. Distribution of potential energy among the (S, T ) channels

Fitting our forces to the mass data and the EOS of
NeuM is not a sufficient condition for ensuring a realistic
distribution of the potential energy per nucleon among the four
two-body spin-isospin (S, T ) channels in charge-symmetric
INM. Figure 6 shows this distribution for each of our five new
forces as a function of density, and compares with two different
BHF calculations: “Catania 1” based on Ref. [4] and “Catania
2” based on Ref. [47]. Given the evident uncertainty in what
the real distribution actually is, the level of agreement we have
found with our new forces can be regarded as satisfactory.
This would have been very difficult within the framework
of conventional Skyrme forces and the term in t5 has been
indispensable in this respect (see the discussion in Ref. [44]).
The importance of a realistic distribution of the potential
energy among the (S, T ) channels for deformation energy
was discussed long ago in Refs. [48,49]. Deformation energy
has also been shown to be sensitive to the surface-symmetry
coefficient ass [50,51], an observation that opens up the
possibility that ass is itself sensitive to the distribution of the
potential energy among the (S, T ) channels.

4. Constraints from heavy-ion collisions

We have calculated the pressure in charge-symmetric INM
as a function of density for our forces and find that it is
consistent with measurements of nuclear-matter flow and kaon
production in heavy-ion collisions [11,12], although close to
the upper limit, as shown in Fig. 7.

D. Neutron skins

For a given nucleus the neutron-skin thickness is defined
by

θ ≡ Rrms
n − Rrms

p , (15)

where the rms radii refer to point nucleons. By considering
the results of nonrelativistic Hartree-Fock and relativistic
mean-field calculations with many different forces it was
noted by Brown [52] and by Typel and Brown [53] that a
strong correlation exists between the neutron-skin thickness
and the value of the L coefficient. Thus, insofar as L and
J are correlated (note that we have seen above that this
correlation is somewhat weakened by our new models), it
follows that the value of θ is likewise correlated with J : see,
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FIG. 6. (Color online) Potential energy per particle Epot/A in each (S, T ) channel as a function of density for charge-symmetric INM. The
open symbols correspond to the “Catania 1” BHF calculations [4], and the solid symbols to the “Catania 2” BHF calculations [47].

for example, Table II of Ref. [36]. This correlation can easily
be understood [24] in terms of the droplet-model expression
(2.21) of Ref. [54] for the neutron-skin thickness of a nucleus
of atomic number Z and mass number A,

θ = 3

2
r0

J

Q
I, (16)

where r0 = (3/4π n0)1/3, I = (N − Z)/A, and Q is the
surface-stiffness coefficient, which is anticorrelated with J
if masses are fitted [55,56]; see also Ref. [38] for a recent
extensive discussion. (The fact that J is also correlated with

FIG. 7. Pressure as a function of density in charge-symmetric
nuclear matter for our forces. The shaded area represents the analysis
of heavy-ion collision experiments obtained in Refs. [11,12].

L, as noted in Sec. III C, means that L and Q are anticorrelated.
This is easy to understand, given that L measures the rate of
variation of the energy per nucleon with respect to density over
the surface, and assuming a local-density approximation.)

In Table VI we show the results of a set of measurements
of θ on 26 nuclei using antiproton scattering [57]. The same
table shows the results we calculate for these nuclei for each
of our models. In Table VII we show the rms deviations σrms

between our models and experiment, the mean deviations ε̄
and the model error σmod of Möller and Nix [58]. This last
quantity provides a more reliable method of assessing the
relative performance of different models, especially when the
experimental errors are large, as in the present case (see also
Appendix B of Ref. [59] for further comments). In the first
three columns of this table we show the results for the full set
of 26 nuclei, while in the next three columns we consider only
the ten nuclei for which the experimental errors are 0.04 fm or
less.

We see that all three deviations, for both the complete set of
data and the subset, lead to the conclusion that models BSk24
and BSk26 are better than model BSk23. That is, J = 30 MeV
is favored over J = 31 MeV. Likewise, BSk22 (J = 32 MeV)
gives unambiguously the worst agreement with the measured
skins (only in the case of BSk25, i.e., J = 29 MeV, is there any
ambiguity). Thus there is almost complete agreement with the
conclusions about J already drawn from the mass fits. On the
other hand, these skin data are not precise enough to lead to any
conclusions concerning the EOS of NeuM at nuclear densities.

Furthermore, we should exercise some caution in conclud-
ing that the skin data favor J = 30 MeV. A new analysis [60]
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TABLE VI. Experimental and calculated neutron-skin thick-
nesses; data come from Ref. [57].

Z A Expt. BSk22 BSk23 BSk24 BSk25 BSk26

20 40 −0.08+0.05
−1.0 −0.05 −0.05 −0.05 −0.05 −0.05

20 48 0.09+0.05
−0.05 0.17 0.16 0.15 0.14 0.15

26 54 0.04+0.06
−0.08 −0.02 −0.02 −0.02 −0.03 −0.02

26 56 0.03+0.08
−0.11 0.04 0.03 0.03 0.02 0.03

26 57 0.07+0.05
−0.05 0.07 0.06 0.05 0.05 0.05

27 59 0.00+0.08
−0.13 0.07 0.07 0.06 0.05 0.06

28 58 −0.09+0.09
−0.16 0.00 −0.01 −0.01 −0.01 −0.02

28 60 −0.01+0.08
−0.15 0.05 0.04 0.04 0.03 0.03

28 64 0.04+0.07
−0.08 0.13 0.12 0.11 0.10 0.11

40 90 0.09+0.02
−0.02 0.06 0.05 0.05 0.04 0.05

40 96 0.12+0.03
−0.03 0.17 0.15 0.14 0.13 0.14

48 106 0.10+0.10
−0.14 0.06 0.05 0.04 0.03 0.04

48 116 0.15+0.04
−0.04 0.16 0.15 0.13 0.12 0.14

50 112 0.07+0.02
−0.02 0.07 0.06 0.05 0.04 0.05

50 116 0.10+0.03
−0.03 0.11 0.10 0.09 0.08 0.09

50 120 0.08+0.03
−0.04 0.15 0.14 0.12 0.11 0.12

50 124 0.14+0.03
−0.03 0.19 0.17 0.15 0.13 0.15

52 122 0.08+0.04
−0.05 0.12 0.10 0.09 0.08 0.09

52 124 0.06+0.04
−0.04 0.13 0.12 0.11 0.09 0.11

52 126 0.11+0.03
−0.05 0.15 0.14 0.12 0.10 0.12

52 128 0.11+0.04
−0.05 0.17 0.15 0.13 0.12 0.14

52 130 0.15+0.06
−0.08 0.18 0.16 0.15 0.13 0.15

82 208 0.15+0.02
−0.02 0.18 0.16 0.14 0.12 0.14

83 209 0.18+0.04
−0.06 0.17 0.15 0.13 0.11 0.13

90 232 0.21+0.07
−0.07 0.18 0.16 0.14 0.12 0.15

92 238 0.21+0.07
−0.07 0.18 0.16 0.14 0.12 0.15

of the experiments of Ref. [57] suggests that the skin thickness
of 208Pb might be considerably larger than the value shown in
Table VI. It is not clear to what extent the new analysis would
apply to the other nuclei investigated in Ref. [57].

As for the PREX experiment on 208Pb, a value of 0.33+0.16
−0.18

fm is quoted [61]; the lower limit of the error bars just
includes the value of Ref. [57]. Other recent measurements
are conveniently summarized in Ref. [62]. Probably the safest
statement that we can make is that the neutron-skin data are

TABLE VII. rms, mean, and model deviations between models of
this paper and the experiments of Ref. [57]. The first three columns
relate to the complete set of 26 nuclei, the last three columns to the
set of ten nuclei with the lowest experimental error.

σrms (26) ε̄ (26) σmod (26) σrms (10) ε̄ (10) σmod(10)

BSk22 0.0495 −0.0266 0.0205 0.0429 −0.030 0.0244
BSk23 0.0447 −0.0142 0.0090 0.0342 −0.017 0.0128
BSk24 0.0437 −0.0031 0.0047 0.0270 −0.0030 0.0087
BSk25 0.0469 0.0088 0.0170 0.0277 0.011 0.0194
BSk26 0.0415 −0.0038 0.0044 0.0265 −0.0040 0.0084

not in any clear-cut conflict with the conclusions that we have
drawn from nuclear masses.

E. Other estimates of the symmetry coefficient J

As far as we know, the only other attempts to extract a value
of J from essentially all the available mass data are all based on
one form or another of the liquid-drop model. The most recent
such work is that of Möller et al. [63], who use their finite-range
droplet model (FRDM) to find J = 32.5 ± 0.5 MeV, a value
which is quite incompatible with our own calculations, which
favor a value in the range of 29–30 MeV. (Indeed, since
Möller et al. take a prefixed value of J = 35 MeV in the
microscopic part of their calculation, an even higher value
might be expected to result from a more self-consistent
calculation.) Möller et al. base their result on a fit to the 2149
measured masses of nuclei with N and Z � 8 given in the 2003
AME [13]; they do not quote any value for their rms deviation,
but it must be larger than the 0.570 MeV that they quote for
their model error [58] (in the case of our own models the rms
deviation is about 0.008 MeV higher than the model deviation).
On the other hand, Liu et al. [64], fit exactly the same data
with a different form of the liquid-drop model, and find J =
29.1 MeV, the rms deviation being 0.336 MeV. Using a more
restricted fit to the drop model, Royer et al. [65] find values of
J ranging from 26.4 to 30.8 MeV. Yet another application of
the liquid-drop model [66] yields J = 31.3 MeV or 32.1 MeV,
according to the form chosen for the Wigner energy.

Clearly, a better understanding of the different forms of
the liquid-drop model is required. The problem may lie in an
inadequate parametrization of the surface-symmetry energy
by the FRDM, as suggested many years ago, when it was
shown that the droplet model fails to take account of the
softening of the neutron skin at large neutron excesses that
was predicted by more microscopic models [67]: the droplet is
not only leptodermous but also malacodermous. Thus, when
the standard FRDM is fitted to all the available data, the
tendency will be for the surface-stiffness coefficient Q to adapt
to the very neutron-rich data with a spuriously low value. But
we have already pointed out the anticorrelation that masses
impose between J and Q, so it is conceivable that an FRDM
generalized to include higher-order surface-symmetry terms
would lead to a lower value of J . As for Liu et al. [64], they do
not consider surface symmetry at all, which means that they
effectively have an infinite value of Q. Revising their model
along the lines we have suggested could thus be expected to
lead to a higher value of J .

All attempts other than our own to use mean-field methods
to extract J from nuclear masses are based, to the best of
our knowledge, on very limited data fields. For example, in a
2010 paper [68] the UNEDF (unified nuclear energy-density
functional) project used 72 masses to arrive at a value of J =
30.5 MeV, a value that is quite consistent with our own results.
However, more recently the UNEDF collaborators added seven
nuclei (including four fission isomers) to their database [69],
and found that J fell to 28.987 MeV, showing clearly thereby
the need for a much larger data base. It is interesting to note that
in both versions of UNEDF the EOS of NeuM is even softer
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at densities typical of neutron-star cores than that of FP [2],
which itself is, as already noted, too soft to support the massive
neutron stars PSR J1614−2230 and PSR J0348 + 0432. Now
in Ref. [24] it was shown that releasing the constraint to a
realistic EOS of NeuM will reduce the optimum value of J
below 30 MeV, implying that similarly low values of J are to
be expected with the UNEDF approach.

Also in the context of mean-field approaches, it is appro-
priate to mention the Skyrme model SLy4 [70], much used in
neutron-star studies. It was fitted to just five nuclear masses,
and gives J = 32.0 MeV. However, two of the five fitted
masses have N = Z, but since there is no Wigner term these
nuclei could only have been fitted by an excessive attraction
in the isoscalar part of the force, which in turn would have to
be compensated by an excessively large value of J if the three
nuclei with N �= Z were to be fitted.

Using the full set of the mass data now available should
provide a highly reliable basis for the determination of J , since
it represents over 2300 precision measurements. However,
other methods, conveniently summarized in Ref. [62], have
also been used. For example, referring to their Fig. 2 we see that
heavy-ion collisions establish limits on the J − L correlation;
all our models except BSk26 fall within these limits (when
extrapolated to J = 29 MeV). Tighter limits on the J − L
correlation have been established in Refs. [40,41]; only BSk23
(J = 31 MeV) and BSk24 (J = 30 MeV) fall within these
limits (along with BSk21, but not BSk19 or BSk20). Finally,
we mention the very recent work of Roca-Maza et al. [71], who
use measurements of the isovector giant quadrupole resonance
to conclude that L = 37 ± 18 MeV, which would eliminate
BSk22 and BSk23, i.e., we must have J � 30 MeV.

F. Maximum mass of neutron stars

We complete Table I by calculating the maximum mass
of neutron stars for each of the new models of this paper,
solving the TOV equations. We assume that neutron stars
are homogeneous throughout. That is, unlike our earlier
calculations on BSk19, BSk20 and BSk21 [16], we neglect the
inhomogeneities of the outer and inner crusts; we have verified
by repeating the calculations of Ref. [16] that the impact of this
approximation on the maximum mass is negligibly small. We
see from Table I that all our new models are compatible with
the existence of the massive neutron stars PSR J1614−2230
and PSR J0348 + 0432. Indeed, it turns out that the maximum
mass is essentially the same for all models constrained by the
same EOS of NeuM, in particular, it seems to be independent
of the symmetry coefficient J .

G. Shell gaps

While we have seen that the global mass fit is rather accurate
(Fig. 3), a few individual predictions could still be quite
anomalous without having a serious impact on the global fit. Of
particular importance in this respect are the masses involved
in the definition of the neutron-shell gaps

�n(N0, Z) = S2n(N0, Z) − S2n(N0 + 2, Z), (17)

where S2n is the two-neutron-separation energy; the proton-
shell gaps can be similarly defined for a given proton number
Z0. We show in Fig. 8, the neutron-shell gaps for N0 =
28, 50, 82, and 126 as well as the proton-shell gaps for Z0 = 50

FIG. 8. (Color online) N0 = 28 (a), 50 (b), 82 (d), and 126 (e) neutron-shell gaps as well as Z0 = 50 (c) and 82 (f) proton-shell gaps for
mass model HFB-24, as compared with experimental data
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FIG. 9. (a) Differences between HFB-25 and HFB-24 mass
predictions for all 8509 nuclei included in the tables. (b) Differences
between HFB-25 and HFB-22 mass predictions

and 82. The agreement can be considered as excellent, for all
magic numbers.

H. Extrapolation towards the neutron-drip line

Concerning the extrapolation of masses far away from
experimental data, we show in Fig. 9, for all the nearly 8500
nuclei with 8 � Z � 110 lying between the proton and neutron
drip lines, the deviations between our two best-fit mass models,
i.e HFB-24 and HFB-25, as well as between the two mass
models with the largest difference in the symmetry coefficient,
i.e., HFB-25 with J = 29 MeV and HFB-22 with J = 32 MeV.
While in the first case, deviations are restricted to the narrow
range of ±2 MeV, much larger discrepancies, up to 8 MeV,
are found between HFB-25 and HFB-22. In addition, it is
worth noting that the lower the J value the larger the masses
predicted when approaching the neutron drip line.

This result is rather counter-intuitive, but a similar phe-
nomenon was encountered in Ref. [24]. Referring to the
discussion in that paper, and noting that the surface-symmetry
coefficient is given by

ass = 2asf L

Kv

− 9J 2

4Q
, (18)

we see that the phenomenon can be explained ultimately by
the fact that the factor (J + assA

−1/3) of I 2 appearing in the

liquid-drop expression for the energy per nucleon, becomes
smaller as J increases. In any case, it is precisely because
of such deviations that new mass measurements in the far
neutron-rich region help to tie down the symmetry coefficient.

IV. CONCLUSIONS

This paper describes the latest effort in our long-running
project of developing HFB mass models that give precision
fits to all the available mass data while at the same time
respecting the constraints appropriate to the treatment of
highly neutron-rich environments of astrophysical interest.
The present paper extends our previous work by (a) refitting to
the data of the 2012 AME [19], (b) varying the symmetry
coefficient J over the range 29–32 MeV. Our models are
characterized by unconventional Skyrme forces containing t4
and t5 terms, i.e., density-dependent generalizations of the
usual t1 and t2 terms, respectively; they are constrained to
fit one or the other of the APR and LS2 EOSs of NeuM,
which are based on realistic two- and three-nucleon forces,
and are stiff enough to support the massive neutron stars
PSR J1614−2230 and PSR J0348 + 0432. At the same time,
we are able to eliminate unphysical spin and spin-isospin
instabilities of INM, including the transition to a polarized
state in neutron-star matter. As for the contact pairing force, it
is constrained to fit the gaps of INM of the appropriate density
and charge asymmetry, as calculated with realistic two-nucleon
and three-nucleon realistic forces.

Five new models, labeled BSk22 to BSk26, along with their
mass tables, HFB-22 to HFB-26, respectively, are presented.
The best fits to the new data base of 2353 nuclei are found for
models BSk24 (J = 30 MeV) and BSk25 (J = 29 MeV), for
which the rms deviations are 0.55 and 0.54 MeV, respectively.
Despite the larger data base this is even better than the rms
deviation of 0.58 MeV that we found with our fits to the
2003 AME. However, even though BSk25 gives a slightly
better global fit than does BSk24, it deteriorates badly for
highly neutron-rich nuclei, a problem that may be related to
the relatively poor fit that it gives to NeuM at low densities;
another abnormality that we have noted with BSk25 consists in
the nonmonotonic variation of the effective mass with density.
We thus regard model BSk24 as the more reliable. Since it
has been fitted to J = 30 MeV and constrained to LS2, like
BSk21, it may be regarded as an improved version of the latter;
one sees from Table II that the parameters of the two forces
are very similar. We might thus reasonably expect BSk24 to
be as reliable as BSk21 in extrapolating to unknown regions
of the nuclear chart: we have already pointed out the precision
with which BSk21, fitted to the AME of 2003, predicted the
new masses of the AME of 2012. But whether we take 29 or
30 MeV as the best value for J , we find that J = 32 MeV
gives a significantly worse mass fit, the rms deviation rising
to 0.63 MeV. This is in accord with UNEDF mean-field
calculations performed on a much smaller data base, but is
in conflict with the conclusions of the finite-range droplet
model [63]. We have shown that the neutron-skin thicknesses
derived from data on antiproton scattering [57] are likewise
consistent with a value of J in the range 29–30 MeV.
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The new mass data discriminate in favor of the LS2 EOS
of NeuM over that of the slightly softer one of APR; using
just the data of the 2003 AME it was impossible to distinguish
between the two EOSs. It must be stressed, however, that this
discrimination in favor of the LS2 EOS for NeuM relates only
to nuclear and subnuclear densities. In particular, we should
not conclude that nuclear masses are telling us something about
the EOS of NeuM at the higher densities found in neutron-star
cores, since it is conceivable that the Skyrme form (1) could
be generalized still further in such a way that the EOS at
high densities was changed without affecting the fit to nuclear
masses.

As was the case with our models BSk19, BSk20, and
BSk21, the new models are well adapted to a unified treatment
of all parts of neutron stars: the outer crust [72], the inner
crust [73], and the core [1]. The relevance of the models
to the core of neutron stars arises not only from their fit to
a sufficiently stiff EOS of NeuM but also from their fit to
nuclear masses, which implies that they take correct account

of the presence of protons. For the same reason these models
take account of inhomogeneities, and thus are appropriate for
the calculation of the inner crust of neutron stars. As for the
outer crust, its properties are determined entirely by the mass
tables that we have generated for the appropriate interactions.
This is in contrast to the very recent Ref. [74], which does not
generate mass tables and thus cannot handle the outer crust.

We have found that all our new models support the massive
neutron stars PSR J1614−2230 and PSR J0348 + 0432; also
that neutron-star masses cannot tell us anything about the
symmetry coefficient J . We will discuss other implications
of our new models for neutron stars in a separate paper.
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