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By using an effective Lagrangian method, we study the effects of a newly proposed �∗( 1
2

−
) state with mass

around 1380 MeV in the initial-state polarized γN → K+�∗(1385) → K+π� process near threshold. The
theoretical predictions for the helicity cross sections σ3/2, σ1/2, as well as their ratios, and the angular distributions
of π in the π� center-of-mass system are given. It is found that assuming �∗( 1

2

−
) exists or not, these physical

quantities are distinctly different. So our results could be useful for the investigation of the existence of �∗( 1
2

−
)

when the experimental data are available in the future.
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I. INTRODUCTION

From studies of baryon spectroscopy and internal struc-
tures, the picture of some baryons having large five-quark
qqqqq̄ fraction was proposed [1–5]. The penta-quark picture
can naturally solve some puzzles in classic three-constituent-
quark models, for example for the JP = 1

2
−

baryons why
N∗(1535) is heavier than �∗(1405) [2]. For the lowest mass
strange baryon, the penta-quark models [1,6] predict a �∗( 1

2
−

)
state with mass about 1360∼1405 MeV which is around the
mass, 1385 MeV, of the known �∗( 3

2
+

). The studies of �∗
are of intrinsic interest to check the correctness of penta-quark
models, and recently some evidence for the existence of the
�∗( 1

2
−

) near 1380 MeV has been found through research on
the K−p → �π+π− process [7,8] and the K�π [9] and
K�π [10] photoproduction processes.

Photoproduction of K�∗ provides a useful tool for un-
derstanding baryon spectroscopy and structures. In the early
time the limited experimental data on the cross section for
γ + p → K+ + �∗0(1385) have large error bars [11–13].
Only in recent years, the high-statistical experimental data
on the K�∗ photoproduction have been made available. The
CLAS Collaboration has measured the cross section of γ +
p → K+ + �∗0(1385) with photon energies covering from
the threshold up to 4.0 GeV [14]. The LEPS Collaboration
has reported the first measurement of the cross section and
beam asymmetries of the γ + n → K+ + �∗−(1385) process,
using a linearly polarized photon beam with energy of
Eγ = 1.5–2.4 GeV [15]. Theoretical investigations of K�∗
photoproduction have been presented in Refs. [9,16–18]. In
Ref. [18], the t-, s-, and u-channel diagrams as well as the
contact term, which are required by gauge invariance, are
calculated and are compared with the CLAS data [14]. Though
Ref. [18]’s theoretical results of the K�∗ photoproduction
cross section agree well with the CLAS data and LEPS data,
its prediction for the beam asymmetries greatly deviates from
the measurement by the LEPS Collaboration. This obstacle
can be solved by including a new �∗( 1

2
−

) state with a mass
around 1380 MeV, and in this way the experimental data from
both the CLAS Collaboration and LEPS Collaboration can be
well described as found in Ref. [9].

The existence of �∗( 1
2

−
) can also be tested through

the experimental measurement of the initial-state polarized
γN → K+�∗ → K+π� process. With the photon circularly
polarized and the target of the nucleon polarized along the
photon momentum direction, the total helicity may be 3

2 or 1
2 ,

corresponding to the spin-parallel and spin-antiparallel state
of the photon and nucleon, respectively. In the energy range
near threshold, the state of total helicity 3

2 can only produce

�∗( 3
2

+
), while the the state of total helicity 1

2 can produce

both �∗( 3
2

+
) and �∗( 1

2
−

). Theoretically, we can predict the
helicity cross section σ3/2, σ1/2 and the angular distribution of
the final π in the π� center-of-mass (c.m.) system assuming
there only exist �∗( 3

2
+

) or there exist both �∗( 3
2

+
) and

�∗( 1
2

−
). The ratio of σ3/2

σ1/2
and the angular distribution of

π will be different in the two cases, so the existence of
�∗( 1

2
−

) can be tested by future experimental analyses. In this
article, within the framework of the gauge-invariant effective
Lagrangian from [9,18], we have made such calculation of
the initial-state polarized γN → K+�∗ → K+π� process
taking into account or neglecting the �∗( 1

2
−

).
This paper is organized as follows. In Sec. II, the theoretical

framework is presented for the initial-state polarized γN →
K+�∗ → K+π� process, where �∗ include �∗( 3

2
+

) and

�∗( 1
2

−
). In Sec. III, the theoretical predictions for the helicity

cross sections σ3/2, σ1/2, as well as their ratio, and the angular
distribution of the π in the π� c.m. system with or without the
�∗( 1

2
−

) are presented. We compare and discuss the results of
these two cases. In Sec. IV, we give a summary of this work.

II. THEORETICAL FRAMEWORK

The Feynman diagrams for γN → K+�∗ → K+π� are
shown in Fig. 1, where k, p, q, pπ , and p� are the momenta of
the incoming photon and nucleon and outgoing K , π , and �,
respectively, and p′ is the momentum of the intermediate �∗.
Following the strategy of Refs. [9,18], for the reaction γN →
K+�∗( 3

2
+

) → K+π� we consider the contribution of the t-
channel K meson exchange, the s-channel N and � as well
as their resonances exchange, the u-channel � (for the neutral
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FIG. 1. Feynman diagrams for γN → K+�∗ → K+π�. (a) t

channel; (b) s channel; (c) u channel; (d) contact term.

propagator only) and �∗( 3
2

+
) exchange, and the contact term.

For the reaction γN → K+�∗( 1
2

−
) → K+π�, we consider

the contribution of the t-channel K meson exchange, the s-
channel N exchange, the u-channel �∗( 1

2
−

) exchange [and �

exchange for γp → K+�∗0( 1
2

−
)], and the contact term.

The effective Lagrangians and coupling constants relevant
to the γN → K+�∗ reaction used in this article are taken
from Refs. [9,18] and are listed below for completeness, and
the interested reader can consult Refs. [9,18] for more details.

For the t-channel K meson exchange:

LγKK = ieAμ(K−∂μK+ − ∂μK−K+), (1)

LKN�∗
3/2

= fKN�∗
3/2

mK

∂μK̄�̄
∗μ
3/2 τN + H.c., (2)

LKN�∗
1/2

= −igKN�∗
1/2

K̄�̄∗
1/2 τN + H.c., (3)

with the isospin structure of K�∗N coupling,

K̄ = (K−, K̄0), �̄∗ τ =
(

�̄∗0
√

2�̄∗+
√

2�̄∗− −�̄∗0

)
,

(4)

N =
(

p

n

)
,

where the coupling constant fKN�∗
3/2

= −3.22 ± 0.04 [18] and
gKN�∗

1/2
= 1.34 ± 0.07 [9].

For the s-channel of nucleon exchange, the effective
Lagrangian for the γNN vertex is

LγNN = −eN

(
γ μAμQN − κN

2MN

σμν∂νAμ

)
N, (5)

where QN is the electric charge (in units of e), and κN denotes
the magnetic moment of the nucleon: κn = −1.913 and κp =
2.793.

The γN → K+�∗( 3
2

+
) process has s-channel spin- 3

2 and
spin- 5

2 resonances exchange diagrams, and the effective

Lagrangians are

LγNR

(
3

2

±)
= − ief1

2MN

N̄�(±)
ν FμνRμ

− ef2

(2MN )2
∂νN̄�(±)FμνRμ + H.c., (6)

LγNR

(
5

2

±)
= ef1

(2MN )2
N̄�(∓)

ν ∂αFμνRμα

− ief2

(2MN )3
∂νN̄�(∓)∂αFμνRμα + H.c., (7)

and

LRK�∗

(
3

2

±)
= h1

mK

∂αK�̄∗μ�(±)
α Rμ

+ ih2

(mK )2
∂μ∂αK�̄∗

α�(±)Rμ + H.c., (8)

LRK�∗

(
5

2

±)
= ih1

m2
K

∂μ∂βK�̄∗α�(∓)
μ Rαβ

− h2

(mK )3
∂μ∂α∂βK�̄∗

μ�(∓)Rαβ + H.c., (9)

where Fμν = ∂μAν − ∂νAμ, Rμ and Rμα denote the spin- 3
2

and spin- 5
2 fields, respectively, and

�(±)
μ =

(
γμγ5

γμ

)
, �(±) =

(
γ5

1

)
. (10)

For the � resonances of isospin- 3
2 , the effective Lagrangians

have the isospin structure

K̄�̄∗ · T
(

1

2
,

3

2

)
� =

√
3K−�̄∗+�++ −

√
2K−�̄∗0�+

−K−�̄∗−�0 + K̄0�̄∗+�+

−
√

2K̄0�̄∗0�0 −
√

3K̄0�̄∗−�−.

(11)

We consider three two-star-rated resonances in the s
channel, N3/2−(2120), �3/2−(1940), and �5/2+ (2000), which
are the most prominent resonances as stated in Ref. [18]. The
coupling constants f1 and f2 can be either computed by using
Eq. (B3) in Ref. [18] from the helicity amplitudes in the PDG
[19] or from the model predictions. For the γN� coupling, we
have f1 = 4.04 ± 0.20 and f2 = 3.87 ± 0.19 [18]. From the
predicted helicity amplitudes in Ref. [20], one has f1 = −1.25
and f2 = 1.21 for the γpN∗(2120) coupling; f1 = 0.381 and
f2 = −0.256 for the γ nN∗(2120) coupling; f1 = 0.39 and
f2 = −0.57 for the γN�(1940) coupling; and f1 = −0.68,
f2 = −0.062 for the γN�(2000) coupling [9]. For the �K�∗
coupling, h1 = 2.000 ± 0.006 and h2 = 0 are obtained from
h1 = −fK��∗/

√
3 with fK��∗ = −3.46 ± 0.01 [21]. For the

resonances coupling to the K�∗, the coupling constants
h1 and h2 can be computed by using Eqs. (B11)–(B18) in
Ref. [20] from the model-predicted amplitudes G(l) [22]. One
obtains h1 = 0.24 and h2 = −0.54 for the N∗(2120)K�∗
coupling, h1 = −0.68 and h2 = 1.0 for the �(1940)K�∗
coupling, and h1 = −1.1 and h2 = 0.21 for the �(2000)K�∗
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coupling [9]. Note that the masses, widths, and coupling con-
stants of the s-channel resonances N3/2−(2120), �3/2− (1940),
and �5/2+ (2000) are not well constrained by the experiment—
hence these parameters have large uncertainties—while near
threshold these three resonances’ contributions are very
small so their uncertainties to our theoretical predictions are
negligible.

For the u-channel �(1116) exchange in the γp → K+�∗0

reaction, the effective Lagrangians are

Lγ��∗
3/2

= − ief1

2M�

�̄γνγ5F
μν�∗

3/2μ

− ef2

(2M�)2
∂ν�̄γ5F

μν�∗
3/2μ + H.c., (12)

Lγ��∗
1/2

= egγ��∗
1/2

4
(
M� + M�∗

1/2

) �̄∗
1/2γ5σμν�Fνμ + H.c., (13)

LKN� = gKN�

MN + M�

N̄γ μγ5�∂μK + H.c., (14)

where f1 = 4.52 ± 0.32, f2 = 5.63 ± 0.45 are obtained from
the decay width �(�∗

3/2 → �γ ) and gγ��∗
1/2

= 1.16. From the
flavor SU(3) symmetry relation, one has gKN� = −13.24 ±
1.06 [18].

For the u-channel �∗ exchange, the effective Lagrangians
are

Lγ�∗
1/2�

∗
1/2

= −e�
∗
1/2

(
γ μAμQ�∗

1/2
− κ�∗

1/2

2MN

σμν∂νAμ

)
�∗

1/2,

(15)

Lγ�∗
3/2�

∗
3/2

= e�̄∗
3/2μAα�

α,μν
γ�∗

3/2
�∗

3/2ν, (16)

with

Aα�
α,μν
γ�∗

3/2
= Q�∗

3/2
Aα

(
gμνγ α − 1

2
(γ μγ νγ α + γ αγ μγ ν)

)

− κ�∗
3/2

2MN

σαβ∂βAαgμν, (17)

where Q�∗ is the electric charge (in units of e), and κ�∗

denotes the anomalous magnetic moment of �∗: κ�∗0
3/2

= 0.36
and κ�∗−

3/2
= −2.43 are taken from the quark model [23],

and κ�∗0
1/2

= −0.43 and κ�∗−
1/2

= −1.74 are predicted by the
penta-quark model [6].

To take account of the off-shell effects, every vertex of
these channels has been given a form factor. For the t-channel
K meson exchange, we use the form factor [18]

FM = �2
M − m2

K

�2
M − q2

t

, (18)

where qt = k − q. We adopt �M = 0.83 GeV for �∗
3/2 and

�M = 1.6 GeV for �∗
1/2 [9]. For the s-channel N and �

exchange, the u-channel processes, and the �∗�π vertex, we
adopt the form factor [18]

FB

(
q2

ex,Mex

) = �4
B

�4
B + (

q2
ex − M2

ex

)2 , (19)

where the qex and Mex are the 4-momentum and the mass of the
exchanged hadron, respectively. For the s-channel resonances

exchange, the form factor is

FB

(
q2

s ,MR

) = exp

(
−

(
q2

s − M2
R

)2

�4
B

)
, (20)

with the cutoff parameter �B = 1.0 GeV [18]. Note in this
paper that we only study the near-threshold physics so the
difference between the Gaussian form factors and the more
justifiable dipole form factors is small. We have checked that
using the dipole form factors for all baryons, the numerical
differences are within 1%.

The contact term in Fig. 1(d) is required to keep the full
amplitude gauge invariant. For the process γp → K+�∗0

3/2, we
adopt the contact current [18,24]

Mμν
c = ie

fKN�∗
3/2

mK

(gμνft − qμCν), (21)

where Cν is expressed as

Cν = −(2q − k)ν
ft − 1

t − m2
K

[1 − h(1 − fs)]

− (2p + k)ν
fs − 1

s − M2
N

[1 − h(1 − ft )]. (22)

Here the Lorenz indexes μ and ν couple to that of �∗
3/2 and the

photon, respectively; ft = F 2
M and fs = F 2

B(s,MN ) are form
factors squared; and t = q2

t and s = q2
s ; h is a parameter to be

fitted to experiments; and h = 1 is used in Ref. [18]. For the
process γp → K+�∗0

1/2, the contact current is

Mν
c = iegKN�∗

1/2
Cν , (23)

where h = 1 is adopted. For the reaction γ n → K+�∗−
3/2, the

contact current is [24]

Mμν
c = ie

√
2
fKN�∗

3/2

mK

(gμνft − qμCν), (24)

with

Cν = −(2q − k)ν
ft − 1

t − m2
K

[1 − h(1 − fu)]

+ (2p′ − k)ν
fu − 1

u − M2
�∗

[1 − h(1 − ft )], (25)

where fu = F 2
B(u,M∗

�) is the form factor squared, and u = q2
u

is the squared momentum transfer for the u channel. According
to Ref. [9], h = 1.11 is taken assuming there only exist
�∗( 3

2
+

), and h = 1 is used if there exist both �∗( 3
2

+
) and

�∗( 1
2

−
). For the γ n → K+�∗−( 1

2
−

) process, we adopt the
contact current:

Mν
c = ie

√
2gKN�∗

1/2
Cν, (26)

where Cν is expressed as Eq. (25), and here h = 1 is taken.
All the ingredients of the γN → K+�∗ reaction are given

above, and now we list the effective Lagrangians of the �∗�π
vertex [8,25]:

L�π�∗
3/2

= g�π�∗
3/2

�̄�
∗μ
3/2∂μπ + H.c., (27)

L�π�∗
1/2

= −ig�π�∗
1/2

�
∗
1/2�π + H.c., (28)
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where g�π�∗
3/2

= 9.16 ± 0.66 is obtained from the decay
widths of �(�∗

3/2 → �π ) [19], and g�π�∗
1/2

= 2.12 ± 0.33 is
obtained assuming the fitted result of the �∗

1/2 decay width in
Ref. [7] is contributed totally by the �π channel.

Furthermore, we need the propagators of intermediate
particles to calculate the Feymann diagrams. For t-channel
exchange K meson, the propagator is

GK(qt ) = 1/
(
q2

t − m2
K

)
. (29)

For the spin-1/2, spin-3/2, and spin-5/2 baryons the
propagators are respectively

G
1/2
R(p) = /p + m

p2 − m2
, (30)

G
3/2
R(p) = /p + m

p2 − m2

(
−gμν + γ μγ ν

3

+ γ μpν − γ νpμ

3m
+ 2pμpν

3m2

)
, (31)

G
5/2
R(p) = /p + m

p2 − m2
Sαβμν(p,m), (32)

where

Sαβμν(p,m) = 1
2 (ḡαμḡβν + ḡαν ḡβμ) − 1

5 ḡαβ ḡμν

− 1
10 (γ̄αγ̄μḡβν + γ̄αγ̄ν ḡβμ + γ̄β γ̄μḡαν

+ γ̄β γ̄ν ḡαμ), (33)

with

ḡμν = gμν − pμpν

m2
, γ̄μ = γμ − pμ

m2 /p. (34)

For the intermediate resonances with sizable width �,
namely N3/2−(2120), �3/2− (1940), �5/2+(2000), �∗( 3

2
+

),

and �∗( 1
2

−
), we replace the denominator 1

p2−m2 in the

propagators with 1
p2−m2+im�

, and replace m in the rest

of the propagators with
√

p2. These decay widths are
taken from Refs. [7,9], which are within the PDG
range, �N∗(2120) = 0.25 GeV, ��(1940) = 0.15 GeV, ��(2000) =
0.15 GeV, �

�∗( 3
2

+
) = 0.035 ± 0.005 GeV, and �

�∗( 1
2

−
) =

0.119+0.055
−0.035 GeV. Since previous investigation indicates that

the mass of the new �∗( 1
2

−
) is around �∗( 3

2
+

) [7–9], here

we assume its mass be the same as �∗( 3
2

+
). Note there

are ambiguities when dealing with the high-spin off-shell
particles [26–28], since here we are using a tree-level approach
and possible effects might be partially encoded into the
phenomenological coupling constants which are constrained
by the experiments. Also, these uncertainties of off-shell
effects might be partially effectively included into the form
factors, and in this paper the values of the cutoff parameters
�M and �B are taken from Refs. [15,18], gotten by fitting the
γp → K+�∗0 data. So the description of high-spin particles
used here can properly explore the phenomenological physics.

The differential cross section for γN → K+�∗ → K+π�
can be expressed as

dσγN→K+�∗→K+π� = |q||pπ ||M̄|2
(2π )532s|k| d�d�′dmπ�, (35)

where k and q denote the 3-momenta of photon and K+ in
the c.m. frame, respectively, and pπ is the 3-momenta of the
produced π in the �∗ rest frame; d� = 2πd cos θ , and θ
denotes the angle of the outgoing K+ relative to beam direction
in the c.m. frame; d�′ = d cos θ ′dφ′ is the sphere space of the
outgoing π in the �∗ rest frame, and θ ′ is the angle between
the π direction and the K+ direction in the c.m system of the
π�; mπ� is the invariant mass of π and �, which satisfies
m2

π� = (pπ + p�)2. With the z axis being the direction of
motion of the photon and the x-z plane being the reaction plane,
the polarization vectors for right- and left-handed photons are

�εR = − 1√
2

(�εx + i�εy), �εL = + 1√
2

(�εx − i�εy). (36)

For the polarized nucleon we use the projection operators [29]

u(p)ū(p) = (/p + mN ) 1
2 (1 + 2λγ5/s), (37)

where λ = ± 1
2 is the helicity of the nucleon and s =

( | �p|
mN

, EN

mN

�p
| �p| ).

III. RESULTS AND DISCUSSION

With the formalism and ingredients given above, we
compute the helicity cross section σ3/2 and σ1/2, corresponding
to spin-parallel and spin-antiparallel states of the photon
and nucleon, respectively, for the γN → K+�∗ → K+π�

process assuming there only exists �∗( 3
2

+
) or there exist both

�∗( 3
2

+
) and �∗( 1

2
−

). The cross sections versus excess energy
in the c.m. frame, Q= √

s − √
s threshold, are shown in Fig. 2.

In Fig. 3, the behavior of the ratios of σ3/2/σ1/2 is given. The
error bands are computed in this way: First we compute the
maximum and the minimum of each theoretical prediction with
the coupling constants within the range of error, then we take
(maximum − minimum)/2 as the error bar of corresponding
prediction.

Through analysis we find that the contact terms and the
u-channel � exchange give the most important contributions
to the γp → K+�∗0( 3

2
+

) → K+π0� process, while their
interference term enhances and reduces the total cross section
for σ3/2 and σ1/2, respectively, so the ratio of σ3/2/σ1/2 for

the pure �∗( 3
2

+
) produced process is about 40 as in Fig. 3(a).

For the γp → K+�∗0( 1
2

−
) → K+π0� process, σ1/2 comes

mainly from the t-channel K exchange and the s-channel N
exchange, while in σ3/2 the s-channel N exchange’s contri-
bution is suppressed due to angular momentum conservation
so σ1/2 is larger than σ3/2. Assuming there exist both �∗( 3

2
+

)

and �∗( 1
2

−
), the ratio of σ3/2/σ1/2 is about 3 which is distinct

from that assuming only �∗( 3
2

+
) exist, which can be seen in

Fig. 3(a).
For the γ n → K+�∗−( 3

2
+

) → K+π−� process, the con-
tact term plays the major role and its contribution to the
total cross section is two orders larger than those from other
channels, so the ratio of σ3/2/σ1/2 mainly depends on the

behavior of the contact term. For the γ n → K+�∗−( 1
2

−
) →

K+π−� process, the major contribution is from the t-channel
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(a)

(b)

FIG. 2. Predictions for the helicity cross sections contributed
from �∗( 3

2

+
) and the sum of �∗( 3

2

+
) and �∗( 1

2

−
) for (a) γp →

K+�∗0 → K+π 0� and (b) γ n → K+�∗− → K+π−� processes.
The shaded areas correspond to the error bands.

K exchange. As can be seen in Figs. 3(a) and 3(b), the
ratios of σ3/2/σ1/2 from pure �∗( 1

2
−

) are zero at threshold
as expected, while they sharply rise and reach about one
when Q = 10 MeV. This is because the amplitude of the
major t-channel K exchange in �∗( 1

2
−

) produced reactions
is proportional to the component of the photon polarization
vector parallel to the reaction plane, and its contributions to
the total cross section are the same for right- and left-handed
photons. According to our calculated results, the �∗( 1

2
−

)
produced cross sections are larger than those produced by
�∗( 3

2
+

), so taking account of the �∗( 1
2

−
) or not, both the total

cross section σ3/2 and σ1/2 are different, as shown in Fig. 2(b).
Also, in Fig. 3(b), the ratios of σ3/2/σ1/2 are different assuming

there exist both �∗( 3
2

+
) and �∗( 1

2
−

) or only exist �∗( 3
2

+
).

Another way to investigate the spin of the �∗ is to utilize
the angular distribution of the π in the π� center-of-mass
system. Near threshold, the final π� state is in the relative
p wave from the decay of �∗( 3

2
+

) and is in the relative s

wave from the decay of �∗( 1
2

−
). So the angular distribution is

expected to be of the form (a + b cos θ ′2) for the pure �∗( 3
2

+
)

and a flat constant distribution is predicted for pure �∗( 1
2

−
). In

Figs. 4 and 5, we show the angular distribution of the π in the
π� center-of-mass system for the γN → K+�∗ → K+π�

process assuming there exist only �∗( 3
2

+
) and there exist both

�∗( 3
2

+
) and �∗( 1

2
−

) at Q = 20 MeV, respectively. Note that
here we choose the energy Q = 20 MeV just as an example,

(a)

(b)

FIG. 3. Predictions for the ratios of σ3/2/σ1/2 assuming there exist
only �∗( 3

2

+
) (dashed), or only �∗( 1

2

−
) (dotted), or both of them

(solid) for (a) γp → K+�∗0 → K+π 0� and (b) γ n → K+�∗− →
K+π−� processes. The shaded areas correspond to the error
bands.

and the behaviors of the angular distributions do not change
significantly near threshold. As illustrated in Fig. 4, the shapes
of angular distributions for pure �∗( 3

2
+

) agree well with the
expectations. We also have checked that the predictions for

FIG. 4. Predictions for the angular distribution of final π of
the γN → K+�∗( 3

2

+
) → K+π� process, where θ ′ is the angle

between the outgoing π direction and K direction in the c.m.
system of π�. (a) and (b) denote σ3/2 and σ1/2, respectively, for
γp → K+�∗0( 3

2

+
) → K+π 0� process. (c) and (d) denote σ3/2 and

σ1/2, respectively, for γ n → K+�∗−( 3
2

+
) → K+π−� process. The

shaded areas correspond to the error bands.
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FIG. 5. Predictions for the angular distribution of final π of
the γN → K+�∗ → K+π� process, where �∗ include �∗( 3

2

+
)

and �∗( 1
2

−
). (a) and (b) denote σ3/2 and σ1/2, respectively, for

γp → K+�∗0 → K+π 0� process. (c) and (d) denote σ3/2 and σ1/2,
respectively, for γ n → K+�∗− → K+π−� process. The shaded
areas correspond to the error bands.

the angular distributions from pure �∗( 1
2

−
) are flat constants,

and we do not illustrate them individually in the figures. The
differential cross section contributed by the interference terms
of the �∗( 3

2
+

) and �∗( 1
2

−
) are linear functions of cos θ ′, and

we find they change much more rapidly than the corresponding
pure �∗( 3

2
+

) terms in the γp → K+�∗0 → K+π0� process
for σ3/2, and in the γ n → K+�∗− → K+π−� process for
σ3/2 and σ1/2, so in these reactions the interference terms
mainly determine the shapes of the angular distributions as
shown in Figs. 5(a), 5(c), and 5(d). In the γp → K+�∗0 →
K+π0� process for σ1/2, the interference term changes more

slowly than the pure �∗( 3
2

+
) term so the shape of the angular

distribution deviates slightly from that of pure �∗( 3
2

+
), as can

be seen in Fig. 5(b).

IV. SUMMARY

In this paper, we study the reactions γN →
K+�∗(1385) → K+π� near threshold within an effective
Lagrangian approach. Recent studies indicate that near the
mass of �∗( 3

2
+

), another �∗ state with JP = 1
2

−
may exits.

The spin of �∗ can be investigated in the K�∗ photoproduction
process using circularly polarized photons and a target of
polarized nucleons. Taking account of the �∗( 1

2
−

) or not,
we compute the helicity cross sections σ3/2 and σ1/2, which
correspond to spin-parallel and spin-antiparallel states of the
photon and nucleon respectively, and their ratios. Also we give
the predictions for the angular distributions of the π in the π�

c.m. system. Through the analysis, we find that the �∗( 1
2

−
) and

the interference term of �∗( 3
2

+
) and �∗( 1

2
−

) play significant
roles near threshold, such that the ratios of σ3/2/σ1/2 and the
angular distribution of the π are distinctly different assuming
that the �∗( 1

2
−

) exists or not. The results of this work may

be useful for identification of �∗( 1
2

−
) when the experimental

data are available in the future.
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[17] M. Döring, E. Oset, and D. Strottman, Phys. Lett. B 639, 59
(2006); Phys. Rev. C 73, 045209 (2006).

[18] Y. Oh, C. M. Ko, and K. Nakayama, Phys. Rev. C 77, 045204
(2008).

024304-6

http://dx.doi.org/10.1016/S0375-9474(01)01294-5
http://dx.doi.org/10.1140/epja/i2007-10561-8
http://dx.doi.org/10.1142/S0217751X06034732
http://dx.doi.org/10.1142/S0217751X06034732
http://dx.doi.org/10.1103/PhysRevLett.96.042002
http://dx.doi.org/10.1103/PhysRevLett.98.039102
http://dx.doi.org/10.1103/PhysRevLett.98.039102
http://dx.doi.org/10.1103/PhysRevC.74.055205
http://dx.doi.org/10.1103/PhysRevC.74.055205
http://dx.doi.org/10.1103/PhysRevC.75.069901
http://dx.doi.org/10.1016/j.nuclphysa.2007.10.002
http://dx.doi.org/10.1016/j.nuclphysa.2007.12.002
http://arXiv.org/abs/arXiv:hep-ph/0403210
http://dx.doi.org/10.1103/PhysRevD.80.017503
http://dx.doi.org/10.1103/PhysRevD.80.017503
http://dx.doi.org/10.1103/PhysRevC.81.045210
http://dx.doi.org/10.1103/PhysRevC.81.045210
http://dx.doi.org/10.1103/PhysRevC.81.055203
http://dx.doi.org/10.1103/PhysRevC.81.055203
http://dx.doi.org/10.1103/PhysRevC.87.035206
http://dx.doi.org/10.1103/PhysRevC.87.035206
http://dx.doi.org/10.1103/PhysRev.156.1426
http://dx.doi.org/10.1007/BF02753044
http://dx.doi.org/10.1007/BF02753044
http://dx.doi.org/10.1103/PhysRev.188.2060
http://dx.doi.org/10.1103/PhysRev.188.2060
http://dx.doi.org/10.1103/PhysRevLett.102.012501
http://dx.doi.org/10.1103/PhysRevLett.102.012501
http://dx.doi.org/10.1016/j.nuclphysa.2004.11.007
http://dx.doi.org/10.1016/j.nuclphysa.2004.11.007
http://dx.doi.org/10.1016/j.physletb.2006.06.022
http://dx.doi.org/10.1016/j.physletb.2006.06.022
http://dx.doi.org/10.1103/PhysRevC.73.045209
http://dx.doi.org/10.1103/PhysRevC.77.045204
http://dx.doi.org/10.1103/PhysRevC.77.045204


POSSIBLE �∗( 1
2

−
) IN THE INITIAL- . . . PHYSICAL REVIEW C 88, 024304 (2013)

[19] J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001
(2012).

[20] S. Capstick, Phys. Rev. D 46, 2864 (1992).
[21] Y. Oh, K. Nakayama, and T.-S. H. Lee, Phys. Rep. 423, 49

(2006).
[22] S. Capstick and W. Roberts, Phys. Rev. D 58, 074011 (1998).
[23] D. B. Lichtenberg, Phys. Rev. D 15, 345 (1977).
[24] H. Haberzettl, K. Nakayama, and S. Krewald, Phys. Rev. C 74,

045202 (2006).

[25] P. Z. Gao, J. Shi, and B. S. Zou, Phys. Rev. C 86, 025201 (2012).
[26] V. Pascalutsa and R. Timmermans, Phys. Rev. C 60, 042201

(1999).
[27] T. Vrancx, L. De Cruz, J. Ryckebusch, and P. Vancraeyveld,

Phys. Rev. C 84, 045201 (2011).
[28] G. Vereshkov and N. Volchanskiy, Phys. Rev. C 87, 035203

(2013).
[29] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics

(McGraw-Hill, New York, 1965).

024304-7

http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.46.2864
http://dx.doi.org/10.1016/j.physrep.2005.10.002
http://dx.doi.org/10.1016/j.physrep.2005.10.002
http://dx.doi.org/10.1103/PhysRevD.58.074011
http://dx.doi.org/10.1103/PhysRevD.15.345
http://dx.doi.org/10.1103/PhysRevC.74.045202
http://dx.doi.org/10.1103/PhysRevC.74.045202
http://dx.doi.org/10.1103/PhysRevC.86.025201
http://dx.doi.org/10.1103/PhysRevC.60.042201
http://dx.doi.org/10.1103/PhysRevC.60.042201
http://dx.doi.org/10.1103/PhysRevC.84.045201
http://dx.doi.org/10.1103/PhysRevC.87.035203
http://dx.doi.org/10.1103/PhysRevC.87.035203



