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Nucleon-nucleon scattering parameters in the limit of SU(3) flavor symmetry
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The scattering lengths and effective ranges that describe low-energy nucleon-nucleon scattering are calculated
in the limit of SU(3)-flavor symmetry at the physical strange-quark mass with lattice quantum chromodynamics.
The calculations are performed with an isotropic clover discretization of the quark action in three volumes with
spatial extents of L ∼ 3.4 fm, 4.5 fm, and 6.7 fm, and with a lattice spacing of b ∼ 0.145 fm. With determinations
of the energies of the two-nucleon systems (both of which contain bound states at these up and down quark masses)
at rest and moving in the lattice volume, Lüscher’s method is used to determine the low-energy phase shifts in
each channel, from which the scattering length and effective range are obtained. The scattering parameters, in
the 1S0 channel are found to be mπa(1S0) = 9.50+0.78

−0.69
+1.10
−0.80 and mπr (1S0) = 4.61+0.29

−0.31
+0.24
−0.26, and in the 3S1 channel are

mπa(3S1) = 7.45+0.57
−0.53

+0.71
−0.49 and mπr (3S1) = 3.71+0.28

−0.31
+0.28
−0.35. These values are consistent with the two-nucleon system

exhibiting Wigner’s supermultiplet symmetry, which becomes exact in the limit of large Nc. In both spin channels,
the phase shifts change sign at higher momentum, near the start of the t-channel cut, indicating that the nuclear
interactions have a repulsive core even at the SU(3)-symmetric point.
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I. INTRODUCTION

Decades of experimental measurements of the nucleon-
nucleon (NN) cross sections have resulted in precise phase
shifts and scattering parameters that provide the cornerstone of
nuclear physics. These two-body interactions, when combined
with multibody interactions, dictate the low-energy spectra and
interactions of nuclei, and also the equation of state of nuclear
matter at moderate densities. Further, these interactions are
responsible for the fine-tunings that permeate nuclear physics,
and are responsible for producing sufficient carbon in the
universe to allow for the emergence of life. During the last
several years, there has been a substantial effort to determine
the NN interactions directly from quantum chromodynam-
ics (QCD) using the numerical technique of lattice QCD
(LQCD) [1–14]. Steady progress is being made toward this
objective, but calculations at the physical light-quark masses
have not yet been performed, and essentially only one lattice
spacing has been used in calculations. While calculations at
the physical light-quark masses—that are extrapolated to the
continuum limits and are performed in volumes (and temporal
directions) that are much larger than the inverse Compton
wavelength of the pion—are required to verify the LQCD
technology and provide a rigorous underpinning of modern
nuclear interactions, calculations at heavier pion masses are

equally important in understanding and quantifying the fine-
tunings in nuclear physics. It is crucial to understand how the
fine-tunings in nuclear physics translate into constraints on the
five relevant fundamental parameters in the standard model of
particle physics: the three light-quark masses, and the strong
and electromagnetic coupling constants. The NN interaction
provides the simplest place to begin this investigation.

One reason that there are presently few LQCD calculations
of NN interactions is the significantly greater complexity of
multinucleon systems as compared with systems of single
mesons and baryons. A second reason is that significant
computational resources are required to generate high-quality
ensembles of gauge field configurations at or near the physical
light-quark masses, an effort that has only become practical
with the availability of petascale computers, and, as yet,
these ensembles are not at sufficiently large volume to be
of use in nuclear physics. At heavier quark masses, the
resources required to generate ensembles of lattice gauge
configurations and light-quark propagators are relatively
small, the degradation of the signal-to-noise in multinucleon
correlation functions is significantly reduced, and thermal
effects are exponentially suppressed, compared to calculations
at lighter pion masses. For these reasons, we performed LQCD
calculations of a number of s-shell nuclei and hypernuclei with
A � 5 at the SU(3)-flavor symmetry point with the physical
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TABLE I. Parameters of the ensembles of gauge-field configurations and of the measurements used in this work. The lattices have dimension
L3 × T , a lattice spacing b, and a bare quark mass b mq (in lattice units) generating a pion of mass mπ . Nsrc light-quark sources are used
(as described in the text) to perform measurements on Ncfg configurations in each ensemble. The three uncertainties associated with the pion
mass are statistical, fitting systematic, and that associated with the lattice spacing, respectively.

Label L/b T/b β b mq b (fm) L (fm) T (fm) mπ (MeV) mπL mπT Ncfg Nsrc

A 24 48 6.1 −0.2450 0.145 3.4 6.7 806.5(0.3)(0)(8.9) 14.3 28.5 3822 96
B 32 48 6.1 −0.2450 0.145 4.5 6.7 806.9(0.3)(0.5)(8.9) 19.0 28.5 3050 72
C 48 64 6.1 −0.2450 0.145 6.7 9.0 806.7(0.3)(0)(8.9) 28.5 38.0 1905 54

strange quark mass giving mπ = 805.9(0.6)(0.4)(8.9) MeV, at
a lattice spacing of b ∼ 0.145 fm, and in lattice volumes with
spatial extents L ∼ 3.4 fm, 4.5 fm and 6.7 fm [13]. In this
work, we continue this study and explore the NN scattering
phase shifts below the inelastic threshold and the associated
scattering parameters relevant below the t-channel cut at the
SU(3) symmetric point.

II. OVERVIEW OF THE LATTICE QCD CALCULATIONS

Three ensembles of isotropic gauge-field configurations,
generated with a tadpole-improved Lüscher-Weisz gauge
action and a clover fermion action [15], are used in this work
and have been used previously to calculate the lowest-lying
levels of the s-shell nuclei and hypernuclei [13]. This particular
lattice-action setup follows closely the anisotropic clover
action of the ensembles generated by the JLab group that
we have used in our previous calculations [4,11,16–19]. The
parameter tuning and scaling properties of this action will be
discussed elsewhere [20]. One level of stout smearing [21] with
ρ = 0.125 and tadpole-improved tree-level clover coefficient
cSW = 1.2493 are used in the gauge-field generation. Stud-
ies [20,22,23] of the partially conserved axial-current (PCAC)
relation in the Schrödinger functional indicate that this choice
is consistent with vanishing O(b) violations, leading to dis-
cretization effects that are essentially O(b2). The parameters
of the ensembles are listed in Table I, and further details
will be presented elsewhere [20]. As two-nucleon systems
are the focus of this work, relatively large lattice volumes
are employed for the calculations, with correspondingly large
values of mπL and mπT . In order to convert the calculated
energies from lattice units (l.u.) into physical units (MeV),
a lattice spacing of b = 0.1453(16) fm has been determined

for these ensembles of gauge-field configurations from the ϒ
spectrum [24].

The Ncfg gauge configurations in each of the ensembles
are separated by ten hybrid Monte Carlo (HMC) evolution
trajectories to reduce autocorrelations, and an average of
Nsrc measurements are performed on each configuration.
The quark propagators are constructed with gauge-invariant
Gaussian-smeared sources with stout-smeared gauge links.
These sources are distributed over a grid, the center of which
is randomly distributed within the lattice volume on each
configuration, and the quark propagators are computed using
the BiCGstab algorithm with a tolerance of 10−12 in double
precision. Quark propagators, either unsmeared or smeared at
the sink using the same parameters as used at the source, give
rise to two sets of correlation functions for each combination
of source and sink interpolating fields, labeled as SP and SS,
respectively. The propagators are contracted to form nucleon
blocks projected to fixed momentum at the sink for use in the
calculation of the correlation functions. The blocks are defined
as

Bijk
N (p, t ; x0) =

∑

x

eip·xS(f1),i ′
i (x, t ; x0)S(f2),j ′

j (x, t ; x0)S(f3),k′
k

× (x, t ; x0)b(N)
i ′j ′k′, (1)

where S(f ) is a quark propagator of flavor f , and the indices are
combined spin-color indices running over i = 1, . . . , NcNs .1

The choice of the fi and the tensor b(N) depend on the
spin and isospin of the nucleon under consideration. For our

1To be specific, for a quark spin component is = 1, . . . ,Ns and color
component ic = 1, . . . ,Nc, the combined index i = Nc(is − 1) + ic.
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FIG. 1. (Color online) The EMPs of the first excited states with |P| = 0 in the 1S0 channel in the L = 3.4 fm, L = 4.5 fm, and L = 6.7 fm
ensembles, respectively. Twice the nucleon mass has been subtracted from the energy. The dark (light) shaded regions correspond to the
statistical uncertainty (statistical and systematic uncertainties combined in quadrature) of the fit to the plateau over the indicated time interval.
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FIG. 2. (Color online) The EMPs of the first excited state with |P| = 1 in the 1S0 channel in the L = 3.4 fm, L = 4.5 fm, and L = 6.7 fm
ensembles, respectively. Twice the nucleon mass has been subtracted from the energy. The dark (light) shaded regions correspond to the
statistical uncertainty (statistical and systematic uncertainties combined in quadrature) of the fit to the plateau over the indicated time interval.

calculations we used the local interpolating fields constructed
in Ref. [25], restricted to those that contain only upper
spin components (in the Dirac spinor basis). This choice
results in the simplest interpolating fields that also have
the best overlap with the nucleon ground states. Blocks are
constructed for all lattice momenta |p|2 < 4 allowing for
the study of multinucleon systems with zero or nonzero
total momentum and with nontrivial spatial wave functions.
Interpolating operators used at the sink have blocks with
back-to-back momentum to access excited states. These
interpolating operators have small overlaps onto the ground
state, and it is found that the correlation functions from
these back-to-back interpolating operators are as well fit by
single states as are the ground-state correlation functions.
More sophisticated methods such as Matrix Prony [26] and
GPoF [27,28] have been applied to the correlation functions
and do not provide significant improvement in the extractions,
indicating that the correlators with back-to-back momenta
are close to orthogonal. Future investigations with a fully
variational basis of operators are required to give us confidence
in extracting states beyond the first excitation. The dispersion
relations of the single mesons and nucleons on these ensembles
have been examined in Ref. [13], and the infinite volume
extrapolations of the masses are mπ = 0.59426(12)(11) l.u. =
805.9(0.6)(0.4)(8.9) MeV and MN = 1.20359(41)(61) l.u. =
1.635(0)(0)(18) GeV.

III. NUCLEON-NUCLEON SCATTERING
IN THE 1S0 CHANNEL

In contrast to the real world, there is a bound state in
the 1S0 channel at the SU(3)-symmetric point with a binding

energy of Bnn = 15.9(2.7)(2.7)(0.2) MeV [13].2 Two-nucleon
correlation functions with total momentum3 |P| = 0 and
|P| = 1 evaluated in three lattice volumes, with spatial extent
L = 3.4 fm, 4.5 fm, and 6.7 fm, are used to extract the binding
energy of the dineutron. While the results are found to be
consistent, volume effects are observed in the smallest volume,
and the binding energy determined in the largest volume is
taken as the infinite volume value. In the largest volume, the
exponentially suppressed deviations from the infinite volume
value are negligible for this binding energy. With one bound
state in this channel, Levinson’s theorem dictates that the phase
shift is δ(1S0)(0) = π at threshold.

While the location of the bound state does not correspond
to a real value for the scattering phase shift, it does provide
a real value of k cot δ, and a valuable constraint on the
scattering parameters in the effective range expansion, which
is valid below the t-channel cut starting at |k| = mπ/2.
Positively shifted energy eigenvalues of two-body systems
in the lattice volumes can be related to scattering phase
shifts using Lüscher’s relation [31–33] and its extension to
boosted systems [34–37] provided they lie below the inelastic
threshold. The effective mass plots (EMPs) associated with

2It should be noted that the HALQCD Collaboration does not find
a bound state in the 1S0 channel nor 3S1-3D1 coupled-channels at this
pion mass [12]. Their results are arrived at through the solution of
the Schrödinger equation with “potentials” calculated on the lattice,
a method which is theoretically unsound in various ways [29,30],
and, moreover, is considerably less direct than determining binding
energies using simple spectroscopy.

3Here, |P| denotes the magnitude of the total momentum in units of
2π/L.

TABLE II. Results from the lowest-lying continuum states in the 1S0 channel.

Ensemble |P| b�E |k|/mπ k cot δ/mπ δ (deg)

243 × 48 0 0.0358(13)(16) 0.3506(64)(78) 0.175+.034
−0.031

+0.043
−0.036 63.4(3.8)(4.7)

243 × 48 1 0.1609(16)(37) 0.7197(41)(93) −0.30+0.07
−0.07

+0.15
−0.17 −67(5)(11)

323 × 48 0 0.0165(13)(22) 0.2373(92)(96) 0.030+0.031
−0.028

+0.057
−0.046 83(7)(13)

323 × 48 1 0.0591(23)(46) 0.420(09)(19)
483 × 64 0 0.0020(18)(29)
483 × 64 1 0.0244(24)(35) 0.267(15)(23)
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FIG. 3. (Color online) k cot δ in the 1S0 channel. The positive energy values are given in Table II and the negative energy value is determined
from the dineutron binding energy. The left panel is a two-parameter fit to the ERE, and the right panel is a three-parameter fit to the ERE, as
described in the text. The inner (outer) shaded region corresponds to the statistical uncertainty (statistical and systematic uncertainties combined
in quadrature).

the two-nucleon energy, reduced by twice the nucleon mass,
of the first excited states with |P| = 0 are shown in Fig. 1.
Plateaus in the EMPs are found in all volumes, leading to clean
extractions of the energy splitting, and also to values of the
phase shift via Lüscher’s eigenvalue equation at those energies
in the L = 3.4 fm and L = 4.5 fm ensembles. The energy
splitting in the L = 6.7 fm ensemble is consistent with zero,
and therefore straddles the lowest singularity in the eigenvalue
equation, thereby providing no meaningful constraint on the
phase shift or k cot δ. The energy splittings are determined with
a correlated χ2-minimization fit of a constant to the plateau
in the EMPs over the fit ranges shown in Fig. 1. Jackknife
resampling is used to generate the covariance matrix required
to define χ2 from the correlation functions. Consistent results
for the extracted values of the energies are obtained using
both one- and two-state exponential fits to the correlation
functions. In the figures, the inner shaded region corresponds
to the statistical uncertainty in the fit, derived from the χ2

minimization, and the outer uncertainty corresponds to the
fitting systematic uncertainty combined in quadrature with
the statistical uncertainty. The fitting systematic uncertainty
is determined by varying the fitting interval over the extent of
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0

FIG. 4. The 68% confidence region associated with mπa(1S0) and
mπr (1S0) in the 1S0 channel. The inner region corresponds to statistical
uncertainties and the outer region corresponds to statistical and
systematic uncertainties combined in quadrature.

the plateau region and accommodating the range of central fit
values. The EMPs associated with the first excited state with
|P| = 1 are shown in Fig. 2. The correlation functions in the
L = 4.5 fm and 6.7 fm ensembles are not sufficiently precise
to provide a statistically meaningful phase shift, as the energies
are near singularities in Lüscher’s eigenvalue equation. This
demonstrates a significant difficulty in determining phase
shifts in large volumes where the poles of the eigenvalue
equation are collapsing to form the infinite-volume scattering
continuum. Table II shows the results extracted from the
lowest-lying continuum levels from each of the ensembles.

Below the inelastic threshold, at |k|2 = MNmπ + m2
π/4,

where k is the magnitude of the three-momentum of each
nucleon in the center-of-mass (CoM) frame, the s-wave
scattering amplitude can be uniquely described by a single
phase shift and more directly k cot δ. Near threshold, and more
generally, below the t-channel cut, k cot δ has a power-series
expansion in terms of the kinetic energy of the two-nucleons,

k cot δ = −1

a
+ 1

2
r|k|2 + P |k|4 + O(|k|6), (2)

called the effective range expansion (ERE), where a is the
scattering length (using the nuclear physics sign convention),
r is the effective range and P is the shape parameter. While the
range of possible values of the scattering length is unbounded,
the size of the effective range and shape parameter are set by
the range of the interaction. In Fig. 3, the extracted values of
k cot δ/mπ given in Table II for |P| = 0 and from the dineutron
binding energy are shown as a function of |k|2/m2

π . The three
points shown in Fig. 3 lie significantly below the t-channel cut
and so the ERE of k cot δ can be fit to define the phase shift
throughout this kinematic regime. With three points to fit,
two-parameter (left panel) and three-parameter (right panel)
fits to the ERE of k cot δ/mπ are performed and are shown as
the shaded regions in Fig. 3.

The successful description by a two-parameter fit indicates
small values of the terms that are higher order in the ERE,
consistent with what is observed at the physical pion mass.
The scattering length and effective range determined from the
two-parameter fit are

mπa(1S0) = 9.50+0.78
−0.69

+1.10
−0.80 , mπr (1S0) = 4.61+0.29

−0.31
+0.24
−0.26 , (3)
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FIG. 5. (Color online) The phase shift in the 1S0 channel. The left panel is a two-parameter fit to the ERE, while the right panel is a
three-parameter fit to the ERE, as described in the text. The inner (outer) shaded region corresponds to the statistical uncertainty (statistical
and systematic uncertainties combined in quadrature) in two- and three-parameter ERE fits to the results of the lattice QCD calculation. The
vertical (red) dashed line corresponds to the start of the t-channel cut and the upper limit of the range of validity of the ERE. The light (green)
dashed line corresponds to the phase shift at the physical pion mass from the Nijmegen phase-shift analysis [38].

corresponding to

a(1S0) = 2.33+0.19
−0.17

+0.27
−0.20 fm, r (1S0) = 1.130+0.071

−0.077
+0.059
−0.063 fm. (4)

The uncertainties associated with a(1S0) and r (1S0) are correlated,
and their 68% confidence region is shown in Fig. 4. The
uncertainty in the scattering length is asymmetric as it is
the inverse scattering length that is the fit parameter. The
shape parameter obtained from the three parameter fit to
the ERE expansion is consistent with zero: Pm3

π = −1+4
−5

+5
−8.

The scattering length and effective range extracted from the
three-parameter fit are consistent with the two-parameter fit,
but with larger uncertainties. A full quantification of the
theoretical error in the determination of the ERE parameters
requires more calculations than are currently available.

The phase shift below the t-channel cut can be determined
from these fit parameters, and is shown in Fig. 5, along with
the results of the LQCD calculations and the phase shift at
the physical values of the quark masses. We expect the phase
shift predicted by the ERE to deviate significantly from the
true phase shift near the start of the t-channel cut, and this is
indeed suggested by Fig. 5. Like the phase shift at the physical
point, the phase shift at the SU(3) symmetric point is found to
change sign at larger momenta, consistent with the presence
of a repulsive hard core in the NN interaction.

IV. NUCLEON-NUCLEON SCATTERING
IN THE 3S1-3D1 COUPLED CHANNELS

At the SU(3)-symmetric point, the deuteron is bound [13]
by B = 19.5(3.6)(3.1)(0.2) MeV which, as with the bound
dineutron in the 1S0 channel, provides a constraint on k cot δ.
The deuteron has a d-wave component induced by the tensor
interaction, however mixing between the s wave and the
d wave is higher order in the ERE and first appears at
the same order as the shape parameter [39]. Therefore,
while the scattering length and effective range are purely s
wave, the shape parameter is contaminated by the d-wave
admixture. The EMPs associated with the first excited states
with |P| = 0 are shown in Fig. 6, and with |P| = 1 are shown in
Fig. 7. The correlation functions calculated on the L = 6.7 fm
ensemble have energies that are too close to, or straddle, the
singularities of Lüscher’s eigenvalue equation and are not
useful in determining the phase shift. The results extracted
from the fits to the plateau regions in these EMPs are given in
Table III.

In Fig. 8, the extracted values of k cot δ/mπ given in
Table III and from the deuteron binding energy are shown as a
function of |k|2/m2

π . Following the procedure used to analyze
the results in the 1S0 channel, again with three points to fit,
two-parameter (left panel) and three-parameter (right panel)
fits to the ERE of k cot δ/mπ are performed and shown as the
shaded regions in Fig. 8. The scattering length and effective
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FIG. 6. (Color online) The EMPs of the first excited states with |P| = 0 in the 3S1 channel in the L = 3.4 fm, L = 4.5 fm, and L = 6.7 fm
ensembles, respectively. Twice the nucleon mass has been subtracted from the energy. The dark (light) shaded regions correspond to the
statistical uncertainty (statistical and systematic uncertainties combined in quadrature) of the fit to the plateau over the indicated time interval.
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FIG. 7. (Color online) The EMPs of the first excited states with |P| = 1 in the 3S1 channel in the L = 3.4 fm, L = 4.5 fm, and L = 6.7 fm
ensembles, respectively. Twice the nucleon mass has been subtracted from the energy. The dark (light) shaded regions correspond to the
statistical uncertainty (statistical and systematic uncertainties combined in quadrature) of the fit to the plateau over the indicated time interval.

range determined from the two-parameter fit are

mπa(3S1) = 7.45+0.57
−0.53

+0.71
−0.49 , mπr (3S1) = 3.71+0.28

−0.31
+0.28
−0.35 , (5)

corresponding to

a(3S1) = 1.82+0.14
−0.13

+0.17
−0.12 fm,

(6)
r (3S1) = 0.906+0.068

−0.075
+0.068
−0.084 fm,

and Fig. 9 shows the 68% confidence region for the extracted
values of a(3S1) and r (3S1). The shape parameter obtained from
the three parameter fit to the ERE expansion is consistent with
zero: Pm3

π = 2+5
−6

+5
−6. Again the scattering length and effective

range extracted from the three-parameter fit are consistent with
the two-parameter fit, but with larger uncertainties.

The phase shift below the t-channel cut can be determined
from these fit parameters, and is shown in Fig. 10, along with
the results of the LQCD calculations and the phase shift at the
physical point. As in the 1S0 channel, the phase shift predicted
by the ERE is expected to deviate significantly from the true
phase shift near the t-channel cut, and this is seen in Fig. 10.
Like the 3S1 phase shift at the physical point, and the phase
shift we have obtained in the 1S0 channel, the phase shift at
the SU(3) symmetric point is found to change sign at larger
momenta, consistent with the presence of a repulsive hard core
in the NN interaction.

V. NUCLEON-NUCLEON EFFECTIVE RANGES

Unlike the scattering length, the size of the effective range
and the higher-order contributions to the ERE are set by the
range of the interaction. The leading estimate of the effective
range for light quarks is r ∼ 1/mπ , and higher-order contri-
butions are expected to be suppressed by further powers of the

light-quark masses. It is natural to consider an expansion of the
product mπr in the light-quark masses. While the most general
form of the expansion contains terms that are nonanalytic in
the pion mass [40–43], for instance of the form mq log mq ,
with determinations at only two pion masses (including the
experimental value) a polynomial fit function is chosen,

mπr = A + Bmπ + · · · . (7)

In Fig. 11, the results of our LQCD calculations of mπr
are shown, along with the experimental value in each channel
and a fit to the form given in Eq. (7). While the uncertainties
in the lattice determinations are somewhat large compared to
those of the experimental determination, it appears that there
is modest dependence upon the light-quark masses. The fit
values are

A(1S0) = 1.348+0.080
−0.080

+0.079
−0.083 , B(1S0) = 4.23+0.55

−0.56
+0.59
−0.57 GeV−1,

A(3S1) = 0.726+0.065
−0.059

+0.072
−0.059 , B(3S1) = 3.70+0.42

−0.47
+0.42
−0.52 GeV−1.

(8)

The two-parameter fit is clearly oversimplistic, and more
precise LQCD calculations are required at smaller light-quark
masses to better constrain the light-quark mass dependence of
the effective ranges.

VI. FINE TUNINGS AND SU(4) SPIN-FLAVOR SYMMETRY

At the physical values of the quark masses, the deuteron
is an interesting system as it is much larger than the range of
the nuclear force. Its binding energy is determined by the pole
in the scattering amplitude in the 3S1-3D1 coupled channels. It
is known very precisely at the physical light-quark masses,
Bd = 2.224644(34) MeV, and recently LQCD calculations

TABLE III. Results from the lowest-lying continuum states in the 3S1 channel.

Ensemble |P| b�E |k|/mπ k cot δ/mπ δ (o)

243 × 48 0 0.0306(16)(23) 0.324(8)(12) 0.065+0.031
−0.029

+0.47
−0.40 78.6(4.7)(6.9)

243 × 48 1 0.142(23)(20) 0.6708(60)(54) −3.03+1.1
−4.0

+0.73
−9.3 −12.5+7.1

−6.9
+6.5
−6.1

323 × 48 0 0.0115(17)(23) 0.198(15)(19) −0.069(32)(43) 109(9)(13)

323 × 48 1 0.0788(24)(40) 0.496(9)(14) −1(13)(22)
483 × 64 0 − 0.0011(17)(24)
483 × 64 1 0.0153(30)(49) 0.200(27)(44)
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FIG. 8. (Color online) k cot δ in the 3S1 channel. The left panel is a two-parameter fit to the ERE, and the right panel is a three-parameter
fit to the ERE, as described in the text. The positive energy values are given in Table III and the negative energy value is determined from
the deuteron binding energy. The inner (outer) shaded region corresponds to the statistical uncertainty (statistical and systematic uncertainties
combined in quadrature).

of the deuteron binding have been performed at unphysical
light-quark masses [8,11,13,14]. Given that both the scattering
lengths and effective ranges calculated in this work are large
compared with the pion Compton wavelength (which naively
dictates the range of the interaction for light pions), we explore
the naturalness of the two-nucleon systems. In this context,
naturalness is defined by the length scales of the system
as compared to the range of the interaction. By contrast, a
fine-tuned quantity is one in which the length scales of the
system are unnatural over a small range of parameters of the
underlying theory.

The left panel of Fig. 12 gives the ratio of the scattering
length to effective range in the 3S1 channel as a function of the
pion mass. As the effective range is a measure of the range of
the interaction, this figure reveals that the deuteron is becoming
more natural at heavier light-quark masses. In the right panel
of Fig. 12, the deuteron binding momentum γd (related to the
binding energy by Bd = γ 2

d /MN ) normalized to the pion mass
is shown as a function of the pion mass. In the chiral regime
one would expect that that γd scales as m2

π as suggested by
effective field theory [44–51]. However, at the heavy up and
down quark masses used here, naive expectations based on

6 7 8 92.5

3.0

3.5
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4.5

5.0

m a 3S1

m
r

3 S
1

π

π

FIG. 9. The 68% confidence region associated with mπa(3S1) and
mπr (3S1) in the 3S1 channel. The inner region corresponds to statistical
uncertainties and the outer region corresponds to statistical and
systematic uncertainties combined in quadrature.

the uncertainty principle suggest that the deuteron binding
momentum, if natural, would scale roughly as the inverse of the
range of the interaction. As the ratio of γd to mπ as a function
of mπ is not constant, but rather is falling, we conclude that
pion exchange is no longer the only significant contribution
to the long-range component of the nuclear force, consistent
with the meson spectrum found at these quark masses.

While more precise calculations at these quark masses are
desirable, and LQCD calculations at other light-quark masses
and at other lattice spacings are required to make definitive
statements, the present calculations suggest that the deuteron
remains unnatural over a large range of light-quark masses.
This would imply that the unnaturalness of the deuteron
binding energy at the physical point is a generic feature of QCD
with three light quarks and does not result from a fine-tuning
of their masses. If subsequently confirmed, this would be a
very interesting result.

The 1S0 channel is unnatural at the physical point with
a very large scattering length, but the system appears to be
more natural at heavier pion masses. Nonetheless, as shown
in Fig. 13 (left panel), the scattering length is approximately
twice the effective range at a pion mass of mπ ∼ 800 MeV,
similar to the 3S1 channel. In the right panel of Fig. 13,
the dineutron binding momentum γnn (related to the binding
energy by Bnn = γ 2

nn/MN ) normalized to the pion mass is
shown as a function of the pion mass. As in the 3S1 channel,
it appears that the pion is not providing the only significant
contribution to the long-range component of the nuclear force.
However, in contrast to the 3S1 channel, the 1S0 channel
is clearly finely tuned at the physical light-quark masses.
The range of light-quark masses over which it is fine-tuned
requires further LQCD calculations to determine, and eventual
consideration of isospin violating effects due to light-quark
mass differences and electromagnetism. However, given the
experimental determinations of the nn, np and pp scattering
lengths, these effects are expected to be small.

It is interesting to note that the ratio of the scattering length
to the effective range in the two channels have very similar
values at the quark masses used in this work:

a(3S1)/r (3S1) = 2.06+0.22
−0.18

+0.25
−0.19 , a(1S0)/r (1S0) = 2.02+0.23

−0.19
+0.29
−0.18 ,

(9)
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FIG. 10. (Color online) The phase shift in the 3S1 channel. The left panel is a two-parameter fit to the ERE, while the right panel is a
three-parameter fit to the ERE, as described in the text. The inner (outer) shaded region corresponds to the statistical uncertainty (statistical
and systematic uncertainties combined in quadrature) in two- and three-parameter EREs fit to the results of the lattice QCD calculation. The
vertical (red) dashed line corresponds to the start of the t-channel cut and the upper limit of the range of validity of the ERE. The light (green)
dashed line corresponds to the phase shift at the physical pion mass from the Nijmegen phase-shift analysis [38].

and that the scattering lengths in the two channels, and also
the effective ranges, are within ∼20% of each other. In
the large-Nc limit of QCD, the nuclear forces in the two
spin channels are equal up to corrections suppressed by
O(1/N2

c ) [52], and the two channels transform in the 6 of
the Wigner SU(4) symmetry. In addition, inequalities for the
binding energies of light nuclei in the Wigner-symmetry limit
have been found in Ref. [53]. The closeness of the values of
the scattering parameters at mπ ∼ 800 MeV is consistent with
the expectations of the large-Nc limit of QCD.

VII. CONCLUSIONS AND DISCUSSIONS

We have presented the results of Lattice QCD calculations
of low-energy NN scattering phase-shifts and scattering
parameters at the SU(3) symmetric point with a pion mass
of mπ ∼ 800 MeV. For the first time, the effective ranges
of the NN interactions have been determined using lattice
QCD. The calculated scattering lengths and effective ranges
indicate that the pion is not the dominant contribution to the
long-range part of the nuclear force at these large light-quark
masses, as anticipated from the single-hadron spectrum. In
both spin channels, the NN phase shifts change sign at higher
momentum, near the start of the t-channel cut, indicating that
the nuclear interactions have a repulsive core even for heavier
quark masses. This suggests that the form of the nuclear

interactions, and the effective potentials that will reproduce the
scattering amplitude below the inelastic threshold, are qualita-
tively similar to the phenomenological potentials that describe
the experimental scattering data at the physical pion mass.

Both spin channels are, in a sense, more natural at mπ ∼
800 MeV, where both satisfy a/r ∼ +2.0, than at the physical
pion mass where a(1S0)/r (1S0) ∼ −8.7 and a(3S1)/r (3S1) ∼ +3.1.
The relatively large size of the deuteron compared with the
range of the nuclear forces may persist over a large range
of light-quark masses, and therefore might, in fact, not be
usefully regarded as a fine-tuning in nf = 2 + 1 QCD, but
rather a generic feature. The 1S0 channel, in contrast, is finely
tuned at the physical light-quark masses and it remains to be
seen over what range of masses this persists.

It is interesting to compare the 1S0 and 3S1 scattering lengths
found here at the SU(3) symmetric point to those resulting from
the few other lattice QCD calculation of the scattering lengths.4

At pion masses ranging between 354 and 493 MeV [3], both
scattering lengths are positive and approximately 1 fm. These
results are somewhat in contrast with the naive expectation
that the 3S1 scattering length will rise monotonically to its

4While there have been quenched determinations of the NN
scattering lengths, e.g., as presented in Refs. [1,2,5–7], the leading
contribution to the NN interaction in quenched QCD is unphysical
and unrelated to QCD [54].
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the normalized deuteron binding momentum versus the pion mass [8,11,13,14]. The black point denotes the experimental value.

physical value, and the 1S0 scattering length will approach
infinity, as the quark masses approach their physical values. A
conclusive resolution of this issue will of course have to await
results at lighter quark masses. The HALQCD collaboration
finds that both the deuteron and dineutron are unbound at the
heavier pion masses [12], in conflict with the results from
other groups [11,13,14], and hence the scattering lengths that
they find in these channels are incompatible with those found
in this work. For instance, at a somewhat heavier pion mass
of mπ ∼ 700 MeV, the scattering length in the 1S0 channel
has been determined to be a(1S0) = −1.6 ± 1.1 fm [55], which
is inconsistent at 1σ with our result at the SU(3) symmetric
point. For a recent review of the energy splittings calculated
in the two-nucleon sector prior to this work, see Ref. [56].

Our calculations were performed at a single pion mass with
one lattice spacing and in the absence of electromagnetic
interactions. It should be stressed that in the presence of
fine-tuning, as in the 1S0 channel at the physical point, lattice-
spacing artifacts can be enhanced with respect to expectations
based on naive dimensional analysis and scaling arguments. In
order to fully explore the behavior of the scattering phase shifts
and scattering parameters with fully quantified uncertainties,
along with the issues of spin-flavor symmetry and fine tunings,
calculations at multiple lattice spacings and smaller light-
quark masses are essential and are planned for the future.

ACKNOWLEDGMENTS

We thank R. Edwards and B. Joó for help with QDP ++ and
CHROMA [57]. We acknowledge computational support from

the USQCD SciDAC project, the National Energy Research
Scientific Computing Center (NERSC, Office of Science of
the US DOE, DE-AC02-05CH11231), the UW HYAK facility,
LLNL, the PRACE Research Infrastructure resource CURIE
based in France at the Très Grand Centre de Calcul, TGCC,
and the NSF through XSEDE resources under Grant No.
TG-MCA06N025. S.R.B. and P.J. were partially supported by
NSF continuing Grant No. PHY1206498. In addition, S.R.B.
gratefully acknowledges the hospitality of HISKP and the
Mercator program of the Deutsche Forschungsgemeinschaft.
The work of A.P. is supported by Contract No. FIS2011-24154
from MEC (Spain) and FEDER. H.-W.L. and M.J.S. were
supported in part by the DOE Grant No. DE-FG03-97ER4014
and by the NSF MRI Grant No. PHY-0922770 (HYAK).
K.O. was supported in part by DOE Grants No. DE-AC05-
06OR23177 (JSA) and No. DE-FG02-04ER41302. W.D. was
supported by the US Department of Energy under cooperative
research agreement Contract No. DE-FG02-94ER40818 and
by the DOE with the Outstanding Junior Investigator program,
No. DE-SC000-1784. The work of T.L. was performed under
the auspices of the US Department of Energy by LLNL
under Contract No. DE-AC52-07NA27344. The work of
A.W.L. was supported in part by the Director, Office of
Energy Research, Office of High Energy and Nuclear Physics,
Divisions of Nuclear Physics, of the US DOE under Contract
No. DE-AC02-05CH11231. M.J.S. thanks the Alexander von
Humboldt foundation for the award that enabled his visit to the
University of Bonn, and the kind hospitality of Ulf Meißner
and the Helmhotz-Institut für Strahlen- und Kernphysik at the
University of Bonn.

0 100 200 300 400 500 600 700 800 90010
8
6
4
2
0
2
4

a1 s
0
r1 s

0

Experiment
nf 3 NPLQCD

0 100 200 300 400 500 600 700 800 9000

0.1

0.2

0.3

0.4

nn
m

nf 3 NPLQCD
nf 0 Yamazaki et al.
nf 2 1 Yamazaki et al.
nf 2 1 NPLQCD

m MeVπ m MeVπ

π
γ

FIG. 13. (Color online) The left panel shows the ratio of the scattering length to effective range in the 1S0 channel. The right panel shows
the normalized dineutron binding momentum versus the pion mass [8,11,13,14].

024003-9



S. R. BEANE et al. PHYSICAL REVIEW C 88, 024003 (2013)

[1] M. Fukugita, Y. Kuramashi, H. Mino, M. Okawa, and A. Ukawa,
Phys. Rev. Lett. 73, 2176 (1994).

[2] M. Fukugita, Y. Kuramashi, M. Okawa, H. Mino, and A. Ukawa,
Phys. Rev. D 52, 3003 (1995).

[3] S. R. Beane, P. F. Bedaque, K. Orginos, and M. J. Savage,
Phys. Rev. Lett. 97, 012001 (2006).

[4] S. R. Beane et al. (NPLQCD Collaboration), Phys. Rev. D 81,
054505 (2010).

[5] N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99, 022001
(2007).

[6] S. Aoki, T. Hatsuda, and N. Ishii, Comput. Sci. Dis. 1, 015009
(2008).

[7] S. Aoki, T. Hatsuda, and N. Ishii, Prog. Theor. Phys. 123, 89
(2010).

[8] T. Yamazaki, Y. Kuramashi, and A. Ukawa (PACS-CS Collabo-
ration), Phys. Rev. D 84, 054506 (2011).

[9] T. Yamazaki, Y. Kuramashi, and A. Ukawa, Phys. Rev. D 81,
111504 (2010).

[10] P. de Forcrand and M. Fromm, Phys. Rev. Lett. 104, 112005
(2010).

[11] S. R. Beane et al. (NPLQCD Collaboration), Phys. Rev. D 85,
054511 (2012).

[12] T. Inoue et al. (HAL QCD Collaboration), Nucl. Phys. A 881,
28 (2012).

[13] S. R. Beane, E. Chang, S. D. Cohen, W. Detmold, H. W. Lin,
T. C. Luu, K. Orginos, A. Parreno et al. (NPLQCD Collabora-
tion), Phys. Rev. D 87, 034506 (2013).

[14] T. Yamazaki, K.-i. Ishikawa, Y. Kuramashi, and A. Ukawa,
Phys. Rev. D 86, 074514 (2012).

[15] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259, 572
(1985).

[16] S. R. Beane et al. (NPLQCD Collaboration), Phys. Rev. D 80,
074501 (2009).

[17] S. R. Beane et al. (NPLQCD Collaboration), Phys. Rev. Lett.
106, 162001 (2011).

[18] S. R. Beane et al. (NPLQCD Collaboration), Mod. Phys. Lett.
A 26, 2587 (2011).

[19] S. R. Beane, E. Chang, S. D. Cohen, W. Detmold, H.-W. Lin,
T. C. Luu, K. Orginos, A. Parreno et al. (NPLQCD Collabora-
tion), Phys. Rev. Lett. 109, 172001 (2012).

[20] W. Detmold, R. Edwards, B. Joo, T. Luu, S. Meinel, K. Orginos,
D. Richards, and A. Walker-Loud (unpublished).

[21] C. Morningstar and M. J. Peardon, Phys. Rev. D 69, 054501
(2004).

[22] R. Hoffmann, A. Hasenfratz, and S. Schaefer, PoS LAT 2007,
104 (2007).

[23] R. G. Edwards, B. Joo, and H.-W. Lin, Phys. Rev. D 78, 054501
(2008).

[24] S. Meinel (private communication).
[25] S. Basak et al. (Lattice Hadron Physics (LHPC) Collaboration),

Phys. Rev. D 72, 074501 (2005).

[26] S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, A. Parreno,
M. J. Savage, A. Torok, and A. Walker-Loud, Phys. Rev. D 79,
114502 (2009).

[27] C. Aubin and K. Orginos, AIP Conf. Proc. 1374, 621 (2011).
[28] K. Orginos, PoS LAT 2010, 118 (2010).
[29] S. R. Beane, W. Detmold, K. Orginos, and M. J. Savage,

Prog. Part. Nucl. Phys. 66, 1 (2011).
[30] M. C. Birse, arXiv:1208.4807.
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714, 535 (2003).
[47] S. R. Beane and M. J. Savage, Nucl. Phys. A 717, 91 (2003).
[48] E. Braaten and H.-W. Hammer, Phys. Rev. Lett. 91, 102002

(2003).
[49] V. V. Flambaum and R. B. Wiringa, Phys. Rev. C 76, 054002

(2007).
[50] J. W. Chen, T. K. Lee, C. P. Liu, and Y. S. Liu, Phys. Rev. C 86,

054001 (2012).
[51] M. E. Carrillo-Serrano, I. C. Cloet, K. Tsushima, A. W. Thomas,

and I. R. Afnan, Phys. Rev. C 87, 015801 (2013).
[52] D. B. Kaplan and M. J. Savage, Phys. Lett. B 365, 244 (1996).
[53] J. W. Chen, D. Lee, and T. Schaefer, Phys. Rev. Lett. 93, 242302

(2004).
[54] S. R. Beane and M. J. Savage, Phys. Lett. B 535, 177 (2002).
[55] N. Ishii et al. (HAL QCD Collaboration), Phys. Lett. B 712, 437

(2012).
[56] T. Doi (HAL QCD Collaboration), PoS LAT 2012, 009 (2012).
[57] R. G. Edwards and B. Joo, Nucl. Phys. Proc. Suppl. 140, 832

(2005).

024003-10

http://dx.doi.org/10.1103/PhysRevLett.73.2176
http://dx.doi.org/10.1103/PhysRevD.52.3003
http://dx.doi.org/10.1103/PhysRevLett.97.012001
http://dx.doi.org/10.1103/PhysRevD.81.054505
http://dx.doi.org/10.1103/PhysRevD.81.054505
http://dx.doi.org/10.1103/PhysRevLett.99.022001
http://dx.doi.org/10.1103/PhysRevLett.99.022001
http://dx.doi.org/10.1088/1749-4699/1/1/015009
http://dx.doi.org/10.1088/1749-4699/1/1/015009
http://dx.doi.org/10.1143/PTP.123.89
http://dx.doi.org/10.1143/PTP.123.89
http://dx.doi.org/10.1103/PhysRevD.84.054506
http://dx.doi.org/10.1103/PhysRevD.81.111504
http://dx.doi.org/10.1103/PhysRevD.81.111504
http://dx.doi.org/10.1103/PhysRevLett.104.112005
http://dx.doi.org/10.1103/PhysRevLett.104.112005
http://dx.doi.org/10.1103/PhysRevD.85.054511
http://dx.doi.org/10.1103/PhysRevD.85.054511
http://dx.doi.org/10.1016/j.nuclphysa.2012.02.008
http://dx.doi.org/10.1016/j.nuclphysa.2012.02.008
http://dx.doi.org/10.1103/PhysRevD.87.034506
http://dx.doi.org/10.1103/PhysRevD.86.074514
http://dx.doi.org/10.1016/0550-3213(85)90002-1
http://dx.doi.org/10.1016/0550-3213(85)90002-1
http://dx.doi.org/10.1103/PhysRevD.80.074501
http://dx.doi.org/10.1103/PhysRevD.80.074501
http://dx.doi.org/10.1103/PhysRevLett.106.162001
http://dx.doi.org/10.1103/PhysRevLett.106.162001
http://dx.doi.org/10.1142/S0217732311036978
http://dx.doi.org/10.1142/S0217732311036978
http://dx.doi.org/10.1103/PhysRevLett.109.172001
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.69.054501
http://dx.doi.org/10.1103/PhysRevD.78.054501
http://dx.doi.org/10.1103/PhysRevD.78.054501
http://dx.doi.org/10.1103/PhysRevD.72.074501
http://dx.doi.org/10.1103/PhysRevD.79.114502
http://dx.doi.org/10.1103/PhysRevD.79.114502
http://dx.doi.org/10.1063/1.3647217
http://dx.doi.org/10.1016/j.ppnp.2010.08.002
http://arXiv.org/abs/1208.4807
http://dx.doi.org/10.1007/BF01211097
http://dx.doi.org/10.1016/0550-3213(91)90366-6
http://dx.doi.org/10.1016/j.physletb.2004.02.007
http://dx.doi.org/10.1016/0550-3213(95)00313-H
http://dx.doi.org/10.1016/0550-3213(95)00313-H
http://dx.doi.org/10.1016/j.nuclphysb.2005.08.029
http://dx.doi.org/10.1016/j.nuclphysb.2005.08.029
http://dx.doi.org/10.1103/PhysRevD.72.114506
http://dx.doi.org/10.1103/PhysRevD.72.114506
http://dx.doi.org/10.1103/PhysRevD.84.114502
http://nn-online.org/
http://dx.doi.org/10.1016/S0375-9474(99)00298-5
http://dx.doi.org/10.1016/S0375-9474(99)00298-5
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/S0370-2693(98)00210-X
http://dx.doi.org/10.1016/S0370-2693(98)00210-X
http://dx.doi.org/10.1016/S0550-3213(98)00440-4
http://dx.doi.org/10.1016/S0550-3213(98)00440-4
http://dx.doi.org/10.1016/S0375-9474(01)01324-0
http://dx.doi.org/10.1016/S0375-9474(02)01268-X
http://dx.doi.org/10.1016/S0375-9474(02)01393-3
http://dx.doi.org/10.1016/S0375-9474(02)01393-3
http://dx.doi.org/10.1016/S0375-9474(02)01586-5
http://dx.doi.org/10.1103/PhysRevLett.91.102002
http://dx.doi.org/10.1103/PhysRevLett.91.102002
http://dx.doi.org/10.1103/PhysRevC.76.054002
http://dx.doi.org/10.1103/PhysRevC.76.054002
http://dx.doi.org/10.1103/PhysRevC.86.054001
http://dx.doi.org/10.1103/PhysRevC.86.054001
http://dx.doi.org/10.1103/PhysRevC.87.015801
http://dx.doi.org/10.1016/0370-2693(95)01277-X
http://dx.doi.org/10.1103/PhysRevLett.93.242302
http://dx.doi.org/10.1103/PhysRevLett.93.242302
http://dx.doi.org/10.1016/S0370-2693(02)01762-8
http://dx.doi.org/10.1016/j.physletb.2012.04.076
http://dx.doi.org/10.1016/j.physletb.2012.04.076
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254
http://dx.doi.org/10.1016/j.nuclphysbps.2004.11.254



