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We undertake a simultaneous partial wave analysis of proton-proton and neutron-proton scattering data below
the pion production threshold up to laboratory energies of 350 MeV. We represent the interaction as a sum of δ

shells in configuration space below 3 fm and a charge dependent one pion exchange potential above 3 fm together
with electromagnetic effects. We obtain a chi square value of 2813, for pp, and 3985, for nn, with a total of 2747
and 3691 pp and nn data, respectively, obtained till 2013 and a total number of 46 fitting parameters yielding a
chi square value by degree of freedom of χ 2/d.o.f = 1.06. Special attention is payed to estimate the errors of the
phenomenological interaction as well as the derived effects on the phase shifts and scattering amplitudes.
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I. INTRODUCTION

The nucleon-nucleon (NN ) interaction plays a central role
in nuclear physics (see, e.g., [1,2] and references therein).
The standard procedure to constrain the interaction uses a
partial wave analysis (PWA) of the proton-proton (pp) and
neutron-proton (np) scattering data below the pion production
threshold [3] although there are accurate descriptions up to
3 GeV for pp and 1.3 GeV for np [4]. The Nijmegen PWA
uses a large body of NN scattering data yielding a chi square
value by degree of freedom χ2/d.o.f � 1 after discarding
about 20% of 3σ inconsistent data, where σ is the standard
deviation [5] (see, however, [4] where χ2/d.o.f = 1.4 without
the 3σ criterium). This fit incorporates charge dependence
(CD) for the one pion exchange (OPE) potential as well as
electromagnetic, vacuum polarization and relativistic effects,
the latter being key ingredients to this accurate success. The
analysis was more conveniently carried out using an energy
dependent potential for the short range part. Later on, energy
independent high quality potentials were designed with almost
identical χ2/d.o.f ∼ 1 for the gradually increasing database
[6–9]. While any of these potentials provides individually
satisfactory fits to the available experimental data, an error
analysis would add a means of estimating quantitatively the
impact of NN -scattering uncertainties in nuclear structure
calculations. In the present paper we provide a high-quality
potential implementing an analysis of its parameter uncer-
tainties using the standard method of inverting the covariance
matrix [10].

The paper is organized as follows. In Sec. II we briefly
review the main aspects of the formalism. After that, in
Sec. III we present our numerical results and fits as well as our
predictions for deuteron properties and scattering amplitudes.
Finally, in Sec. IV we summarize our results and come to the
conclusions.
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II. FORMALISM

The complete on-shell NN scattering amplitude contains
five independent complex quantities, which we choose for
definiteness as the Wolfenstein parameters [3],

M(kf , ki) = a + m(σ1, n)(σ2, n) + (g − h)(σ1, m)(σ2, m)

+ (g + h)(σ1, l)(σ2, l) + c(σ1 + σ2, n) , (1)

where a,m, g, h, c depend on energy and angle; σ1 and σ2

are the single nucleon Pauli matrices; l, m, n are three unitary
orthogonal vectors along the directions of kf + ki , kf − ki ,
and ki ∧ kf ; and kf , ki are the final and initial relative nucleon
momenta, respectively. To determine these parameters and
their uncertainties we find that a convenient representation to
sample the short distance contributions to the NN interaction
can be written as a sum of δ shells:

V (r) =
18∑

n=1

On

[
N∑

i=1

Vi,n�riδ(r − ri)

]

+ [VOPE(r) + Vem(r)]θ (r − rc), (2)

where On are the set of operators in the AV18 basis [7], ri � rc

are a discrete set of N radii, and �ri = ri+1 − ri and Vi,n are
unknown coefficients to be determined from the data. The
VOPE(r) and Vem(r) functions in the r > rc piece are the
CD OPE potential and the electromagnetic (EM) correction,
respectively, which are kept fixed throughout. The solution
of the corresponding Schrödinger equation in the (coupled)
partial waves 2S+1LJ for r � rc is straightforward since the
potential reads

V JS
l,l′ (r) = 1

2μαβ

N∑
i=1

(λi)
JS
l,l′δ(r − ri) r � rc, (3)

with μαβ = MαMβ/(Mα + Mβ) the reduced mass with α, β =
n, p. Here, (λi)JS

l,l′ are related to the Vi,n coefficients by a linear
transformation at each discrete radius ri . Thus, for any ri <
r < ri+1 we have free particle solutions, and log-derivatives
are discontinuous at the ri radii so that one generates an
accumulated S matrix at any sampling radius providing a
discrete and purely algebraic version of Calogero’s variable
phase equation [17].
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This form of potential effectively implements a coarse
graining of the interaction, first proposed 40 years ago by
Aviles [18]. We have found that the representation (3) is
extremely convenient and computationally cheap for our PWA.
The low energy expansion of the discrete variable phase
equations was used already in Ref. [19] to determine threshold
parameters in all partial waves. The relation to the well-known
Nyquist theorem of sampling a signal with a given bandwidth
has been discussed in Ref. [20]. Some of the advantages
of directly using this simple potential for nuclear structure
calculations have also been analyzed [21].

The fact that we are coarse graining the interaction enables
us to encode efficiently all effects operating below the finest
resolution �r which we identify with the shortest de Broglie
wavelength corresponding to the pion production threshold,
λmin ∼ 1/

√
mπMN ∼ 0.55 fm, so that a maximal number of

δ shells N = rc/�r ∼ 5 (for rc = 3 fm) should be needed. In
practice, we expect the number of sampling radii to decrease
with angular momentum as the centrifugal barrier makes
irrelevant those radii ri � (l + 1/2)/p below the relevant
impact parameter, so that the total number of δ shells and hence
fitting strengths Vi,n will be limited and smaller than N = 5.

The previous discretization of the potential is just a way to
numerically solve the Schrödinger equation for any given po-
tential where one replaces V (r) → V̄ (r) = ∑

i V (ri)�riδ(r −
ri), but the number of δ shells may be quite large for fixed
strengths Vi ≡ V (ri). For instance, for the 1S0 wave and for the
AV18 [7] potential one needs N = 600δ shells to reproduce
the phase shift with sufficient accuracy (below 10−4 degrees)
but just N = 5 if one uses V (ri) as fitting parameters to the
same phase shift [21].

The EM part of the NN potential gives a contribution to the
scattering amplitude that must be taken into account properly
in order to correctly calculate the different observables. Each

term of the electromagnetic potential in the pp and np channels
needs to be treated differently to obtain the corresponding
parts of the total EM amplitude. The expressions for the
contributions coming from the pp one photon exchange
potential VC1, and the corresponding relativistic correction
VC2, are well known and can be found in [5]. To calculate the
contribution of the vacuum polarization term VV P we used the
approximation to the amplitude given in [22]. Finally, Ref. [23]
details the treatment of the magnetic moment interaction VMM

for both pp and np channels and the necessary corrections to
the nuclear amplitude coming from the electromagnetic phase
shifts.

III. NUMERICAL RESULTS

A. Coarse graining EM interactions

Of course, once we admit that the interaction below
rc is unknown there is no gain in directly extending the
well-known charge-dependent OPE tail for r � rc. Unlike the
purely strong piece of the NN potential the electromagnetic
contributions are known with much higher accuracy and to
shorter distances (see, e.g., Ref. [7]) so that one might extend
Vem(r) below rc adding a continuous contribution on top of
the δ shells, so that the advantage of having a few radii
in the region r � rc would be lost. To improve on this we
coarse grain the EM interaction up to the pion production
threshold. Thus, we look for a discrete representation on
the grid of the purely EM contribution Vem(r), i.e., we take
V̄em(r) = ∑

n V C
i �riδ(r − ri) + θ (r − rc)Vem(r), where the

V C
i are determined by reproducing the purely EM scattering

amplitude to high precision and are not changed in the fitting
process. The result using the EM potential of Ref. [7] just turns
out to involve the Coulomb contribution in the central channel
and the corresponding δ shell parameters λC

i = V C
i �riMp

TABLE I. Fitting δ shell parameters (λn)JS
l,l′ (in fm−1) with their errors for all states in the JS channel. We take N = 5 equidistant points

with �r = 0.6 fm. The symbol “−” indicates that the corresponding fitting (λn)JS
l,l′ = 0. In the first line we provide the central component of

the δ shells corresponding to the EM effects below rc = 3 fm. These parameters remain fixed within the fitting process.

Wave λ1 λ2 λ3 λ4 λ5

(r1 = 0.6 fm) (r2 = 1.2 fm) (r3 = 1.8 fm) (r4 = 2.4 fm) (r5 = 3.0 fm)

VC[pp]EM 0.02091441 0.01816750 0.00952244 0.01052224 0.00263887

1S0[np] 1.28(7) −0.78(2) −0.16(1) – −0.025(1)
1S0[pp] 1.31(2) −0.723(4) −0.187(2) – −0.0214(3)
3P0 – 1.00(2) −0.339(7) −0.054(3) −0.025(1)
1P1 – 1.19(2) – 0.076(2) –
3P1 – 1.361(5) – 0.0579(5) –
3S1 1.58(6) −0.44(1) – −0.073(1) –
ε1 – −1.65(1) −0.34(2) −0.233(8) −0.020(3)
3D1 – – 0.35(1) 0.104(9) 0.014(3)
1D2 – −0.23(1) −0.199(3) – −0.0195(2)
3D2 – −1.06(4) −0.14(2) −0.243(6) −0.019(2)
3P2 – −0.483(1) – −0.0280(6) −0.0041(3)
ε2 – 0.28(2) 0.200(4) 0.046(2) 0.0138(5)
3F2 – 3.52(6) −0.232(4) – −0.0139(6)
1F3 – – 0.13(2) 0.091(8) –
3D3 – 0.52(2) – – –
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TABLE II. Deuteron static properties compared with empirical values and high-quality potential calculations.

δ shell Empirical [11–16] Nijm I [6] Nijm II [6] Reid93 [6] AV18 [7] CD-Bonn [8]

Ed (MeV) Input 2.224575(9) Input Input Input Input Input
η 0.02493(8) 0.0256(5) 0.02534 0.02521 0.02514 0.0250 0.0256
AS (fm1/2) 0.8829(4) 0.8781(44) 0.8841 0.8845 0.8853 0.8850 0.8846
rm (fm) 1.9645(9) 1.953(3) 1.9666 1.9675 1.9686 1.967 1.966
QD (fm2) 0.2679(9) 0.2859(3) 0.2719 0.2707 0.2703 0.270 0.270
PD 5.62(5) 5.67(4) 5.664 5.635 5.699 5.76 4.85
〈r−1〉 (fm−1) 0.4540(5) 0.4502 0.4515

are given in the first line of Table I. As expected from the
Nyquist sampling theorem, we need at most N = 5 sampling
points which for simplicity are taken to be equidistant with
�ri ≡ �r = 0.6 fm between the origin and rc = 3 fm to
coarse grain the EM interaction below r � rc. Thus we should
have V

pp
i = V

np
i + V C

i if charge symmetry was exact in strong
interactions for r < rc, although some corrections are expected
as documented below.

B. Fitting procedure

In our fitting procedure we coarse grain the unknown short
range part of the interaction from the scattering data. We use
the (λi)JS

l,l′ ’s as fitting parameters and minimize the value of the
χ2 using the Levenberg-Marquardt method where the Hessian
is computed explicitly [24]. Actually, this is a virtue of our δ
shell method which makes the computation of derivatives with
respect to the fitting parameters analytical and straightforward.
As a consequence, explicit knowledge of the Hessian allows
for a faster search and finding of the minimum.

We start with a complete database compiling proton-proton
and neutron-proton scattering data obtained till 2007 [25–27]1

and add two new data sets till 2013 [28,29]. We carry out
at any rate a simultaneous pp and np fit for laboratory
(LAB) kinetic energy below 350 MeV to published data only.
Unfortunately, some groups of these data have a common but
unknown normalization. We thus use the standard floating [30]
by including an additional contribution to the χ2 as explained
in detail, e.g., in Ref. [9]. The extra normalization data are
labeled by the subscript “norm” below. We also apply the
Nijmegen PWA [5] 3σ criterion to reject possible outliers from
the main fit with a 3σ -confidence level, a strategy reducing
the minimal χ2 but also enlarging the uncertainties. Initially
we consider N = 2717|pp,exp + 151|pp,norm + 4734|np,exp +
262|np,norm = 2868|pp + 4996|np fitting data and get χ2

min =
3310|pp + 8518|np yielding χ2/d.o.f. = 1.51. Applying the
3σ rejection and refitting the remaining N = 2747|pp +
3691|np data we finally obtain χ2

min = 2813|pp + 3985|np
yielding a total χ2/d.o.f = 1.06.

While the linear relations of the (λi)JS
l,l′ and Vi,n param-

eters are straightforward, limiting the number of operators
On reduces the number of independent components of the
potential in the different partial waves. The fitting parameters
(λn)JS

l,l′ entering the δ-shell potentials as independent variables,

1The most recent np fit to these data was carried out in Ref. [9].

Eq. (3), are listed in Table I with their deduced uncertainties.
All other partial waves are consistently obtained from those
using the linear relations between (λi)JS

l,l′ and Vi,n. Our final
results allow us to fix the same pp and np potential parameters
with the exception of the central components of the potential
as it is usually the case in all joint pp + np analyses carried
out so far [5–8].

We find that introducing more points or equivalently
reducing �r generates unnecessary correlations and does not
improve the fit. Also, lowering the value of rc below 3 fm
requires overlapping the short-distance potential, Eq. (3), with
the OPE plus EM corrections. We find that independent fits to
pp and np data, while reducing each of the χ2 values, drive
the minimum to incompatible parameters and erroneous np
phases in isovector channels. Actually, the pp data constrain
these channels most efficiently and in a first step pp fits
where carried out to find suitable starting parameters for the
corresponding np phases. Quite generally, we have checked
that the minimum is robust by proposing several starting
solutions.

As a numerical check of our construction of the amplitudes
we reproduced the Wolfenstein parameters for the Reid93
and Nijm II potentials to high accuracy using N = 12 000
δ-shell grid points, which ensures the correctness of the strong
contributions. As a further check of our implementation of the
long-range EM effects along the lines of Refs. [5,22,23] we
have also computed the χ2/d.o.f. for Reid93, Nijm II, and
AV18 potentials (fitted to data prior to 1993) which globally
and binwise are reasonably well reproduced when our database
(coinciding with the one of Ref. [9] for np) includes only data
prior to 1993.

C. Comparing with other database

In order to check the robustness of our database against
other selections of data we take the current SAID world
database [26] where unpublished data are also included and
some further data have been deleted from their analysis
although the total number exceeds our selected data. If
we consider these NSAID = 3061|pp,exp + 188|pp,norm +
4147|np,exp + 411|np,norm = 3249|pp + 4558|np data (without
including their deleted data) we get for our main fit (without
refitting) the value2 χ2/NSAID = 1.65. Applying the 3σ

2We do not include 14 data of total pp cross section as our theoretical
model includes all long range EM effects with no screening and, as
is well known, the calculation diverges.
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FIG. 1. (Color online) From left to right, charge, magnetic and quadrupole deuteron form factors, as a function of the momentum transfer,
with theoretical error bands obtained by propagating the uncertainties of the np + pp plus deuteron binding fit (see main text). Note that the
theoretical error is so tiny that the width of the bands cannot be seen at the scale of the figure.
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FIG. 2. (Color online) np and pp phase shifts and their propagated errors (blue band) corresponding to independent operator combinations
of the fitted potential, as a function of the LAB kinetic energy. We compare our fit (blue band) with the PWA [5] (dotted, magenta) and the
AV18 potential [7] (dashed-dotted, black) which gave χ2/d.o.f � 1 for data before 1993.
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FIG. 4. (Color online) Same as in Fig. 3 but for ELAB = 100 MeV.
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FIG. 5. (Color online) Same as in Fig. 3 but for ELAB = 200 MeV.
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rejection to this database we get χ2/NSAID = 1.04. If in-
stead we fit our model to this database we initially get
χ2/d.o.f.|SAID = 1.31 which after the 3σ selection of data
becomes χ2/d.o.f.|SAID = 1.04.

D. Error propagation

We determine the deuteron properties by solving the
bound state problem in the 3S1 −3 D1 channel using the
corresponding parameters listed in Table I. The predictions
are presented in Table II where our quoted errors are ob-
tained from propagating those of Table I by using the full
covariance matrix among fitting parameters. The comparison
with experimental values or high quality potentials where the
deuteron binding energy is used as an input is satisfactory
[5–9].

The outcoming and tiny theoretical error bands for the
deuteron form factors (see, e.g., [31]) are depicted in Fig. 1 and
are almost invisible at the scale of the figure. The rather small
discrepancy between our theoretical results and experimental
form factor data is statistically significant and might be
resolved by the inclusion of meson exchange currents. In Fig. 2
we show the active pp and np phases in the fit with their
propagated errors and compare them with the PWA [5] and the
AV18 potential [7] which provided a χ2/d.o.f � 1. Note that
the J = 1 phases show some discrepancies at higher energies,
particularly in the ε1 phase, where it is about the difference
between the PWA and the AV18 potential. Likewise, in Figs. 3,

4, 5, and 6 we also show a similar comparison for the pp and
np Wolfenstein parameters for several LAB energies.

Finally, as the previous analyses [5–9] and the present paper
show, the form of the potential is not unique providing a
source of systematic errors. A step along these lines has been
undertaken in Ref. [32]. Thus, the uncertainties will generally
be larger than those of the purely statistical nature estimated
here.

IV. CONCLUSIONS

To summarize, we have determined a high-quality proton-
proton and neutron-proton interaction from a simultaneous
fit to scattering data and the deuteron binding energy with
χ2/d.o.f. = 1.06. Our short range potential consists of a few
δ shells for the lowest partial waves. In addition, charge-
dependent electromagnetic interactions and one pion exchange
are implemented. We provide error estimates on our fitting
parameters. Further details will be presented elsewhere.
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