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Rotational bands in the continuum illustrated by 8Be results
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We use the α-α cluster model to describe the properties of 8Be. The rotational energy sequence of the
(0+, 2+, 4+) resonances are reproduced with the complex energy scaling technique for Ali-Bodmer and Buck
potentials. However, both static and transition probabilities are far from the rotational values. We trace
this observation to the prominent continuum properties of the 2+ and 4+ resonances. They resemble free
continuum solutions although still exhibit strong collective rotational character. We compare with cluster models
and discuss concepts of rotations in the continuum in connection with such central quantities as transition
probabilities, inelastic cross sections, and resonance widths. We compute the 6+ and 8+ S-matrix poles and
discuss properties of this possible continuation of the band beyond the known 4+ state. Regularization of
diverging quantities is discussed to extract observable continuum properties. We formulate the division of
electromagnetic transition probabilities into interfering contributions from resonance-resonance, continuum-
resonance, resonance-continuum, and continuum-continuum transitions.
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I. INTRODUCTION

Rotational motion is well defined in classical physics,
where an inert structure rotates as a rigid body around its
center of mass. The two integrals of motion, energy and
angular momentum, are continuous quantities in classical
physics. In quantum physics the angular momentum is always
quantized by integer or half-integer quantum numbers, and the
energy assumes discrete and continuous values for bound and
unbound states, respectively. Furthermore, to exhibit rotational
motion quantum systems must have an intrinsic state deviating
from total spherical symmetry [1].

The signature of rotating quantum systems is a sequence of
excited states with energies following the J (J + 1) rule, where
J is the angular momentum quantum number. However, this
necessary condition is not sufficient because the underlying
wave functions for different J simultaneously must describe
the same rotating structure. The ratio of electromagnetic
transition probabilities from one of these states to another
is an observable given by simple geometric factors depending
only on the angular momentum quantum numbers. Thus, a
rotational band is defined as the sequence of states arising from
quantization of the rotational motion of an (almost) frozen
deformed structure [1].

The concept of quantum-mechanical rotational motion then
relies on discrete quantum states each described by a wave
function. Rotational states are abundant in molecules and
nuclei. In molecules numerous rotational states are present [1].
They extend to both high angular momenta and relatively high
excitation energies. The highly excited molecular resonant
states in, e.g., the 24Mg nucleus represent interesting com-
binations of molecular structures found in nuclei [2]. These
quasimolecular structures were already observed in the early
1960s in 12C + 12C elastic scattering reactions [3]. They are, in
general, very well defined even in the continuum where they
can decay through nonelectromagnetic channels, i.e., either
by a nonadiabatic molecular process or by electron emission
through a tunneling process. The coupling to vibrational

states is usually responsible for photon emission [4–6], as,
e.g., the E2 transitions discussed in the present paper. In
nuclear physics it has been customary to treat excited states
as bound states even when it is well known that they are
embedded in a continuum of states [7–9]. This includes the
many cases where spontaneous decays are measured [10–13]
and a width thereby attached to these resonances [14]. Such
approximations are usually very well justified, first of all
in experimental investigations where pronounced and narrow
peaks are detected. A measured width is a mixture of intrinsic
lifetime, reaction or decay times, and detector resolution,
but often the nuclear states are sufficiently stable to allow
population and extraction of the lifetime.

In theoretical treatments the bound-state approximation is
very convenient, because the continuum is much harder to
describe. Most calculations employ a restrictive basis where
the continuum does not enter, either because it is absent
from the start or because it has been discretized. In spite of
the many successes it is clear that resonance states do not
have a well-defined energy, and, in principle, they cannot
be described by a single wave function. The difficulties
increase with decreasing lifetimes (increasing widths) of these
continuum structures. At some point the widths are so large
that the state has disappeared into the continuum background.
However, much smaller widths already require clarification of
the concept and, in particular, of how rotational states can be
meaningfully understood.

This basic theme of continuum properties is unavoidable
in modern nuclear physics where far-off β stability and
excited states are in focus [10,15,16]. A few years ago a
B(E2) transition (4+ → 2+) was measured in 8Be [17] and
found to be consistent with previous calculations of both α-α
bremsstrahlung cross sections [18–20] and Green’s function
Monte Carlo B(E2) results [7]. However, both measurement
and theory were very far from the rotational prediction and
from comparable classical microscopic cluster model results;
see, e.g., Refs. [21,22]. This is in spite of the agreement in
the rotational energy sequence. Furthermore, all models agree
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on the pronounced deformed α-α cluster structure of the 8Be
nucleus [7,9].

Thus, even the simplest possible two-body nuclear structure
already presents the problem, which has to be related to the
behavior of continuum structures when the resonances are
unmistakably present but the widths are not negligibly small.
The problem may lie in the neglected polarization of the
intrinsic α structure for cluster models, precise definitions of
B(E2) values for continuum models, a spatially too-confining
basis in shell models, or a genuinely unexpected structure of
the resonance wave functions.

This paper is based on numerical results for two interacting
α particles. Because an α particle is a composite structure and
we repeatedly use the word “clusters” and various types of
related models, we specify our corresponding definitions. A
cluster is an entity of particles, which can be anything from
one genuine pointlike particle to a group of many correlated
particles, which preferentially effectively act collectively as
one particle. In the present context the cluster is a group
of bound particles with properties that essentially can be
described as one particle but perhaps with an intrinsic structure.
Specifically, we are here concerned only with the α particle
which, conceptually in the first intrinsic layer, consists of two
neutrons and two protons. The deeper-lying layers involve
virtual mesons and, further on, the quark-gluon intrinsic
structures of the nucleons.

Cluster models can then describe structures of (and perhaps
reactions between) clusters where few-body properties are
dominating. These properties may be derived from any of
the deeper layers of intrinsic structures. In this paper we
stay with pointlike α clusters, perhaps with finite radius,
and each with at most an underlying layer of four nucleons.
The Pauli principle is accounted for by an effective α-α
interaction. A classical cluster model is then naturally defined
as a model for pointlike interacting particles without any
intrinsic degrees of freedom and with an effective phenomeno-
logical interaction. In microscopic cluster models the effective
interaction is, in principle, derived from an approximation
to the nucleon-nucleon interaction and the Pauli principle. A
classical microscopic cluster model is a microscopic version
with an old, relatively simple, nucleon-nucleon interaction.

The purpose of this paper is to clarify the concepts of
rotational states in the continuum. Taking the case of 8Be as
an example, we pinpoint the problems, clarify the definitions,
show how to avoid pitfalls, and give the minimum requirements
for future model computations of continuum properties. In
Sec. II we briefly describe the basic ingredients, pertinent
formalism, notation, and definitions. Then in Sec. III we
discuss the calculated numerical results in connection with the
rotational model, that is, energies and transition probabilities.
In Sec. IV we discuss various features of the transition matrix
elements, validity conditions for appearance of collective
rotations, and rotational states in heavier nuclei. In Sec. V
we finally give a summary and the conclusions.

II. THE BASIC INGREDIENTS

The rotational energy sequence is defined by [1]

E� = E0 + h̄2�(� + 1)

2I , (1)

where � is the angular momentum and I is the moment of
inertia around the rotation axis. E0 is the energy of the lowest
state, � = 0, in the rotational band.

We aim to compute the decay probability, which is simply
related to the transition strength B(Eλ)(� → �′). We shall
now only consider λ = 2 with the intended application on
a system of two α particles described in the relative coordinate
system. The λ = 2 electric multipole transition is the lowest
transition possible and the contribution from λ = 4 is orders
of magnitude smaller. Generalization of the formalism to λ
values different from 2 is straightforward; see Ref. [20].

The immediate theoretical problem is that B(E2) for con-
tinuum transitions is not uniquely defined. It is necessary to
start with quantum mechanical observables and, from these,
define meaningful quantities to describe the desired decay
probabilities. One unavoidable requirement is that relations
between observables and derived quantities must be identical
to the established expressions in the limit of bound states and
very narrow resonances.

A. Cross sections

We begin with the differential cross section for emission of
a photon of energy Eγ , from an initial two-body continuum
state of energy E, arriving at a final continuum state of energy
E′. The differential cross section for this process is given
by [19,20]

dσ (E2)

dEγ

∣∣∣∣
�→�′

= π2Z2e2

15k2
(2� + 1)

(
Eγ

h̄c

)5

×
∣∣∣∣〈�0; 20|�′0〉

∫ ∞

0
u�(E, r)r2u�′(E′, r)dr

∣∣∣∣
2

,

(2)

where Z = 2 for two α particles, e2 = 1.4400 MeV fm, Eγ =
E − E′ is the energy of the emitted photon, � and �′ are the
relative angular momenta between the two particles in the
initial and final states, and k2 = 2μE/h̄2 (μ is the reduced
mass of the two-body system).

The radial wave functions u� and u�′ describe two-body
continuum structures, and they are solutions of the radial
two-body Schrödinger equation for the initial and final states,
respectively. They obey the large-distance boundary condition

u�(E, r)
r→∞−→

√
2μ

πh̄2k
[cos δ�F�(kr) + sin δ�G�(kr)] , (3)

where F� and G� are the regular and irregular Coulomb
functions, δ� is the nuclear phase shift, and the normalization
constant is determined by the orthogonality condition:∫ ∞

0
u�(E, r)u�(E′, r)dr = δ(E − E′). (4)

A delicate point in the calculation of the cross section refers
to the procedure employed to obtain the integral in Eq. (2). The
continuum wave functions do not drop off at infinity, and the
radial integrals oscillate with larger and larger amplitudes as
r increases. This presents a severe numerical challenge. To
overcome this problem we in this work employ the Zel’dovich
prescription [23], which introduces the regularization factor,
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e−η2r2
, in the radial integrand. This eliminates the many large-

amplitude oscillations at large distances which, in any case,
mathematically can be shown to cancel out. The correct result
is then obtained in the limit of zero value for the Zel’dovich
parameter η. Fortunately, this method removes the unwanted
large-distance oscillations and the remaining physical results
are uniquely defined, because they are stable for sufficiently
small values of η. A formal discussion of this kind of integrals
can be found in Refs. [24,25].

The total cross section for emitting a photon of any energy,
possibly confined to a pre-decided final-energy interval �E′,
is obtained by integration

σ
(E2)
�→�′(E) =

∫
�E′

dσ (E2)

dEγ

∣∣∣∣
�→�′
(E) dEγ , (5)

where we implicitly assume that E′ = E − Eγ . The confining
interval can be decided in a practical experimental measure-
ment, for example, as a window around a resonance energy
in the final state. This selects then approximately resonance
properties without continuum admixtures, although this, in
practice, easily becomes ambiguous at the desired level of
accuracy.

In the case of a transition into a bound state (u�′ describing
a bound state with a well-defined final energy), Eq. (2) is still
valid, with the only difference that the right-hand side of the
equation already gives the total cross section σ

(E2)
�→�′(E) instead

of the differential one [note that the different dimension of a
bound-state wave function compared to the one of a continuum
wave function, which can be seen, for instance, from Eq. (3),
makes the change dimensionally consistent]. For this particular
case of transition into a bound state the total cross section and
the strength function are related by the well-known expression

σ
(E2)
�→�′(E) = 2(2π )3

75

1

k2

(
Eγ

h̄c

)5

(2� + 1)
dB(E2)

dE
(� → �′),

(6)

which can be easily generalized to the case of transitions
between continuum states as

dσ (E2)

dEγ

∣∣∣∣
�→�′

= 2(2π )3

75

1

k2

(
Eγ

h̄c

)5

(2� + 1)
dB(E2)

dEdE′ (� → �′).

(7)

From Eqs. (2) and (7) we can easily identify

dB(E2)

dEdE′ (� → �′)

= 5e2

4π
〈�0; 20|�′0〉2

∣∣∣∣
∫ ∞

0
u�(E, r)r2u�′(E′, r)dr

∣∣∣∣
2

, (8)

which agrees with the standard definition,

dB(E2)

dEdE′ (� → �′)

=
∑
μ,m�′

∣∣〈��′,m�′ (E
′, r)

∣∣er2Y2,μ(
r )
∣∣��,m�

(E, r
〉∣∣2

, (9)

where now ��,m�
(E, r) = u�(E, r)Y�,m�

(
r )/r is the full
initial two-body wave function [and similarly for the final-state
wave function ��′,m�′ (E

′, r)].
In practical continuum calculations it is rather frequent to

employ some kind of discretization procedure. In this way the
continuum is described by a set of states with discrete energies
{Ei}, whose corresponding radial wave functions {u(i)

� (Ei, r)}
usually are normalized following the standard bound-state
rule: ∫ ∞

0
u

(i)
� (Ei, r)u(j )

� (Ej , r)dr = δij . (10)

Making use of the relation between the Dirac and Kronecker
δ’s [δij = lim�E→0 �E δ(Ei − Ej ), with �E the energy
separation between the two states] and the continuum nor-
malization rule, Eq. (4), it is possible to relate the continuum
(u�) and the discretized continuum (u(i)

� ) wave functions by

u
(i)
� (Ei, r) = lim

�E→0

√
�E u�(Ei, r), (11)

from which we have〈
u�(E, r)

∣∣u(i)
� (Ei, r)

〉 = lim
�E→0

√
�E δ(E − Ei). (12)

Finally, the expression above and the closure relation 1 =∑
i |u(i)

� (Ei, r)〉〈u(i)
� (Ei, r)| lead to

∣∣∣∣
∫ ∞

0
u�(E, r)r2u�′(E′, r)dr

∣∣∣∣
2

=
∑
i,j

δ(E − Ei)δ(E′ − E′
j )

×
∣∣∣∣
∫ ∞

0
u

(i)
� (Ei, r)r2u

(j )
�′ (E′

j , r)dr

∣∣∣∣
2

, (13)

which implies that, after discretization of the continuum,
the differential cross section Eq. (2) should be computed
with the replacement indicated in Eq. (13), where i and j
run over the discrete initial and final states, respectively.

Thanks to the δ functions, the integral Eq. (5) can be trivially
calculated, and we get for the integrated cross section

σ
(E2)
�→�′(E) = 4π2e2

15k2
(2� + 1)〈�0; 20|�′0〉2

×
∑
i,j

(
Eγ

h̄c

)5

δ(E − Ei)

×
∣∣∣∣
∫ ∞

0
u

(i)
� (Ei, r)r2u

(j )
�′ (E′

j , r)dr

∣∣∣∣
2

. (14)

In the same way that the integration Eq. (5) can be restricted
to final energies within some chosen final-energy window, in
Eq. (14) the summation over j can also be restricted to those
discrete final states whose energy E′

j is contained in the chosen
energy window. However, to reach a sufficient accuracy in the
calculation, it is necessary to have a significant amount of
discrete final energies within that window.

From Eqs. (8) and (13) it is also evident that after
discretization of the continuum the differential transition
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strength takes the form

dB(E2)

dE
(� → �′)

= 5e2

4π
〈�0; 20|�′0〉2

×
∑
i,j

δ(E − Ei)

∣∣∣∣
∫ ∞

0
u

(i)
� (Ei, r)r2u

(j )
�′ (E′

j , r)dr

∣∣∣∣
2

,

(15)

from which we can, in principle, integrate over E and obtain
the total transition strength,

B(E2)(� → �′)

= 5e2

4π
〈�0; 20|�′0〉2

×
∑
i,j

∣∣∣∣
∫ ∞

0
u

(i)
� (Ei, r)r2u

(j )
�′ (E′

j , r)dr

∣∣∣∣
2

, (16)

where again the summation over j could be restricted to the
chosen final-energy window.

For a given transition the total transition strength and the
decay probability, �γ , are related through

�(�→�′)
γ = 4π

75

(
Eγ

h̄c

)5

B(E2)(� → �′). (17)

B. Structure extraction as B(E2) values

In direct calculations B(E2) values could, in principle, be
obtained by use of expressions such as Eq. (15) or (16).
However, an indiscriminate sum over initial and final states
makes the result rather meaningless. The information about
resonance properties is completely washed out and, even
worse, weighted at the wrong energies. Furthermore, owing
to the undesired divergence produced by the soft-photon
contribution (E′ → E or E′

j → Ei) [20], the calculation itself
is pretty complicated.

Instead, it is necessary to return to the observable cross sec-
tions and then extract the transition strength from expressions
such as Eqs. (7) and (14). We have especially investigated two
rather different methods to obtain B(E2) values (see Ref. [20]).
The first assumes a Breit-Wigner shape of the cross section
[Eq. (5) or (14)] around the energy of the resonance in the
initial channel. The resonance width is energy dependent, but
at the resonance energy it has to be equal to the bare width
of the resonance. The matching to the computed cross section
provides the decay probability, �γ , which through Eq. (17)
immediately gives B(E2).

This method fundamentally assumes a Breit-Wigner shape
of the cross section. This is correct only in a rather narrow range
of energies around the resonance. This apparent restriction
is perhaps physically reasonable because it corresponds to
transitions between resonance peaks. The possibly undesired
background continuum contributions are then eliminated
(compare to the discussion in Sec. IV A).

The second method employs Eq. (7) by integrating over
the initial and final energies, E and E′, which run over

the chosen initial- and final-energy windows. If the photon
energy, Eγ , were constant, this would immediately provide a
B(E2) value. However, because this assumption is incorrect,
we must use an average value of E5

γ to extract B(E2). Thus, we
define

B(E2) ∝
∫

σ (E2)(E)dE〈
E5

γ

〉 , (18)

where Eγ is chosen as the difference between the energy
of the cross-section peak position and the energy of the
resonance in the final state. Again, this assumes information
about resonance positions but as with the first method (some
of) the continuum background contributions are eliminated.
Unavoidably, the sensitivity is noticeable to rather small
variations around a chosen Eγ owing to the power of 5 for
B(E2) transitions (see Ref. [20] for details).

These quantities are easily defined and measured for reac-
tions where bound states are involved, and model calculations
are numerous [1]. This bound-state limit is perfectly correct
and well defined. However, difficulties begin to pile up when
members of the rotational band reach into the continuum and
acquire a width for decay through channels that lead to states
outside the band. The energies may be relatively simply mea-
sured and analyzed as peaks with widths populated in reactions
or perhaps in decays from other channels [15]. Theoretical
techniques to deal with these problems are discussed in details
in Ref. [26].

Calculations of energies and γ widths are ambiguous in
the continuum, especially when the total width is large. An
efficient method that makes it possible to extract the energy and
width of resonances is the complex scaling method [27,28],
which after rotation of the radial coordinates into the complex
plane makes the resonances appear formally as bound states
with complex energy. The resonances obtained in this way
correspond to the poles of the S matrix, and the real and
imaginary parts of the complex energy describe, respectively,
the resonance position and half the width. The corresponding
complex rotated resonance wave function is also obtained by
this method.

It may then be illuminating to compare the B(E2) value
with those obtained by the precise resonance definition in the
complex scaling method. Here the resonance wave functions
are well defined and their (complex) energy difference as well.
This provides uniquely a resonance-to-resonance, complex
scaled B(E2) value. In principle, the full transition strength
Eq. (16) can also be computed within the complex scaling
framework [29]. However, although this method allows a
clean and precise extraction of the resonances, the contact
with the observable quantities is sometimes less direct. In
particular, when transitions involve continuum states, all the
difficulties arising from the description of the continuum states
themselves would mix with the interpretation of the complex
scaled transition strength, which, furthermore, is a complex
quantity.

III. PROPERTIES OF THE 8Be STATES

We have chosen to illustrate our understanding of con-
tinuum structures with 8Be, which is the simplest nontrivial
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two-body cluster nucleus. The effective interaction between
the two α particles is very well known from scattering
experiments and the subsequent analysis in terms of partial-
wave phase shifts. A number of potentials reproducing the
low-energy elastic scattering cross sections are available.
We employ the Buck potential [30] and version d of the
Ali-Bodmer potentials given in Ref. [31]. The Buck potential
has two spurious deep-lying α-α bound states for s waves and
one more for p waves. When necessary, the spurious states
can be removed by the construction of a phase-equivalent
potential [32].

The dependence of the transition probability on the poten-
tial is of basic interest, because the contributing parts of the
wave functions are expected to be at short distances. Identical
phase shifts reflect identical large-distance properties but with
different nodes at short distances. Thus, interaction-dependent
transition probabilities may arise. In other words, theB(E2) val-
ues could be able to distinguish between potentials of different
short-distance properties, that is, in particular, between Buck
and Ali-Bodmer potentials. However, as shown in Ref. [20],
the B(E2) transition strength shows very minor changes when
switching from one of the interactions to the other.

A. Energies and radii

The bosonic nature of the α particle constrains the possible
excited states to have even angular momenta and positive par-
ity. In Fig. 1 we show the phase shifts as a function of the
α-α relative energy for the � = 0, 2, 4, 6, 8 partial waves. The
solid and dashed curves correspond to the results obtained with
the Buck potential and the Ali-Bodmer potential, respectively.
The inset in panel (a) gives the extremely rapidly varying
s-wave phase shifts in the vicinity of the 0+ resonance energy
in 8Be. The computed phase shifts are remarkably similar for
both potentials, even for large relative angular momenta. The
computed 8Be spectrum is then expected not to change very
much from one potential to the other.
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FIG. 1. (Color online) Phase shifts (in degrees) as a function of
the α-α relative energy obtained with the Buck potential (solid curves)
and the d version of the Ali-Bodmer potential (dashed curves). The
results for � = 0 (a), � = 2, 4 (b), and � = 6, 8 (c) are shown. The
inset in panel (a) shows the phase shifts in the vicinity of the 0+

resonance in 8Be.

As already mentioned, the complex scaling method permits
an easy evaluation of the resonance energies and widths. The
results obtained for 8Be are given in Table I along with the
experimentally known resonance energies and widths [14].
The Buck and Ali-Bodmer potentials both, as expected from
the phase shifts, provide very similar spectra. Together with
the 0+, 2+, and 4+ states whose energies and widths reproduce
rather well the experimental values, both potentials predict a
6+ and an 8+ state at about 34 and 52 MeV, respectively. No
experimental evidence of these states is known. In any case, the
computed widths for these two last resonances are comparable
to their energies and, therefore, they cannot be considered as
well-defined resonances. A similar proportion between width
and energy as for the 2+ and 4+ states would for the same
energies give widths of about 2.5 times smaller values, that is,
13 and 21 MeV for the 6+ and 8+ states, respectively.

An important point to take into account is the fact that
the energy of the 0+ resonance is very sensitive to the
h̄2/mα value (with mα being the mass of the α particle)
used in the calculation. The experimentally known value
is h̄2/mα = 10.446 MeV fm2. This is used for all the
calculations with the Ali-Bodmer potential. However, when
the same value is used with the Buck potential [30] the
0+ resonance appears at 0.18 MeV, almost a factor of 2
higher than the experimental value. The potential parameters
given in Ref. [30] are therefore probably obtained with
h̄2/mα = 10.368 MeV fm2, which places the 0+ resonance
at the correct value. The effects on the 0+ resonance and the
s-wave phase shifts are given in Table I and the solid line in the
inset of Fig. 1(a). The other resonances (with � > 0) are much
less sensitive to this change in h̄2/mα . This original value is
maintained when the Buck potential is used in this paper.

The two-body potentials giving rise to all these resonances
are shown in Fig. 2. Together with the nuclear interaction (that
for the figure has been chosen to be the Buck potential) the
potentials shown in the figure contain as well the Coulomb
repulsion and the centrifugal barrier. For � = 0 the potential
barrier is hardly noticeable but the resonance energy is still
smaller and the state experiences an extremely thick barrier
leading to almost bound-state properties. For � = 2, 4 the
barrier is much higher and thinner but the energy is not far
from the top and the resulting widths are rather large. The
details of the different potential barriers are shown in the
inset. For � = 6, 8, the potentials are repulsive. It is therefore
surprising that the S-matrix poles apparently are well defined
and independent of the interactions, determined solely from
the phase shifts of the partial waves of smaller � values. For
this reason we include the results for � = 6, 8, although a
resonance description is a stretch of this concept.

With the complex rotated wave functions of resonances at
hand it is possible to compute the corresponding expectation
values of r2, which for resonances are complex numbers, in
contrast to the real values obtained for bound states even if the
corresponding wave functions have been complex rotated. As
discussed in Ref. [28], the real part of the expectation value
of a given complex rotated operator can be understood as a
corresponding average value over continuum wave functions
in a range of energies around the resonance. It is then tempting
to associate the imaginary part with an uncertainty of the same
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TABLE I. Properties of the five lowest computed resonances in 8Be. The first two rows give, when available, the corresponding experimental
energies, Er , and widths, �r , taken from Ref. [14]. The computed values with the Buck and Ali-Bodmer potentials are given by the third and
fourth rows, and by the fifth and sixth rows, respectively. All the energies and widths are given in MeV. The following four rows give, also for
the two α-α potentials, the real and imaginary parts of

√
〈r2〉, computed with the complex scaling method. These values are given in fm. The

rows marked E(0)
r , E(1)

r , and E(Z0)
r are rotational energies (in MeV) defined through Eq. (1) and the corresponding moments of inertia h̄2/(2I),

which are denoted by B0 (in MeV) when obtained by fitting the energies through Eq. (1), B1 when obtained from Eq. (19) with constant α-α
distance (Z0 = 3.0 fm), and BZ0 when obtained from Eq. (19) with angular-momentum-dependent α-α distance. While B1 takes the value of
0.621 MeV, B0 and BZ0 are angular momentum dependent and they are given in the table for each resonance (the values given for E(0)

r have
been obtained with B0 = 0.475 MeV; see text). The last row gives the excitation energies obtained in the microscopic cluster model [21].

J + 0+ 2+ 4+ 6+ 8+

Er (Exp.) 0.0918 2.94 ± 0.01 11.35 ± 0.15 – –
�r (Exp.) (5.57 ± 0.25)10−6 1.51 ± 0.02 ∼3.5 – –
Er (Buck) 0.091 2.88 11.78 33.55 51.56
�r (Buck) 3.6 × 10−5 1.24 3.57 37.38 92.38
Er (Ali-Bodmer d) 0.092 2.90 11.70 34.38 53.65
�r (Ali-Bodmer d) 3.1 × 10−6 1.27 3.07 37.19 93.74
Re

√
〈r2〉 (Buck) 5.61 3.51 2.93 2.82 2.76

Im
√

〈r2〉 (Buck) 0.01 1.29 0.82 1.44 1.77
Re

√
〈r2〉 (Ali-Bodmer d) 5.80 3.58 2.91 2.70 2.73

Im
√

〈r2〉 (Ali-Bodmer d) 0.001 1.24 0.76 1.40 1.73
E(0)

r = E0 + B0J (J + 1) E0 = 0.091 2.9 9.6 20.0 34.3
B0 – 0.475 0.563 0.807 0.721
E(1)

r = E0 + B1J (J + 1) E0 = 0.091 3.8 12.5 26.2 44.8
E(Z0)

r = E0 + BZ0J (J + 1) E0 = 0.091 3.2 12.9 28.5 49.1
BZ0 – 0.511 0.639 0.677 0.680
Er [21] – 3.8 13.5 30.5 49.7

expectation value. This is analogous to the energy associated
with the expectation value of the complex rotated hamiltonian.

In Table I the real and imaginary parts of 〈r2〉1/2 for the five
resonances found in 8Be with the two different α-α potentials
are shown. Again, both potentials give very similar values. We
refer to the imaginary parts as the uncertainty which according
to Refs. [25,28] arises from two sources; i.e., the finite width of
the state and the fact that the resonance wave function is not an
eigenfunction of the r2 operator. For the 0+ case the uncertainty
in 〈r2〉1/2 is very small, as it has to be for such a narrow
resonance. For the 2+ and 4+ states the uncertainty in the size
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FIG. 2. (Color online) Total two-body potential
(Buck potential + Coulomb repulsion + centrifugal barrier) for
the lowest angular momenta. The inset shows the details of the
potential barrier for � = 0, 2, and 4.

of the resonance is about three or four times smaller than their
average values, while for the 6+ and 8+ cases the uncertainty
increases up to half the average value. The computed real parts
of the average values of 〈r2〉1/2 are quite similar for the 4+, 6+,
and 8+ resonances. By increasing the relative orbital angular
momentum, the two α particles appear more and more spatially
confined, as discussed below in more detail. This apparent
confinement is in spite of the broad resonance structures arising
from being in the continuum, where extended spatial extension
intuitively is expected. It is worth emphasizing that the radii
discussed so far are well-defined theoretical quantities but they
are not observables. The expectation value of the operator r2

in a continuum wave function is infinitely large.
The three lowest resonance energies have traditionally been

interpreted as energies of a rotational band following the
behavior in Eq. (1) with a structure of two α clusters at a given
distance from each other. Therefore, the value of B0 = h̄2/(2I)
should be constant, and it could be extracted, for instance,
from Eq. (1) and the energy of the 2+ resonance. This gives
a value of B0 = 0.475 MeV, and the resulting energies of the
different levels in the rotational band become those denoted
by E(0)

r in Table I. In this case the energy of the 4+ resonance
appears at about 2 MeV below the measured (and computed)
value, and the energies of the 6+ and 8+ states are clearly
smaller than the computed ones. Obviously, the reason is that
the B0 value changes quite a lot when extracted by use of
the different resonance energies, as we can see in Table I.
The fact that B0 is clearly energy dependent suggests that the
structure of 8Be does not really correspond to a rigid rotor
system; i.e., it does not match with an almost frozen deformed
structure.
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In any case, if we still assume that the two α particles are
fixed at positions z = ±Z0/2 on the z axis, the rigid moment
of inertia Irig around the y axis is then given by

Irig = 1
2mαZ2

0 + 4
5mαR2

α, (19)

where mα is the mass of the α particle, 〈r2
α〉1/2 ≈ 1.7 fm is its

root-mean-square radius, and the corresponding sharp cutoff
radius is R2

α = 5/3〈r2
α〉. If we take a Z0 value of 3.0 fm we

then get B1 = h̄2/(2Irig) = 0.621 MeV, which is a kind of av-
erage of the four B0 values previously obtained. The estimates
of the resonance energies from Eqs. (1) and (19) are given in
Table I as E(1)

r . The agreement of this rotational sequence
with the experimental and computed values is not perfect but
perhaps acceptable.

The fact that the intrinsic structure of 8Be changes with
angular momentum is also evident from the root-mean-square
radii of the resonances. In other words, the moment of inertia
is also angular momentum dependent, and it can be obtained
for each resonance from Eq. (19) by simply assuming that
for each of them the two α particles are located at the
corresponding distances, Z0 = Re

√
〈r2〉. In this way, we get

the h̄2/(2Irig) values given in Table I as BZ0 , and the energy
sequence, Eq. (1), given by E(Z0)

r . They match very nicely
with the energies obtained directly by solving the two-body
problem with the corresponding α-α potential. The results for
the excitation energies from a classical microscopic cluster
model [21] are given in the last row of the table, and they
are remarkably similar although obtained with a completely
different two-body nucleon-nucleon potentials.

This latter result seems to confirm that the 8Be spectrum
has a rotational character. However, the best agreement has
been obtained by using different values of Re

√
〈r2〉 for Z0 for

each resonance. The moments of inertia are correspondingly
very different, and, surprisingly, the largest variation in√

〈r2〉 is found for the lowest two, 0+ and 2+, of the three
experimentally known states. This fact reveals that the idea of
8Be as a rigid rotor of two α particles separated by a given
distance is questionable. Only for the 4+, 6+, and 8+ states
does the distance remain roughly the same, and therefore also
Irig is more stable. However, it is worth emphasizing that the
intrinsic α-particle structure still is maintained, although the
particles are located at different separations.

B. Transitions

In Sec. II B we described two different methods to obtain
the transition strength B(E2) from the computed cross section
for a given transition. The first one assumes a Breit-Wigner
shape for the cross section in the vicinity of the resonance
energy for the incident channel. This fact makes it possible to
extract the decay probability �γ for that transition and, from
Eq. (17), obtain then the transition strength. We denote the
strength computed in this way as B(E2)

γ .
The second method constructs dB(E2)/dEdE′ by dividing

the differential cross section in Eq. (7) by the average value
of the photon energy and by the remaining constant factors.
Integration of the differential transition strength around the
peak of the resonance provides the total transition strength that
will be denoted as B(E2)

σ . In Fig. 3 we show the dB(E2)/dEdE′

FIG. 3. (Color online) Contour plots of the transition strength in
Eq. (8) as functions of initial-, E, and final-state, E′, energies. The
units are e2 fm4/MeV2. The Buck potential is used. Upper and lower
parts are for 2+ → 0+ and 4+ → 2+, respectively.

strength for the 2+ → 0+ and 4+ → 2+ transitions. The
distribution for the first case is a very thin slice of the given
final-state energy along the initial energy, both directions
extending roughly as far as the respective resonance widths.
This is for the same reason reflected in the contour plot of the
much broader 4+ → 2+ transition.

The transition strengths obtained with these two methods
depend on the energy window chosen around the resonance
energy in the final state. This window defines the integration
range for E′ in Eq. (5). In Ref. [20] the details about these two
methods are given, as well as the transition-strength values
obtained with them for different final-energy windows. We
have also found that the computed strengths are insensitive to
the two-body potential used, and, for this reason, from now on
only the results obtained with the Buck potential will be given.

In Table II we have collected the results obtained in
Ref. [20] for the 2+ → 0+, 4+ → 2+, 6+ → 4+, and 8+ → 6+
transitions for final energies E′ within the windows E′

r ± �′
r/2

and E′
r ± �′

r , where E′
r is the resonance energy in the final

channel and �′
r is its corresponding width. These results are in

fairly good agreement with the ones obtained in Refs. [18,19]
(eighth column in the table). However, the strength obtained for
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the 2+ → 0+ transition in quantum Monte Carlo calculations
[7] is clearly smaller, although similar to those in Refs. [18–20]
for the 4+ → 2+ case (ninth column in the table). The
results shown for the 4+ → 2+, transition are consistent
with the experimental value of 25 ± 8 e2 fm4 quoted in
Ref. [17].

An additional, and in a sense decisive, test of the rotational
character of the states in 8Be is provided by the total transition
strength given in Eq. (16). For rotational bands with an inert
intrinsic structure, the total strength for two inert α particles
at ±Z0/2 is [1]

B(E2)(� → �′) = 5e2

4π
Z4

0〈�020|�′0〉2. (20)

The spatial extension of the spherical α-particle distribution
does not enter this expression, in contrast to the moment of
inertia in Eq. (19). The different transition strengths are then
related by the expression

B(E2)(�i → �′
f )

B(E2)(�̃i → �̃′
f )

= 〈�i020|�′
f 0〉2

〈�̃i020|�̃′
f 0〉2

. (21)

The approximation in Eq. (21) is valid for rigorous rotational
bands, and therefore in particular also for two rotating α
particles where Eq. (20) applies. Comparing to Eq. (16) this
is seen to imply that the integrals should be independent of
the transition, which reflects that the radial wave functions
and then the intrinsic structure is the same for all the
states.

In the schematic rotational model of Eq. (20) we get all
the transition strengths for a given Z0. They are useful for
comparison and interpretation. We first choose a constant Z0 =
3 fm, which was the value chosen to obtain the sequence of
states denoted by E(1)

r in Table I. The strength values given by
Eq. (20) are shown in the sixth column of Table II. They are
clearly different from the B(E2) values obtained in Ref. [20],
no matter the size of the window used and the procedure used
to extract it. It is quite clear that the transition strengths do not
follow the rule dictated by the strict rotational model.

The same conclusion is reached when examining the
transition strength ratios. The value of 〈�i020|�′

f 0〉2 is 0.2,
0.29, 0.31, and 0.33 for the 2+ → 0+, 4+ → 2+, 6+ →
4+, and 8+ → 6+ transitions, respectively. When taking the
2+ → 0+ transition as a reference, the ratios given by the
rotational model, Eq. (21), are shown by the numbers within
parentheses in the sixth column of the table. The last three
transitions should then have a rather similar strength, which
in turn should be larger than the strength corresponding to the
2+ → 0+. Nothing of this happens with the α-α potentials.
The ratios obtained with the transition strengths in Ref. [20]
(given by the corresponding numbers within parentheses in
each of the columns in Table II) are clearly smaller, and
the maximum transition strength is actually obtained for the
2+ → 0+ transition.

The behavior predicted by the rotational model coincides
with the one found with the microscopic cluster model [21]
(tenth column in the table), although the absolute values are
about a factor of 3 different. This corresponds to a larger value
of Z0 ≈ 4 fm consistent with the spatial extension found in
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Ref. [21]. This resemblance of the rotational model and the
classical microscopic cluster model results is perhaps not very
surprising, because the α-α structure, after all, is imposed in
both cases.

However, the cluster model in Ref. [21] is based on a
generator coordinate description where angular momentum
projection before and after variation both start out with the
same α-α cluster structure. The different angular momentum
states are then related through a similar intrinsic structure,
which can be somewhat differently deformed depending
on angular momentum, but still the basic rotational model
assumptions are approached and almost fulfilled. In contrast,
the potential models with effective α-α interactions provide
independent solutions for each of the angular momenta. The
solutions are related only through the same central potential.

It is then clear that the radial integrals in Eq. (16) change
with angular momentum and produce unexpected transition
strengths. The different spatial structure of the resonances was
already seen when analyzing the 〈r2〉1/2 values, which, for
instance, for the 0+ case is about twice the value in the 4+, 6+,
or 8+ cases. In fact, in the previous section we saw that when
using different values for Z0 = Re

√
〈r2〉 for each resonance,

the energy sequence in 8Be was nicely reproduced. It is then
very tempting to check if the same good agreement is recovered
when using Z0 = Re

√
〈r2〉 for each resonance in Eq. (20).

More precisely we have chosen for each transition the Z0

value corresponding to the final-state resonance. The results
obtained are given in the seventh column of Table II. As we
can see, now the agreement with the results in Ref. [20] is
definitely much better, especially with the B(E2)

γ values when
using the E′

r ± �′
r final-energy window. As a consequence, the

corresponding ratios (numbers within parentheses) also agree
much better now. This result seems to confirm the conclusion
reached in the previous section, namely, that the 8Be spectrum
has a rotational character provided that the α-α distance is
angular momentum dependent. Still the principal α-cluster
structure is maintained.

IV. DISCUSSION

To discuss quantitatively we should preferentially apply
the method to specific systems as we did in the previous
sections. We here first discuss the radial dependence of wave
functions in the continuum. This is numerically simple by use
of the complex scaling method. However, the properties of the
corresponding complex rotated wave function then represent
only a part of the cross section. Other parts related to contin-
uum contributions are necessary to obtain the full observable
cross sections. Complex scaling mixes these contributions in
a complicated manner, but we expect the resonance structures
to be strongly indicative for the overall behavior.

To supplement we discuss instead the properties of the wave
functions and the resulting transitions for real energies, where
the interesting physics is hiding behind diverging integrals.
We continue to discuss basic conditions for the appearance of
rotational motion in two-body systems. We then turn high-spin
states created in heavy-ion collisions often claimed to be of
rotational structure.

A. Continuum resonance structures

The definition of transition probabilities is, in practice, not
well defined because the states are not well defined either in
the continuum. It is then interesting to know the results for
transitions between the rigorously defined resonance states
found by complex rotation. However, the probabilities are
then “rotated” into the complex values given in the last row
of Table II. The results in the present work do not depend
significantly on the potential, and we therefore only give the
results for the Buck potential. They are independent of rotation
angle, as required by well-defined resonances, but obviously
they cannot represent observable quantities. First, the results
are complex numbers. Second, they are only part of the full
observables, which include both resonance-to-resonance and
continuum background contributions [26,29].

The ratios of these partial transition probabilities (in
brackets in the last column in Table II) now show the same
behavior of the factor of 3 decrease from the 2+ → 0+ to the
4+ → 2+ transition as for the full calculation using only real
energies. The imaginary part is 10 times smaller than the real
part. However, the real parts of the next two ratios involving
the rather artificial 6+ and 8+ resonances increases almost in
line with the schematic rotational model. The imaginary parts
of these complex numbers are still a factor of 3 smaller than
the real parts of these ratios.

Therefore, the observable relative transition probabilities
for the first three resonances (not the last) in the first
columns of Table II are almost recovered in the complex
resonance-to-resonance relative transitions. These can, in
turn, be understood by their decreasing

√
〈r2〉 values of the

resonances as given in Table I. Thus, we can conclude that the
very large deviations from the rotational model arise from a
decreasing spatial extension of the 0+, 2+, and 4+ resonances.

However, an understanding of the properties obtained
entirely by calculations for real energies is much more
complicated. Nevertheless, we in the following attempt a
detailed explanation. The radial wave functions for the lowest
three resonances are shown in Fig. 4, both nonregularized and
multiplied by an appropriate Zel’dovich factor. In principle,
for a given value of the Zel’dovich parameter, the radial
wave functions should be accordingly renormalized, such that
Eq. (4) or (10) is restored. However, the wave functions are
already initially normalized, and when taking the limit of zero
η value the correct normalization condition is recovered faster
than the converged value of the radial integral. Therefore, in
practice the renormalization is not needed.

As seen in the figure, the 0+ state behaves as a bound state,
although tiny oscillations are visible at large distances before
the Zel’dovich cutoff becomes efficient [inset in Fig. 4(a)].
The two nodes at small distances are attributable to the deep
potential with two spurious strongly bound states.

For both the 2+ and 4+ resonances the oscillations are very
pronounced up to about 200 fm, where the Zel’dovich regu-
larized wave function essentially has vanished. The resonance
structures are visible only at very small distances, where the
first oscillation of each state inside the attractive region of the
potential has twice the amplitude of the second. Note that in
Fig. 4 only the radial wave functions u(r) are shown, while the
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FIG. 4. (Color online) The radial wave functions for the three
lowest resonances, 0+, 2+, and 4+, are shown as functions of r .
The solid and dashed curves correspond to the regularized and
nonregularized wave functions, respectively. The regularization has
been performed by introducing the Zel’dovich factor exp(−η2r2/2),
with η = 0.01 fm−1. The energy of each wave function is taken at the
center of the resonance, Er .

total radial wave function is actually given by u(r)/r . When
dividing by r we can see that the 0+ resonance behaves as a
bound state, and both the 2+ and the 4+ states reveal resonance
character only at distances smaller than about 5 fm. The period
in the oscillations in Fig. 4 depends only on the resonance
energies through the wave number, k =

√
2μE/h̄2, which

gives wavelengths of 2π/k ≈ 70, 12, and 6 fm, respectively.
The Coulomb barriers for these states extend correspondingly
to about 60, 10, and 5 fm; that is, the regular oscillations all
occur outside the barriers for positive kinetic energies.

The transitions are determined as integrals over radial wave
functions; see Eq. (16). We show in Fig. 5 the integrands
of the matrix elements for the lowest transitions for energies
corresponding to resonance peaks. The oscillations appearing
now are the results of combining the two oscillating wave
functions. Their different periods produce the different (from
the wave functions) but regular oscillations extending to about
200 fm. For 2+ → 0+; the revival after destructive interference
is seen before the Zel’dovich cutoff reduces the amplitude to be
insignificant. For 4+ → 2+, the amplitude increases to about
100 fm/MeV up to 100 fm and is, in fact, only a few fm/MeV
at small distances.

It is now highly significant that the integrals themselves
are only a few fm2/MeV. This means that the oscillations of
the integrands cancel to a very large extent, where it may be
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FIG. 5. (Color online) The radial integrands of the two lowest
transitions, 2+ → 0+ and 4+ → 2+, as functions of r after Zel’dovich
regularization with the factor (squared) in Fig. 4 and for the same
energies.

necessary to emphasize that a substantial range of Zel’dovich
parameters, η � 0.1 fm−1, produces precisely the same matrix
element. This is illustrated in Fig. 6, where the solid and dashed
curves show the integrals of the functions in Figs. 5(a) and 5(b),
but as a function of the Zel’dovich parameter η. As we can
see, for sufficiently small values of η, the computed integrals
become constant. The wave functions and the matrix elements
in Figs. 4 and 5 are shown for η = 0.01 fm−1, which reveal
the large-amplitude oscillations at rather large distances. A
variation of η from very small to large values, η ∼ 0.01 fm−1,
would move the damping of the wave functions in Fig. 4 and
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FIG. 6. (Color online) Differential cross section [Eq. (2)] for
given initial and final energies (E and E′) for the 2+ → 0+ (solid
curve) and 4+ → 2+ (dashed curve) transitions in 8Be as a function
of the Zel’dovich parameter η. The initial and final energies for each
transition correspond to the 0+, 2+, and 4+ resonance energies (same
energies as in Figs. 4 and 5). The inset shows the same as in the main
figure but with the η-axis in logarithmic scale.
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the oscillating structures in Fig. 5 down to smaller distances,
but still leaving untouched the small distance part of the wave
functions, where the resonance structure is contained.

It is then remarkable that the transition probabilities
between states of given energies are numerically well defined
to values much smaller than those corresponding to the large
amplitudes at large distances. However, to extract the decisive
short-distance properties of the resonance wave functions
is much more difficult. The cancellation at large distances
implies that these oscillations play only a minor role in
the determination of the transition probability. In fact, only
distances of less than about 5 fm contribute corresponding
to the spatial extension of the regions where the resonance
character is seen in Fig. 4. To be on the safe side, where the
matrix elements still can be reliably obtained numerically, we
choose the value of η = 0.01 fm−1 in all cases investigated in
the present work. More detail will be presented in Ref. [26].

If we use the complex scaling method, the oscillations
in Figs. 4 and 5 disappear altogether in the complex scaled
resonance wave functions, and radii and transition matrix
elements are well defined. This does not prevent larger
distances from giving significant contributions. The smaller
radii for larger angular momenta seen in Table I are the
opposite of the ordinary centrifugal stretching. This is related
to properties of real energy calculations where the increasing
widths of the resonances arise as they approach the tops of the
barriers. The states then approach free waves in most space.

The free wave oscillations are quickly approached in Figs. 4
and 5 before the Zel’dovich factor is applied. Only deviations
from the free wave can contribute to resonance properties,
and in turn to results for transition probabilities such as B(E2)

values. Therefore, the smaller the radii of the space exhibiting
deviations from free waves, the smaller are the radial moments,
and in turn the radial transition matrix elements also decrease.

To understand this a little better we turn to the asymptotic
behavior of the continuum wave functions in Eq. (3). Let us
first define the asymptotically vanishing function

ũ�(E, r) = u�(E, r) − u
asymp
� (E, r), (22)

u
asymp
� (E, r) = lim

r→∞ u�(E, r). (23)

The remaining function, ũ�, now contains the reso-
nance structure revealed at short distances, and traces
of the oscillating continuum structures are removed. The
precise asymptotic behavior from Eq. (3) is correct only for
pointlike charge distributions or at distances where the charges
do not overlap. At smaller distances the function in Eq. (3) is
incorrect and even diverges for distances approaching zero.
To get physically meaningful results we have to account for
the finite extension of the charges. This is easily done by a
regularization procedure or by extending the Coulomb wave
functions down to zero by combinations of sine and cosine
functions as in the case of no Coulomb interaction or from
the corresponding asymptotic limit of the Coulomb functions.
We choose first the true asymptotics from Eq. (3) and show in
Fig. 7 the three resonance wave functions, u (dashed curves),
and their asymptotic behavior (solid curves), as function of
r . At distances larger than 5 fm the full and the asymptotic
wave functions are indistinguishable. This is in full agreement
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FIG. 7. (Color online) The solid curves show the asymptotic wave
function, Eq. (3), for the three lowest resonances, 0+, 2+, and 4+. The
corresponding radial functions u(r), already shown in Fig. 4, are given
by the dashed curves. The energy of each wave function is taken at
the center of the resonance, Er .

with the resonance radii in Table I and Fig. 4, as well as the
discussion in connection with the transition matrix elements
in Fig. 5.

The division into short and asymptotic parts in Eqs. (22)
and (23) is now directly applicable in a separation of
contributions from the different parts. This is highly desirable
in analyses of experimental data using the R-matrix formu-
lation where any continuum contribution appears as spurious
resonances strongly depending on the channel radius. We can
calculate the radial transition matrix element, B�,�′(E,E′) =
〈u�(E, r)|r2|u�′(E′, r)〉, which naturally is divided into four
types of terms involving short-distance and asymptotic parts
in different combinations, i.e.,

B
(sh,sh)
�,�′ = 〈ũ�(E, r)|r2|ũ�′(E′, r)〉, (24)

B
(sh,as)
�,�′ = 〈ũ�(E, r)|r2

∣∣uasymp
�′ (E′, r)

〉
, (25)

B
(as,sh)
�,�′ = 〈

u
asymp
� (E, r)

∣∣r2|ũ�′(E′, r)〉, (26)

B
(as,as)
�,�′ = 〈

u
asymp
� (E, r)

∣∣r2
∣∣uasymp

�′ (E′, r)
〉
, (27)

B�,�′ = B
(sh,sh)
�,�′ + B

(sh,as)
�,�′ + B

(as,sh)
�,�′ + B

(as,as)
�,�′ , (28)

where the notation of the contributions to B�,�′ refers to
short-distance and asymptotic combinations. A tempting
interpretation is the correspondence of contributions from

024001-11



E. GARRIDO, A. S. JENSEN, AND D. V. FEDOROV PHYSICAL REVIEW C 88, 024001 (2013)

respectively resonance to resonance (sh,sh), resonance to con-
tinuum (sh,as), continuum to resonance (as,sh), and continuum
to continuum (as,as).

At very large distances the wave functions u� are governed
by a combination of sine and cosine functions of (κr), as can
be seen from Eq. (3). The terms of the type B

(as,as)
�,�′ contain

then in the integrand products of two sine functions, two
cosine functions, or one sine and one cosine function. These
integrals are therefore not well defined unless the Zel’dovich
regularization is applied. When done, we obtain vanishing
results both when two sin(κr)-type and two cos(κr)-type
functions are combined, whereas finite results emerge when
products of sin(κr) and cos(κ ′r) functions appear (or the other
way around). These conclusions assume that E �= E′. All
other terms in B�,�′ have the ũ functions as factors, and the
corresponding integrals are convergent and well defined.

One immediate consequence is that B
(as,as)
�,�′ is zero when

initial- and final-state wave functions both correspond pre-
cisely with resonance states, where the phase shifts are π/2.
The products of the asymptotic parts are equal to zero because
cos(π/2) = 0, and only terms of the type cos(κr) survive in
the asymptotic part of the wave function. Therefore, only
terms where the ũ wave functions enter give nonvanishing
contributions to B��′ . This is illustrated in Fig. 8(a), where we
plot B4+,2+ (E,E′) as a function of the final energy E′ and for
an initial energy of E = 12.531 55 MeV, which corresponds
to a 4+ phase shift equal to π/2. The total value is shown
by the solid curve. The B

(as,as)
4+,2+ contribution is given by the

short-dashed curve, which is very small for all the final energies
shown, and it is particularly close to zero in the vicinity of
E′ = 3.33 MeV, which is the value at which the 2+ phase shift
is π/2.

This is consistent with our classical intuition where res-
onances are located in the continuum with large amplitudes
at short distances and comparably small and noncontributing
amplitudes at large distance. Still, even here the terms B

(as,sh)
�,�′

and B
(sh,as)
�,�′ are nonvanishing, although only relatively short

distances can contribute owing to the ũ functions. These
terms may represent unavoidable continuum background
contributions as can be seen in Fig. 8(a), where especially
the (sh,as) contribution (dot-dashed curve) is very significant.
The interference between the different contributions is very
substantial. However, the contributions must arise from radii
where the ũ functions are finite; that is, the large-amplitude
oscillation seen in Fig. 5 necessarily cancels completely.

When the initial- and final-state energies differ from
the resonance energies the B

(as,as)
�,�′ contribution is then not

identically equal to zero, although it is well defined after
the Zel’dovich regularization. This is shown in Fig. 8(b),
where the initial energy (E = 8 MeV) does not correspond
to any 4+ resonance. The interference contribution is again
substantial. In this case the (as,as) contribution (short-dashed
curve) is clearly relevant, although the major contribution
from the asymptotic part is again the (sh,as) one, given by
the dot-dashed curve.

We are now equipped to summarize the validity of the
ordinarily used long-wavelength approximation, where the
contributing radii should be smaller than the inverse of
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FIG. 8. (Color online) Radial transition matrix element
B�,�′ (E,E′) for the 4+ → 2+ transition as a function of the final
energy E′. The total transition matrix element is given by the solid
curve. The (as,as), (sh,sh), (sh,as), and (as,sh) contributions are shown
by the short-dashed, long-dashed, dot-dashed, and dotted curves,
respectively. In panel (a) the initial energy is E = 12.531 55 MeV for
which the 4+ phase shift is equal to π/2. In panel (b) the initial energy
(E = 8 MeV) has been chosen to be outside the 4+ resonance peak.

the wave number. The total resonance wave function in
Fig. 4 reveals a larger amplitude at small distances than
for the asymptotic oscillations. This is more clearly seen in
Fig. 7, where the deviation between full and asymptotic wave
functions are shown. The radial extension is in agreement with
the root-mean-square values of the resonances given in Table I.
The contribution to the matrix elements arise from rather small
distances as seen by comparing amplitudes of the integrand in
Fig. 5 with the very much smaller integrated result. The large
large-distance oscillations must therefore essentially cancel.

The nonvanishing values of ũ necessary to get contributions
are confined to radii less than 5 fm, as seen in Fig. 7. This is
much smaller than the smallest contributing wavelength of
25 fm arising from the largest contributing photon energy of
10–12 MeV. The estimate of the contributing photon energy
interval can be seen in Fig. 3, where we show the distribution
of strength for the transition cross sections from given initial-
to final-state energies. The bulk contributions are concentrated
in peaks corresponding to a photon energy of substantially
less than 12 MeV in the worst case of the tail of the 4+ → 2+
transition. Thus, the long-wavelength approximation is rather
accurate.
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B. Validity of the rotational model

The classical rotation of an isolated inert system is char-
acterized by its kinetic energy, which can be expressed as
either the square of the angular momentum divided by twice
the moment of inertia around the rotation axis or half of the
square of the rotation frequency times the same moment of
inertia.

The convenient quantum mechanical version is in terms
of the conserved and quantized angular momentum. An ideal
analog is then a two-body cluster structure with a strongly
attractive one-dimensional δ-shell potential such as δ(r − Z0).
The ground-state wave function of zero angular momentum
is localized at the relative distance r = Z0. This corresponds
to an intrinsic wave function localized in one point, z = Z0,
and averaged with equal weights over all spatial directions. For
finite angular momentum, �, the energy is increased by h̄2�(� +
1)/(2I), where I = μZ2

0 . The relative distance for a bound
state would still be Z0, and the use of relative coordinates
requires the use of the reduced mass μ. The rotational spectrum
is then recovered.

For an attractive potential of finite range such as a square
well or a Gaussian potential, the rotational structures do not
automatically appear. A repulsion at short distance and a
confining barrier at larger distances would lead to a potential of
δ-shell character. If it is deep enough the rotational spectrum
would then again arise. These repulsive potentials could, in
principle, be provided by a Coulomb interaction between
pointlike particles. Both short- and long-range repulsions
would appear. However, these barriers are very easily either
small or not present at all.

Conditions for a rotational spectrum with only an attractive
finite-range potential can be seen by use of simple potentials.
The harmonic oscillator potential gives energies linear in �,
while the energies for a spherical square well potential are
more promising. For a deep-lying bound state the boundary
condition is approximately, j�(κR) = 0, where j� is the
spherical Bessel function of order �, R is the radius, and
κ the wave number. The nodes of these Bessel functions
approach (� + 1/2)[1 + 1.86/(� + 1/2)2/3] for large �, and
the corresponding energies found from the square of κ are
then approaching (� + 1/2)2, which is the semiclassical analog
of �(� + 1). Thus, in this limit the rotational spectrum also
emerges, and three levels of the rotational sequence can
approximately be reproduced with one free parameter such
as the radius or the moment of inertia. Then we conclude that
if a flat potential is sufficiently deep then the rotational energy
sequence arises. This reflects the classical knowledge that the
kinetic energy is responsible for the rotational character of a
system described by a rotational invariant Hamiltonian. The
other limit, where the potential is unable to support bound
states of nonzero or moderate angular momenta, is for the
same reason not necessarily of rotational character. It is then
somewhat surprising that the 8Be states to some extent reveal
this character even as resonances.

For states deeply bound in a short-range attractive potential
the centrifugal barrier term is comparatively small and the
radial wave functions are expected to be roughly independent
of �. Then the rotational sequence of transition probabilities

would be approximately obeyed. However, these states must be
strongly bound, and certainly not simply unbound resonance
structures in the continuum. We can then conjecture that the
rotational model for a two-body inert structure is valid for
very strong short-range attractions and, vice versa, invalid
when the attraction becomes comparable to the centrifugal
barrier term.

It is still not excluded that resonance structures approxi-
mately could obey the necessary independence of the radial
integrals to validate the rotational transition sequences. The
regularization of the continuum wave functions influences
the corresponding radial integrals but it is not obvious that
the higher-lying energy and angular momentum states are
less spatially extended. The explanation is that the oscillating
behavior appears at shorter distances when the state is closest
to the barrier. The regularization removes the corresponding
contribution by subtraction of the diverging large-distance part
of the wave function. The result is decreasing radial integral
and increasing deviation from the rotational model. This could
be an artifact of the present procedure but the measured datum
confirms this interpretation. It is therefore highly interesting
to obtain more experimental data for verification or possibly
falsification of the present interpretation.

We should finally emphasize that the presence of other
types of excitation also may destroy the validity of the
pure rotational model. Such bound states or resonances are
abundantly arising from intrinsic degrees of freedom or other
collective motion, such as vibrations. Effective decoupling of
rotational states from other excited states would be achieved
when the excitation energies of the rotations are much lower
than all other excitations. However, this cannot continue
indefinitely to high excitations where other degrees of freedom
may be excited as well. For comparable energies the coupling
producing mixed states can be very moderate and the pure
pictures are no longer valid. It is still possible to have rotational
states at relatively high energy provided that other degrees of
freedom either produce excited states far away and of much
larger energy separation than the rotations or, in practice,
decouple owing to, e.g., disparate structures of all other excited
states of comparable excitation energies.

C. Rotational states of heavy nuclei

The fact that a large number of nuclear spectra exhibit
rotational structure [1,33] demands an explanation. The heavy-
ion populated high-spin states reach more than 50 units of
h̄. Many different high-spin bands apparently appear in the
same nucleus; a typical example can be found in Ref. [34].
Transitions are measured between intra-, as well as inter-,
band members. Still, the interpretation is in terms of rotational
bands.

As discussed above, the validity of the rotational model
seems to rely on an effectively strong binding, which allows
the exited states to be strongly bound as well. This is achieved
for nuclear states where lifetimes or widths are determined or
dominated by photon emission processes. Any other decays
such as fission and nucleon and cluster emission are then
strongly hindered. A barrier must then effectively be present
in all other decay channels than photon emission. The result is
that the nucleus then must behave as a strongly bound system.
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This apparent strong binding can be directly attributable
to a huge barrier against decay as, for example, fission of
intermediate mass nuclei. A barrier may also be effectively
present if restructuring is required to arrive at the final decay
product as, for example, for α emission of nuclei without traces
of α clustering.

The pronounced rotational structures are also first of all
found for relatively small energies. The numerous high-spin
states and the abundantly experimentally obtained rotational
spectra do not necessarily contradict this interpretation.

The transition probabilities for the high-spin states also
often do not follow the rotational model that well. There
is always the centrifugal stretching, higher order corrections
even to the rotational energy spectra, deformation and pairing
variations, etc. [1,33]. Furthermore, if the preferred decay
channel is fission or particle or cluster emission, the large
width of the states prohibits accurate direct measurement
of the transition probabilities. Such states may possibly be
members of a rotational sequence of energies, but their photon
emission probabilities are not observables. A full population
and decay history in terms of cross sections are required to get
a meaningful description as in the case of 8Be discussed in this
paper.

V. SUMMARY AND CONCLUSION

We investigate the simplest structure able to exhibit
quantum mechanical rotational motion: two spin-zero inert
α particles. We first sketch the formalism which is precisely
valid for bound states, but present increasing problems as
the continuum properties becomes more pronounced. We first
explain that it is absolutely necessary to use observables for
continuum calculations. The structure information via the
B(E2) values cannot be obtained directly without very severe
restrictions to energies around the resonances between which
the transition occurs.

Staying with observables has the positive implication that
direct comparison with measurements is possible. However,
the structure information is then hidden in pieces of the
observables. One conclusion is therefore that structure and
reaction cannot be disentangled and we have to live with
this lack of information about the continuum structures.
We show that it is possible to derive structure information,
although the results are inherently uncertain owing to the
unavoidable use of nonobservable quantities. We describe two
procedures to derive the nonobservable B(E2) values which
contain information about the structure of the resonances.

We show that the rotational energy sequence and cor-
responding radii are followed by the resonances. However,
in contrast, the transition probabilities deviate substantially
from the rotational model predictions. First, this is not
attributable to the uncertainties arising from the extraction
of these nonobservable continuum properties. It is also not at-
tributable to neglect of intrinsic α structure, α polarization
or effective charges, or centrifugal stretching effects. The
deviations are traced to an unexpected radial dependence of the
relative resonance wave functions. They contract as the barrier
is approached, and the only experimental point confirms this
result. However, it is worth emphasizing that the corresponding

continuum wave functions are a priori non-normalizable.
A suitable regularization procedure is necessary to extract
observable quantities, which in turn can be related to the
mentioned radial contraction.

In classical cluster models the rotational predictions are
followed much more accurately, as these models resemble
rigid rotors. Modern variational or shell-model calculations
often treat the resonances as bound states. These calculations
therefore altogether unphysically avoid the problems con-
nected to continuum properties. The results are an uncontrolled
average comparable to those of proper continuum models but
the tendencies do not point in one direction.

Our results are independent of the potentials employed
as long as the low-energy α-α phase shifts reproduce the
measured values. This is somewhat surprising as the transition
operator seems to be sensitive to the contributing short-
distance properties of the wave functions. The potentials are
only marginally able to hold resonances, and, for example,
� = 4 is even higher than the barrier but still clearly revealing
a pole in the S matrix. This is, strangely enough, also the
case for � = 6, 8, where the widths are huge and normally
would contradict a description as resonance states. A better
interpretation is in terms of a broad background contribution
at these energies.

The many known low-energy rotational states in intermedi-
ate and heavy nuclei presumably require no new interpretation.
They effectively behave as bound states because they are below
separation thresholds or an enormous restructuring is required
to decay through other channels than photon emission. We
expect this cannot also hold for the high-lying high-spin states
so abundantly observed and described as rotations. Their
energies may form rotational sequences, perhaps somewhat
modified, but corresponding transition probabilities do not
necessarily also follow the predictions of the rotational model.
This is briefly discussed in the present investigation. Closer
inspection of the transition probabilities between the expected
rotational states in heavier nuclei could reveal a similar
behavior as for 8Be. Such projects should be formulated and
carried out, although we anticipate this would be very difficult
for these many-body systems.

A short-term direct perspective of the present investigation
is to apply the understanding to more complicated cluster
structures such as three α particles. This is straightforward
with the hyperspherical adiabatic expansion method, although
numerically much more elaborate. More generally, the lessons
about transitions between continuum states must be incorpo-
rated in analyses and interpretations of the corresponding (few-
and many-body) experimentally and theoretically obtained
structures.

Another short-term application is related to the extracted
structure information obtained from transition matrix ele-
ments. We have formulated a simple procedure to divide the
contributions into four pieces; that is, the wave function is a
sum of short-distance and regularized asymptotic parts. The
tempting interpretation corresponds to resonance-resonance,
continuum-resonance, resonance-continuum, and continuum-
continuum contributions. Substantial contributions are found
for the resonance-to-continuum matrix element even when
both initial- and final-state energies are chosen to be precisely
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at the resonances. The interference between the various
terms constitute a major contribution to the total transition
probability.

However, the interpretation of this division cannot be
taken too far for two reasons. First, because far away from
resonance energies the short-distance contributions may still
dominate and hence not qualify as a resonance contribution.
Second, the transition probability is obtained by squaring
the matrix element which necessarily further entangles the
division between resonance and continuum contributions. We
believe that appropriately defined energy windows combined
with the suggested division will be helpful in future analyses of
experimental data where continuum background contributions
should be separated from that of the pure resonance structure.
This perspective deserves much more attention in future
investigations.

In conclusion, rotational bands embedded in the continuum
may still be a meaningful concept but unexpected tendencies

and significant deviations from schematic model predictions
can be present. This warning is so far only based on the decay
and structure of the 8Be two-body system. The traditional
rotational structure investigations of the 8Be excited states has
to be quantitatively substantially modified. The scarce experi-
mental evidence supports the present theoretical interpretation.
In general, the continuum background plays an important role
and should be separated out in analyses where only resonance
properties enter. However, corresponding contributions can
probably not be avoided and therefore have to be included.
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