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Relativistic third-order dissipative fluid dynamics from kinetic theory
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We present the derivation of a novel third-order hydrodynamic evolution equation for the shear stress tensor
from kinetic theory. The Boltzmann equation with a relaxation time approximation for the collision term is
solved iteratively using a Chapman-Enskog-like expansion to obtain the nonequilibrium phase-space distribution
function. Subsequently, the evolution equation for the shear stress tensor is derived from its kinetic definition up
to third order in gradients. We quantify the significance of the new derivation within a one-dimensional scaling
expansion and demonstrate that the results obtained using the third-order viscous equations derived here provides
a very good approximation to the exact solution of the Boltzmann equation in a relaxation time approximation.
We also show that the time evolution of pressure anisotropy obtained using our equations is in better agreement
with transport results than that obtained with an existing third-order calculation based on the second law of
thermodynamics.
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Fluid dynamics is an effective theory describing the long-
wavelength limit of the microscopic dynamics of a system.
While nonrelativistic fluid dynamics finds applications in
various aspects of physics and engineering, the domain of
applicability of relativistic fluid dynamics is in the field of as-
trophysics, cosmology, and high-energy heavy-ion collisions.
The collective behavior of the hot and dense matter (which
is believed to have existed in the very early universe) created
in ultra-relativistic heavy-ion collisions has been studied quite
extensively within the framework of relativistic fluid dynam-
ics. To study the evolution of a hydrodynamic system, it is
natural to first employ the equations of ideal fluid dynamics.
However, as ideal fluids are hypothetical by virtue of the uncer-
tainty principle [1], the dissipative effects cannot be ignored.

Relativistic dissipative fluid dynamics is formulated as an
order-by-order expansion in gradients, ideal hydrodynamics
being zeroth order. The first-order theories, collectively known
as relativistic Navier-Stokes (NS) theory, are due to Eckart
[2] and Landau-Lifshitz [3]. However, these theories involve
parabolic differential equations and suffer from acausality
and numerical instability. The second-order theory by Israel
and Stewart (IS) [4] with its hyperbolic equations solves the
acausality problem [5] but may not guarantee stability. Despite
the success of IS theory in explaining a wide range of collective
phenomena observed in heavy-ion collisions, its formulation is
based on strong assumptions and approximations. The original
IS theory derived from the Boltzmann equation (BE) uses
two powerful assumptions in the derivation of dissipative
equations: use of second moment of BE and the 14-moment
approximation [4,6]. In Ref. [7], although the dissipative
equations were derived directly from their definitions without
resorting to the second moment of BE, the 14-moment
approximation was still employed. In Ref. [8] it was shown
that both these assumptions are unnecessary and instead of
a 14-moment approximation, an iterative solution of BE was
used to obtain the dissipative evolution equations from their
definitions.

Apart from these problems in the formulation, IS theory suf-
fers from several other shortcomings. In the one-dimensional

Bjorken scaling expansion [9], for large viscosities or small
initial time, IS theory has resulted in unphysical effects such
as reheating of the expanding medium [10] and negative
longitudinal pressure [11]. Further, the scaling solutions of
IS equations when compared with transport results show
disagreement for η/s > 0.5 indicating the breakdown of
second-order theory [5,12]. With this motivation, in Ref. [13],
second-order dissipative equations were derived from BE
where the collision term was generalized to include nonlocal
effects via gradients of the distribution function. More-
over, in Refs. [8,14] it was demonstrated that a heuristic
inclusion of higher-order corrections led to an improved
agreement with transport results. In fact, the derivation of
higher-order constitutive equations from kinetic theory for
nonrelativistic systems has been known for a long time
[15]. Thus it is of interest to improvise the relativistic
second-order theory by incorporating higher-order correc-
tions.

In this Rapid Communication, we derive a new relativistic
third-order evolution equation for the shear stress tensor
from kinetic theory. Without resorting to the widely used
Grad’s 14-moment approximation [6], we iteratively solve
the BE in a relaxation time approximation (RTA) to obtain
the nonequilibrium phase-space distribution function. We
subsequently derive an equation of motion for the shear
stress tensor up to third order, directly from its definition.
Within the one-dimensional scaling expansion, the results
obtained using third-order evolution equations derived here
show improved agreement with the exact solution of BE as
compared to second-order equations. We also demonstrate
that the evolution of pressure anisotropy obtained using our
equations shows better agreement with the transport results
than those obtained by using an existing third-order equation
derived from entropy considerations.

The hydrodynamic evolution of a system is governed by the
conservation equations for energy and momentum. The con-
served energy-momentum tensor can be expressed in terms of
a single-particle, phase-space distribution function and tensor
decomposed into hydrodynamic variables [16]. For a system
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of massless particles, bulk viscosity vanishes, leading to

T μν =
∫

dp pμpν f (x, p) = εuμuν − P�μν + πμν, (1)

where dp ≡ gdp/[(2π )3|p|], g being the degeneracy factor,
pμ is the particle four-momentum and f (x, p) is the phase-
space distribution function. In the tensor decompositions,
ε, P , and πμν are, respectively, energy density, pressure,
and the shear stress tensor. The projection operator
�μν ≡ gμν − uμuν is orthogonal to the hydrodynamic
four-velocity uμ defined in the Landau frame: T μνuν = εuμ.
The metric tensor is Minkowskian, gμν ≡ diag(+,−,−,−).

Energy-momentum conservation, ∂μT μν = 0, yields the
fundamental evolution equations for ε and uμ

ε̇ + (ε + P )θ − πμν∇(μuν) = 0,
(2)

(ε + P )u̇α − ∇αP + �α
ν ∂μπμν = 0.

We use the notation Ȧ ≡ uμ∂μA for the comoving deriva-
tive, θ ≡ ∂μuμ for the expansion scalar, A(αBβ) ≡ (AαBβ +
AβBα)/2 for symmetrization, and ∇α ≡ �μα∂μ for the space-
like derivative. In the massless limit, the energy density
and pressure are related as ε = 3P ∝ β−4. The inverse
temperature, β ≡ 1/T , is defined by the Landau matching
condition ε = ε0 where ε0 is the equilibrium energy density.
In this limit, Eqs. (2) can be used to obtain the derivatives of
β as

β̇ = β

3
θ − β

12P
πργ σργ , ∇αβ = −βu̇α − β

4P
�α

ρ∂γ πργ ,

(3)

where σργ ≡ ∇(ρuγ ) − (θ/3)�ργ is the velocity stress tensor.
The above identities will be helpful in the derivation of the
shear evolution equation.

The expression for the shear stress tensor (πμν) can
be obtained in terms of the out-of-equilibrium part of the
distribution function. To this end, we write the nonequilibrium
distribution function as f = f0 + δf , where the deviation
from equilibrium is assumed to be small (δf � f ). The
equilibrium distribution function represents Boltzmann statis-
tics of massless particles at vanishing chemical potential,
f0 = exp(−β u · p), where u · p ≡ uμpμ. From Eq. (1), πμν

can be expressed in terms of δf as

πμν = �
μν
αβ

∫
dp pαpβ δf, (4)

where �
μν
αβ ≡ �

μ
(α�ν

β) − (1/3)�μν�αβ is a traceless
symmetric projection operator orthogonal to uμ. To proceed
further, the form of δf has to be specified. In the following,
the Boltzmann equation in RTA will be solved iteratively to
obtain δf order-by-order in gradients.

The nonequilibrium phase-space distribution function can
be obtained by solving a one-body kinetic equation such as the
Boltzmann equation. The most common technique of generat-
ing solutions to such equations is the Chapman-Enskog expan-
sion where the particle distribution function is expanded about
its equilibrium value in powers of space-time gradients [17]

f = f0 + δf, δf = δf (1) + δf (2) + · · · , (5)

where δf (1) is first order in derivatives, δf (2) is second order,
and so on. Subsequently, the relativistic Boltzmann equation
with relaxation time approximation for the collision term [18],

pμ∂μf = −u · p
δf

τR

⇒ f = f0 − (τR/u · p) pμ∂μf, (6)

can be solved iteratively as [8,19]

f1 = f0 − τR

u · p
pμ∂μf0, f2 = f0 − τR

u · p
pμ∂μf1, . . . ,

(7)

where fn = f0 + δf (1) + δf (2) + · · · + δf (n). To first and
second order in derivatives, we obtain

δf (1) = − τR

u · p
pμ∂μf0, (8)

δf (2) = τR

u · p
pμpν∂μ

(
τR

u · p
∂νf0

)
. (9)

The above expressions for the nonequilibrium part of the
distribution function along with Eq. (4) will be used in the
derivation of shear evolution equations.

As a side remark, note that the RTA for the collision
term C[f ] = −(u · p)δf/τR in Eq. (6) should satisfy current
and energy-momentum conservation, i.e., the zeroth and first
moment of the collision term should vanish [16]. Assuming
the relaxation time τR to be independent of momenta, these
conservation equations are satisfied only if the fluid four-
velocity is defined in the Landau frame [18]. Hence, within
the RTA, the Landau frame is imposed and is not a choice.

The first-order expression for the shear stress tensor can be
obtained from Eq. (4) using δf = δf (1) from Eq. (8),

πμν = �
μν
αβ

∫
dp pαpβ

(
− τR

u · p
pμ∂μ f0

)
. (10)

Using Eqs. (3) and keeping only those terms which are first
order in gradients, the integrals in the above equation reduce to

πμν = 2τRβπσμν, βπ = 4
5P. (11)

To obtain the second-order evolution equation, we follow
the methodology discussed in Ref. [7]. The evolution of
the shear stress tensor can be obtained by considering the
comoving derivative of Eq. (4),

π̇ 〈μν〉 = �
μν
αβ

∫
dp pαpβ δḟ , (12)

where the notation A〈μν〉 ≡ �
μν
αβAαβ represents the traceless

symmetric projection orthogonal to uμ.
The comoving derivative of the nonequilibrium part of the

distribution function (δḟ ) can be obtained by rewriting Eq. (6)
in the form

δḟ = −ḟ0 − 1

u · p
pγ ∇γ f − δf

τR

. (13)

Using this expression for δḟ in Eq. (12), we obtain

π̇ 〈μν〉 + πμν

τR

= −�
μν
αβ

∫
dp pαpβ

(
ḟ0 + 1

u · p
pγ ∇γ f

)
.

(14)
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It is clear that in the above equation, the Boltzmann relaxation
time τR can be replaced by the shear relaxation time τπ .
By comparing the first-order evolution Eq. (11) with the
relativistic Navier-Stokes equation πμν = 2ησμν , the shear
relaxation time is obtained in terms of the first-order transport
coefficient, τπ = η/βπ .

Note that for the shear evolution equations to be second
order in gradients, the distribution function on the right-hand
side of Eq. (14) need to be computed only until first order,
i.e., f = f1 = f0 + δf (1). Using Eq. (8) for δf (1) and Eqs. (3)
for the derivatives of β, and keeping terms up to quadratic
order in gradients, the second-order shear evolution equation
is obtained as [8]

π̇ 〈μν〉 + πμν

τπ

= 2βπσμν + 2π 〈μ
γ ων〉γ

− 10

7
π 〈μ

γ σ ν〉γ − 4

3
πμνθ, (15)

where ωμν ≡ (∇μuν − ∇νuμ)/2 is the vorticity tensor. We
have used the first-order expression for the shear stress tensor,
Eq. (11), to replace σμν → πμν such that the relaxation times
appearing on the right-hand side of Eq. (14) are absorbed.

To derive a third-order evolution equation for the shear
stress tensor, the distribution function on the right-hand side of
Eq. (14) needs to be computed till second order (δf = δf (1) +
δf (2)). To account for all the higher-order terms, Eq. (15) was
used to substitute for σμν . Employing Eqs. (3) for derivatives
of β and keeping terms up to cubic order in derivatives, we
finally obtain a unique third-order evolution equation for the
shear stress tensor after a straightforward but tedious algebra:

π̇ 〈μν〉 = −πμν

τπ

+ 2βπσμν + 2π 〈μ
γ ων〉γ − 10

7
π 〈μ

γ σ ν〉γ

− 4

3
πμνθ + 25

7βπ

πρ〈μων〉γ πργ − 1

3βπ

π 〈μ
γ πν〉γ θ

− 38

245βπ

πμνπργ σργ − 22

49βπ

πρ〈μπν〉γ σργ

− 24

35
∇〈μ(πν〉γ u̇γ τπ ) + 4

35
∇〈μ(τπ∇γ πν〉γ )

− 2

7
∇γ (τπ∇〈μπν〉γ ) + 12

7
∇γ (τπ u̇〈μπν〉γ )

− 1

7
∇γ (τπ∇γ π 〈μν〉) + 6

7
∇γ (τπ u̇γ π 〈μν〉)

− 2

7
τπωρ〈μων〉γ πργ − 2

7
τππρ〈μων〉γ ωργ

− 10

63
τππμνθ2 + 26

21
τππ 〈μ

γ ων〉γ θ. (16)

This is the main result of the present work. We note that
Eq. (16) represents only a subset of all possible third-order
terms because bulk viscosity and heat current have been
neglected.

We compare the third-order shear evolution equation
derived in the present work with that obtained in Ref. [14].
In the latter work, the shear evolution equation was derived by
invoking the second law of thermodynamics from the kinetic
definition of entropy four-current, expanded till third order in
πμν . For ease of comparison, we write the evolution equation

obtained in Ref. [14] in the form

π̇ 〈μν〉 = −πμν

τ ′
π

+ 2β ′
πσμν − 4

3
πμνθ + 5

36β ′
π

πμνπργ σργ

− 16

9β ′
π

π 〈μ
γ πν〉γ θ, (17)

where β ′
π = 2P/3 and τ ′

π = η/β ′
π . We observe that the right-

hand side of Eq. (17) contains one second-order and two
third-order terms compared to three second-order and fourteen
third-order terms obtained in the present work, i.e., Eq. (16).
It is well known that the approach based on the entropy
method fails to capture all the terms in the dissipative evolution
equations even at second order. Moreover, the discrepancy
at third order confirms the fact that the evolution equation
obtained by invoking the second law of thermodynamics is
incomplete.

To demonstrate the numerical significance of the third-order
shear evolution equation derived here, we consider a boost-
invariant Bjorken expansion of a system consisting of massless
Boltzmann gas [9]. Working in Milne coordinates (τ, x, y, ηs),
where τ = √

t2 − z2 and ηs = tanh−1(z/t), and with uμ =
(1, 0, 0, 0), we observe that only the ηsηs component of
Eq. (16) survives. In this scenario, ωμν = u̇μ = ∇μτπ = 0,
θ = 1/τ , and σηsηs = −2/(3τ 3). Defining π ≡ −τ 2πηsηs , we
find that πργ σργ = π/τ , and

π̇ 〈ηsηs 〉 = − 1

τ 2

dπ

dτ
, π 〈ηs

γ σ ηs 〉γ = − π

3τ 3
,

π 〈ηs
γ πηs 〉γ = − π2

2τ 2
,

(18)

πρ〈ηs πηs 〉γ σργ = − π2

2τ 3
, ∇〈ηs ∇γ πηs 〉γ = 2π

3τ 4
,

∇γ ∇〈ηs πηs 〉γ = 4π

3τ 4
, ∇2π 〈ηsηs 〉 = 4π

3τ 4
.

Using the above results, evolution of ε and π from Eqs. (2)
and (16) reduces to

dε

dτ
= − 1

τ
(ε + P − π ), (19)

dπ

dτ
= − π

τπ

+ βπ

4

3τ
− λ

π

τ
− χ

π2

βπτ
. (20)

The term with coefficient χ in the above equation contains
correction only due to third order. The first-order shear
expression π = 4βπτπ/3τ has been used to rewrite some of the
third-order contributions in the form π2/(βπτ ). The transport
coefficients in our calculation simplify to

τπ = η

βπ

, βπ = 4P

5
, λ = 38

21
, χ = 72

245
. (21)

We compare these transport coefficients with those obtained
from Eq. (17), where they reduce to

τ ′
π = η

β ′
π

, β ′
π = 2P

3
, λ′ = 4

3
, χ ′ = 3

4
. (22)

021903-3



RAPID COMMUNICATIONS

AMARESH JAISWAL PHYSICAL REVIEW C 88, 021903(R) (2013)

For comparison, we also state the exact solution of Eq. (6) in
one-dimensional scaling expansion [20,21]:

f (τ ) = D(τ, τ0)fin +
∫ τ

τ0

dτ ′

τR(τ ′)
D(τ, τ ′)f0(τ ′), (23)

where fin and τ0 are the initial distribution function and proper
time, respectively, and

D(τ2, τ1) = exp

[
−

∫ τ2

τ1

dτ ′′

τR(τ ′′)

]
. (24)

The damping function D(τ2, τ1) has the properties D(τ, τ ) = 1,
D(τ3, τ2)D(τ2, τ1) = D(τ3, τ1), and

∂D(τ2, τ1)

∂τ2
= −D(τ2, τ1)

τR(τ2)
. (25)

To obtain the exact solution, the Boltzmann relaxation time is
taken to be the same as the shear relaxation time (τR = τπ ).
The hydrodynamic quantities can then be calculated by using
Eq. (23) for the distribution function in Eq. (1) and performing
the integrations numerically.

To quantify the differences between ideal, first-order,
second-order, and third-order theories, we solve the evolution
equations with initial temperature T0 = 300 MeV at initial time
τ0 = 0.25 fm/c. These values correspond to the Relativistic
Heavy-Ion Collider initial conditions [22]. Figure 1 shows the
proper time evolution of temperature and pressure anisotropy
PL/PT ≡ (P − π )/(P + π/2) in ideal, first-order, second-
order, and third-order hydrodynamics. Here we have assumed
the Navier-Stokes initial condition for shear pressure (π0 =
4η/3τ0) and solved the evolution equations for a representative
shear viscosity to entropy density ratio, η/s = 3/4π .

In Fig. 1(a), we observe that while ideal hydrodynamics
predicts a rapid cooling of the system, evolution based on third-
order equation also shows faster temperature drop compared
to first- and second-order evolutions. This implies that the
thermal photon and dilepton spectra, which are sensitive to
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FIG. 1. (Color online) Time evolution of (a) temperature and
(b) pressure anisotropy (PL/PT ), in ideal, first-order, second-order,
and third-order hydrodynamics for the Navier-Stokes initial condi-
tion, π0 = 4η/3τ0.
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FIG. 2. (Color online) Time evolution of PL/PT obtained using
exact solution of Boltzmann equation, second-order equations, and
third-order equations for the isotropic initial pressure configuration
(π0 = 0) and various η/s.

temperature evolution, may be suppressed by including
third-order corrections. Moreover, with third-order evolution,
the freeze-out temperature is attained at an earlier time which
may affect the hadronic spectra as well. In Fig. 1(b), note
that at early times the third-order evolution results in faster
isotropization of pressure anisotropy compared to first- and
second-order evolutions. However, at later time, the pressure
anisotropies obtained using second- and third-order equations
merge, indicating the convergence of gradient expansion in
fluid dynamics.

Figure 2 shows the proper time dependence of pressure
anisotropy for various η/s values with isotropic initial pressure
configuration, i.e., π0 = 0. The improved agreement of third-
order results with the exact solution of BE as compared to
second-order results also suggests the convergence of the
derivative expansion in hydrodynamics.

Figure 3 also shows the time evolution of pressure
anisotropy for initial temperature T0 = 500 MeV at initial time
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FIG. 3. (Color online) Time evolution of PL/PT in BAMPS,
third-order calculation from entropy method [Eq. (17)], and the
present work for isotropic initial pressure configuration (π0 = 0) and
various η/s.
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τ0 = 0.4 fm/c which corresponds to Large Hadron Collider
initial conditions [22]. The initial pressure configuration is
assumed to be isotropic and the evolution is shown for various
η/s values. The solid lines represent the results obtained in the
present work by solving Eqs. (19) and (20) with transport co-
efficients of Eq. (21). The dashed lines correspond to results of
another third-order theory derived based on the second law of
thermodynamics with transport coefficients given in Eq. (22).
The dots represent the results of numerical solution of BE
using a transport model, the parton cascade BAMPS [14,23].
The calculations in BAMPS are performed by changing the
cross section such that η/s remains constant. While the results
from entropy derivation overestimate the pressure anisotropy
for η/s > 0.2, those obtained in the present work (kinetic
theory) are in better agreement with the BAMPS results.

The RTA for the collision term in BE is based on the
assumption that the effect of the collisions is to exponentially
restore the distribution function to its local equilibrium value.
Although the information about the microscopic interactions
of the constituent particles is not retained here, it is a
reasonably good approximation to describe a system which
is close to local equilibrium. It is important to note that
although the third-order viscous equations derived here use
BE with RTA for the collision term, the evolution shows good
quantitative agreement with the results from BAMPS, which
employs realistic collision kernel [23]. Indeed in Ref. [24],
it has been shown that for a purely gluonic system at weak

coupling and hadron gas with large momenta, BE in RTA is
a fairly accurate description. Furthermore, the experimentally
observed 1/

√
mT scaling of the Hanbury-Brown–Twiss (HBT)

radii, which was shown to be broken by including viscous
corrections to the distribution function [25], can be restored
by using the form of the nonequilibrium distribution function
obtained here [26]. All these factors clearly suggest that the
BE in RTA can be applied quite successfully in understanding
the hydrodynamic behavior of the strongly interacting matter
formed in heavy-ion collisions.

To summarize, we have derived a novel third-order evolu-
tion equation for the shear stress tensor from kinetic theory
within a relaxation time approximation. Instead of Grad’s
14-moment approximation, iterative solution of Boltzmann
equation was used for the nonequilibrium distribution function
and the evolution equation for shear tensor is derived directly
from its definition. Within a one-dimensional scaling expan-
sion, we have demonstrated that the third-order hydrodynamics
derived here provides a very good approximation to the
exact solution of the Boltzmann equation in a relaxation time
approximation. Our results also show a better agreement with
the parton cascade BAMPS for the PL/PT evolution than those
obtained from entropy derivation.

The author thanks Rajeev S. Bhalerao and Subrata Pal for
helpful discussions, and Jasmine Sethi for a critical reading of
the manuscript.
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