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Application of the inverse Hamiltonian method to Hartree-Fock-Bogoliubov calculations
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We solve the Hartree-Fock-Bogoliubov (HFB) equations for a spherical mean field and a pairing potential with
the inverse Hamiltonian method, which we have developed for the solution of the Dirac equation. This method
is based on the variational principle for the inverse Hamiltonian and is applicable to Hamiltonians that are not
bound from above or below. We demonstrate that the method works well not only for the Dirac, but also for the
HFB equations.
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Pairing correlations between nucleons play an important
role in open shell nuclei [1,2]. Hartree-Fock-Bogoliubov
(HFB) theory is a powerful method that treats these corre-
lations in a self-consistent way in the framework of a single
generalized Slater determinant of independent quasiparticles
[2–4]. The method has been widely used in recent years for the
study of the structure of neutron-rich nuclei far from stability
up to the neutron drip line, where the coupling to the continuum
has a strong influence.

The HFB equations are a set of coupled differential
equations. In many cases they have been solved by an
expansion in terms of a finite set of basis functions, as,
for instance, the eigenfunctions of a harmonic oscillator or
a Woods-Saxon potential. Although this method has been
used successfully for many investigations in the literature it
has its limitations. (i) The convergence with the number of
basis functions depends on the parameters of the basis and
the optimization of these parameters is often complicated;
(ii) in many cases, in particular for two-dimensional (2D)
and three-dimensional (3D) calculations in heavy nuclei, the
dimension of the matrices becomes large. Since the CPU
time for one diagonalization grows with the cube of this
dimension this is connected with numerical efforts. (iii) In
each step of the iteration, the corresponding matrix elements
of the two-body interaction in terms of the basis functions
requires, in addition, CPU time. (iv) The treatment of the
continuum is connected with specific difficulties in particular
in the case of neutron halos. In summary, these methods do
not exploit fully the advantages of zero-range interactions
as, for instance, the Skyrme energy density functional. These
advantages can only be exploited fully in coordinate space. For
this reason the Orsay group has introduced in the 1980s for the
solution of the Hartree Fock (HF) equations the imaginary time
method [5,6]. Starting with an initial HF wave function |�(0)〉
the solution is obtained in iterative steps with infinitesimal step
size τ as

|�(n+1)〉 ∝ e−τĤ |�(n)〉. (1)

Obviously this method is limited to Hamiltonians H with
a spectrum bounded from below, as the nonrelativistic HF
equation. An important fact is that the spectrum of the
HFB equation is bound neither from above nor from below
[see Fig. 1(a)] because of the coupling between particle

creation and annihilation parts in the quasiparticle operators
of the Bogoliubov transformation [2]. This inhibits a direct
application of the imaginary time method to HFB, which
has been successfully employed in self-consistent mean field
calculations in the coordinate space representation [6,7].
That is, if the imaginary time evolution is naively applied,
the iterative solution inevitably dives into the quasiparticle
negative continuum. To avoid this problem the two-basis
method has been introduced in Refs. [7,8] where, in each step
of the iteration, the HFB equations are solved by the expansion
of the quasiparticle wave functions in an HF basis calculated
by the imaginary time method on a 3D mesh in coordinate
space. In Ref. [9], the HFB equation on a 3D mesh was solved
in the canonical basis.

It should be mentioned that the diagonalization of the huge
matrices in the basis expansion method can be avoided by
the gradient method introduced in Ref. [10], which is also
applicable to the solution of the HFB equation with a spectrum
not bound from below. Here the wave function in the next
step of the iteration is expressed in terms of the Thouless
theorem [2]

|�(n+1)〉 ∝ exp

(
−τ

∑
k<k′

H 20
kk′α

†
kα

†
k′

)
|�(n)〉, (2)

where |�(n)〉 is the vacuum with respect to the quasiparticle
operators α

†
k . For infinitesimal τ only two-quasi-particle states

with positive energy Ek + Ek′ are admixed in the next step
of the iteration. This method has been successfully used
in the literature for the solution of the HFB equations in
an oscillator basis [11] and it has been also applied for a
variation after projection (VAP) in Refs. [12,13]. Of course,
the matrix elements H 20

kk′ have to be calculated here in the
corresponding quasiparticle basis. Therefore the locality of
the Skyrme interaction and the quasilocality of the kinetic
energy in coordinate space cannot be exploited in this
method.

Gradient methods have also the advantage in that con-
straints can be introduced easily. As discussed in Ref. [14],
the calculation of the gradients can be restricted without
difficulties to the hypersurfaces on the energy manifolds
imposed by the gradients. Multidimensional constraints are
needed for the evaluation of potential energy surfaces for
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FIG. 1. (Color online) Spectra of (a) a quasiparticle Hamiltonian
H itself and (b) the inverse of the Hamiltonian 1/(H − W ). λ is the
chemical potential. The bound states of positive and negative energies
are indicated by solid and open circles, respectively. The continuum
states are represented by the thick solid lines. The energy shift W is
taken between the positive and negative spectra. The eigenvalues are
labeled by an integer k such that E−k = −Ek .

fission as well as for the application of methods going beyond
the mean field approximation [2]. They lead to additional
complications in methods based on a diagonalization in a
basis.

We therefore propose in this report for the solution of the
HFB equations a different method based on gradients keeping
in mind that one is confronted with the same problem in
the solution of the Dirac equation because the corresponding
spectrum has the Dirac sea states down to the negative infinity
as well as the positive energy states up to the positive infinity.
This leads to a breakdown of variational calculations, which
has long been known in the field of relativistic quantum
chemistry under the name of “variational collapse,” and
there has been a number of prescriptions proposed to avoid
it [15–19]. Recently, newly developed methods for iterative
solutions of a Dirac equation are introduced by Zhang et al.
[20,21] and by Hagino and Tanimura [22] in the nuclear
physics context. In Ref. [22], based on the idea of Hill and
Krauthauser [18], a novel method has been developed, which is
called the “inverse Hamiltonian method,” for relativistic mean
field calculations in the coordinate space representation. In
this method a variational principle is applied to the Hermitian
operator 1/(HDirac − W ) instead of the Hamiltonian HDirac

itself. Here W is a real number which is set between the
Fermi sea and the Dirac sea. In contrast to some other
methods [16,17,20,21], it is relatively straightforward to apply
our method not only to the Dirac equation but also to other
eigenvalue problems with unbound operators, such as HFB.
In this paper, we apply the inverse Hamiltonian method to
an HFB equation in the coordinate space representation and
show that the equation can be solved successfully without the
variational collapse.

In HFB calculations one usually needs to obtain several
lowest positive energy quasiparticle states only. That is, one
only needs the states ψ1, ψ2, . . . associated with eigenvalues
E1, E2, . . . [see Fig. 1(a)]. As is seen in Fig. 1(b), these
states come to the top of the spectrum of 1/(H − W ) if
W is set between the positive and negative spectra. A
variational principle for 1/(H − W ) is that a maximization
of 〈(H − W )−1〉 leads to the desired quasiparticle state wave
functions [18]. Our method maximizes 〈(H − W )−1〉 based on

the relation [22]

|ψ (n+1)〉 ∝ exp

(
�T

H − W

)
|ψ (n)〉, (3)

where |ψ (0)〉 is an arbitrary wave function that is not an
eigenfunction of the Hamiltonian H and W is a real constant
between E1 and E−1. All the states below W damp out and
only ψ1 which is just above W survives in the limit n → ∞.

In practice, the wave function ψ (n+1) is evolved for a small
step �T from ψ (n) as

|ψ (n+1)〉 ∝
(

1 + �T

H − W

)
|ψ (n)〉 = |ψ (n)〉 + �T |φ(n)〉. (4)

To this end, we have to solve a large sparse linear equation

(H − W )|φ(n)〉 = |ψ (n)〉 (5)

to invert the Hamiltonian. We here employ an iterative method
for linear systems, that is, the conjugate gradient normal
residual (CGNR) method [23]. This is one of the Krylov
subspace methods for sparse linear systems [23,24]. CGNR
solves a linear system Ax = b by applying the conjugate
gradient method to an equivalent system A†Ax = A†b.

When the mean field and pairing potentials are local and
spherical, a quasi-particle wave function is given by the form

ψk(r) = 1

r

(
Uk(r)Y	jm(θ, φ)

Vk(r)Y	jm(θ, φ)

)
. (6)

Here Y	jm is a spherical spinor defined by Y	jm =∑
m,m′ 〈	m 1

2m′|jm〉Y	mχm′ , where Y	m and χm′ are the spheri-
cal harmonics and spin wave function, respectively. The HFB
equation in the coordinate space then reduces to a the radial
equation(

h − λ �(r)

�(r) −h + λ

) (
Uk(r)

Vk(r)

)
= Ek

(
Uk(r)

Vk(r)

)
, (7)

where h is the mean field Hamiltonian, λ is the chemical poten-
tial, and �(r) is the pairing potential. Following the authors of
Refs. [25,26], we use a phenomenological Woods-Saxon-type
potentials, which simulates medium-heavy neutron-rich nuclei
around 84Ni, for the mean field and the pairing potentials. The
potential v(r) in the mean field Hamiltonian h and the paring
potential �(r) are thus taken as

v(r) = v0f (r) + v	s

1

r

df

dr
� · s, (8)

�(r) = �0f (r), (9)

f (r) = 1

1 + e(r−R0)/a
, (10)

with v0 = −38.5 MeV, v	s = 14 MeV·fm2, R0 = 5.63 fm, and
a = 0.66 fm [25,26]. The strength of the pairing potential �0

is determined so that the average pairing gap �̄ defined by [25]

�̄ =
∫ ∞

0 r2dr �(r)f (r)∫ ∞
0 r2dr f (r)

(11)

is equal to 1.0 MeV. The chemical potential λ is fixed to
λ = −0.5 MeV in the present calculation. We solve Eq. (7)
by discretizing the radial coordinate r with mesh size �r , and
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imposing the box boundary condition. The second derivative
of ψ at the ith mesh point is approximated by a three-point
difference: ψ ′′

i = (ψi+1 − 2ψi + ψi−1)/(�r)2.
Let us now apply the inverse Hamiltonian method and

numerically solve the HFB equation, Eq. (7). We also solve
the equation exactly by directly diagonalizing the coordinate
space Hamiltonian. The parameters of the inverse Hamiltonian
method are set W = 0.1 MeV and �T = 10 MeV. The excited
states are also calculated simultaneously by orthogonalizing a
set of wave functions at every step of the iteration. The radial
coordinate is discretized up to rmax = 30 fm with �r = 0.1 fm.
The initial quasiparticle wave functions are taken to be a
Gaussian form(

U
(0)
k (r)

V
(0)
k (r)

)
= Nk

(
r	+1e−r2/b2

k

r	+1e−r2/b2
k

)
, (12)

where 	 is the orbital angular momentum and Nk is an
appropriate normalizing constant. The width parameter of the
Gaussian bk is taken as bk = 2.0 × 1.05k−1 fm, (k = 1, 2, . . .).

Let us first discuss the convergence properties of the energy
〈H 〉 and the expectation value of the inverse of Hamiltonian
〈(H − W )−1〉 for the lowest s1/2 quasiparticle state. In Fig. 2
we show the evolution of the two quantities as functions of
the number of iteration steps. As was observed in Ref. [22]
for a Dirac equation, 〈(H − W )−1〉 converges monotonically
up to a certain value as the iteration step increases. At
the same time, 〈H 〉 converges to the lowest s1/2 eigenvalue
E = 0.424 MeV.

In Table I, we show quasiparticle energies and occupation
probabilities v2

k for the three lowest s1/2 states in comparison
to the exact values which are obtained by diagonalizing the
Hamiltonian. The occupation probabilities are defined in terms
of quasiparticle wave function by

v2
k =

∫ ∞

0
dr |Vk(r)|2. (13)
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FIG. 2. (Color online) Covergence properties of (a) the energy
expectation value 〈H 〉 and (b) the expectation value of the inverse of
Hamiltonian 〈(H − W )−1〉 for the lowest s1/2 quasiparticle state. The
energy shift and the step size of T are taken to be W = 0.1 MeV and
�T = 10 MeV, respectively.

TABLE I. A comparison between the exact calculations and the
inverse Hamiltonian method for the three lowest s1/2 quasiparticle
energies E and occupation probabilities v2

k . The exact values are
calculated by diagonalizing the real space Hamiltonian.

E (MeV) v2
k

Exact Inv. H method Exact Inv. H method

0.42414 0.42414 0.5574 0.5574
1.0383 1.0383 3.972 × 10−2 3.972 × 10−2

2.3063 2.3063 9.689 × 10−3 9.689 × 10−3

The agreement is perfect both in the energies and the
occupation probabilities for the digits shown in the table.
Figure 3 shows comparisons of the wave functions of the three
s1/2 states. The dashed lines show the exact wave functions,
whereas the solid lines show the wave functions obtained with
the inverse Hamiltonian method. The left and right panels show
the upper component Uk(r) and the lower component Vk(r) of
a quasiparticle wave function, respectively. As seen in Fig. 3,
the inverse Hamiltonian method reproduces the wave functions
almost identically to the exact ones for both the bound state
and the excited continuum states. We also obtained the other
s-wave states with an accuracy as high as the lower states
shown in Table I and Fig. 3.

We checked the performance of the inverse Hamiltonian
method for other angular momentum quantum numbers and
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FIG. 3. (Color online) Comparisons of wave functions for the
three lowest s1/2 states. Figures 3(a), 3(c), and 3(e) show the upper
components [Uk(r)] while Figs. 3(b), 3(d), and 3(f) show the lower
components [Vk(r)] of the quasiparticle wave function, respectively.
The exact wave functions are shown with the dashed lines and the
ones obtained by the inverse Hamiltonian method are drawn with the
solid lines.
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confirmed that the method solves the HFB equation as
accurately as for the s1/2 states. It is apparent that the inverse
Hamiltonian method gives practically the exact solutions of
the HFB equation in the coordinate space representation and
is safe against the variational collapse.

In summary, we have discussed the numerical performance
of the inverse Hamiltonian method for an HFB calculation.
While the method has been developed for solving Dirac
equations, we have shown that it can almost exactly solve
a coordinate space HFB equation as well with spherical mean
field and pairing potentials without variational collapse. This
indicates that the inverse Hamiltonian method provides an
alternative coordinate space method for 3D HFB calculations,
in addition to the existing methods such as the two-basis

method and the canonical basis method. The inverse Hamilto-
nian method has an advantage in that it can also be applied in a
straightforward manner to relativistic Bogoliubov calculations
on 3D mesh, for which the Dirac sea spectrum in a mean-field
Hamiltonian prevents a direct application of the two-basis
method in combination with the imaginary time method.
An obvious future work is the application of the method to
self-consistent HFB calculations on 3D mesh. A work in this
direction is now in progress.
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