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Equation of state for neutron stars in SU(3) flavor symmetry
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Using several relativistic mean-field models (such as GM1, GM3, NL3, TM1, FSUGold, and IU-FSU) as
well as the quark-meson coupling model, we calculate the particle fractions, the equation of state, the maximum
mass, and radius of a neutron star within relativistic Hartree approximation. We also discuss in detail the role
of nonlinear potentials involved in the mean-field models. In determining the couplings of the isoscalar, vector
mesons to the octet baryons, we examine the extension of SU(6) spin-flavor symmetry to SU(3) flavor symmetry.
Furthermore, we consider the strange (σ ∗ and φ) mesons and study how they affect the equation of state. We
find that the equation of state in SU(3) symmetry can sustain a neutron star with mass of (1.8 ∼ 2.1)M�, even
if hyperons exist inside the core. It is noticeable that the strange vector (φ) meson and the variation of baryon
substructure in matter also play important roles in supporting a massive neutron star.
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I. INTRODUCTION

Neutron stars, which comprise hadrons and leptons as
remnants of supernovae explosions, may be believed to be
cosmological laboratories for dense nuclear matter. However,
their detailed properties, for instance, the mass, radius, and
particle fractions in the core of a neutron star, are not fully
understood yet, since the pioneering paper by Baade and
Zwicky [1] and the first discovery of a neutron star by Hewish
and Okoye [2]. Because the observed mass and/or radius of a
neutron star can provide strong constraints on the equation
of state (EoS) of dense nuclear matter, many theoretical
discussions have been focused on the EoS to understand the
structure of dense matter.

The typical mass of neutron stars is known to be around
1.4 M� (M� is the solar mass) [3]. The most famous,
precisely observed pulsar is the binary pulsar, B1913 + 16 (the
Hulse-Taylor pulsar), with the mass of 1.4398 ± 0.0002 M�
[4,5]. However, a few neutron stars whose masses are
much heavier than 1.4 M� have recently been observed. For
example, Shapiro delay measurements have indicated that
the binary millisecond pulsar, J1614-2230, has the mass
of 1.97 ± 0.04 M� [6]. Furthermore, a new massive pulsar,
J0348 + 0432, has recently been reported and the mass is
estimated to be 2.01 ± 0.04 M� [7]. Then, such heavy neutron
stars have attracted a lot of interest not only in astrophysics
but also in nuclear physics, because of the possibility of exotic
degrees of freedom, such as quarks, gluons, and/or some
unusual condensations of boson-like matter, in the core.

Recent studies have used relativistic mean-field (RMF)
models (or relativistic Hartree models), including hyperons
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(Y ), to calculate the EoS for a neutron star. However, it is quite
difficult to explain the heavy neutron stars by such EoSs with
the meson-baryon coupling constants based on SU(6) (quark
model) symmetry, because the degrees of freedom of hyperons
make the EoS very soft, and thus, the possible maximum mass
of a neutron star is considerably reduced [8,9].

In Refs. [10,11], the properties of a neutron star have
been studied in detail within relativistic Hartree-Fock (RHF)
approximation. In those calculations, we have considered not
only the tensor couplings of vector mesons to the octet baryons
and the form factors at interaction vertices but also the change
of the quark substructure of baryons in dense matter. The
RHF calculations have been performed in two ways: one with
the coupling constants determined by SU(6) symmetry, the
other with the coupling constants based on SU(3) (flavor)
symmetry (see also Ref. [12]). Then, we have found that the
baryon composition of the core matter in SU(3) symmetry is
considerably different from that in SU(6) symmetry. In SU(6)
symmetry, all octet baryons usually appear in the density
region below ∼1.2 fm−3, while in the SU(3) calculation,
only the �− hyperon is produced. Furthermore, the medium
modification of the baryon structure hardens the EoS for the
core. Taking all those effects into account, we have obtained
the maximum mass of a neutron star, which is consistent
with J1614-2230. Therefore, it is very important to consider
the Fock contribution, the extension from SU(6) symmetry
to SU(3) symmetry, and the effect of the baryon structure
variation in nuclear matter.

It is interesting to construct the EoS based on SU(3)
symmetry in RMF approximation and to see how the symmetry
extension affects the EoS and how nonlinear (NL) potentials
involved in RMF models work at very high densities, because
the RMF calculation is practically much simpler than the RHF
one, and many studies have, thus, proposed many useful RMF
models. Furthermore, some of those models are accurately
calibrated by various experimental data not only on infinite
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nuclear matter but also on finite nuclei. In this paper, we extend
several popular RMF models, such as the GM1, GM3, NL3,
TM1, FSUGold, and IU-FSU models, and study the properties
of nuclear matter and the mass-radius relations of neutron
stars using the isoscalar, vector-meson couplings to the octet
baryons in SU(3) symmetry. We then compare the results in
SU(3) symmetry with those in the (usual) SU(6) calculations.

In addition, we propose RMF models, including the effect
of baryon structure variation in a dense medium. In such
models, we also use the coupling constants determined in
SU(3) symmetry and compare the results with those calculated
in SU(6) symmetry. To take the variation of the in-medium
baryon structure into account, we use the quark-meson
coupling (QMC) [13,14] and the chiral quark-meson coupling
(CQMC) [15] models. It is well recognized that the constituent
quark mass in a hadron is generated by the quark condensate,
〈q̄q〉. The quark mass (or 〈q̄q〉) in nuclear matter may then be
reduced from the value in vacuum, because of the condensed
scalar (σ ) field depending on the nuclear density, namely the
Lorentz-scalar, attractive interaction in nuclear matter. The
decrease of the quark mass leads to the variation of baryon
structure at the quark level. Such an effect is considered
self-consistently in the QMC model.

The CQMC model is an extended version of the QMC
model, in which the quark-quark hyperfine interaction caused
by the one-gluon exchange is included. In addition, the
pion-exchange interaction based on chiral symmetry is also
considered. The hyperfine interaction plays an impotent role
in the baryon spectra in matter [15,16]. The QMC and
CQMC models have been successfully applied in studying
the properties of hadrons in nuclear matter [17], finite nuclei
[18–20], hypernuclei [21,22], and neutron stars [10,11,23].
(For a review, see Ref. [24].)

Using those models, we calculate the particle fractions,
the meson fields, and the EoS inside the core. Furthermore,
we estimate the maximum mass and radius of a neutron star
by solving the Tolman-Oppenheimer-Volkoff (TOV) equation
[25,26]. In the present calculations, we also study the role of
the strange mesons (σ ∗ and φ) in the EoS. In SU(3) symmetry,
we then find that the models, except for GM3, FSUGold,
and IU-FSU, can explain the masses of J1614-2230 and/or
J0348 + 0432. In the GM3, FSUGold, and IU-FSU models,
although the maximum mass cannot reach 1.97 ± 0.04 M�,
the calculated mass is not far from that value. Therefore,
the extension from SU(6) to SU(3) symmetry is very vital
for sustaining a heavy neutron star. In addition, the strange
vector-meson (φ) and the effect of baryon structure variation
also help prevent the collapse of a neutron star.

In RMF models, various types of NL potentials with respect
to the meson fields are usually involved, and they are very
significant to reproduce the saturation condition for symmetric
nuclear matter and the properties of finite nuclei. Among them,
especially the c3ω

4 term hardens the EoS at high density
and, thus, enhances a neutron-star mass. Furthermore, the NL
isoscalar-isovector coupling, �ωρω

2ρ2, which is involved only
in the FSUGold and IU-FSU models, plays a unique role in the
particle fractions in the core. If the σ -� and σ ∗-� coupling
constants are determined so as to fit the (repulsive) mean-field
potential for the � in nuclear matter, the � hyperon usually

tends to be excluded in the core of a neutron star. However, in
the FSUGold and IU-FSU models, the �− as well as the � and
�− can emerge with a considerable fraction even at rather low
density, which may be caused by the �ωρω

2ρ2 interaction. It
is also important to investigate how such NL potentials behave
in very dense matter.

This paper is organized as follows. In Sec. II, a brief
review for RMF models based on quantum hadrodynamics
(QHD) [27] is presented. The usual RMF models, the QMC
and CQMC models, are then unified through the scalar
polarizability. In Sec. III, the SU(3) extension in the coupling
constants of the isoscalar, vector mesons is explained. The
parameters in various models are determined in Sec. IV.
Numerical results and discussions are addressed in Sec. V.
Finally, we give a summary in Sec. VI.

II. RELATIVISTIC MEAN-FIELD MODELS

For describing the properties of the core of a neutron star,
we extend the usual Lagrangian density in RMF approximation
to include not only the σ , ω, and �ρ mesons but also the
strange mesons, namely the isoscalar, Lorentz scalar (σ ∗), and
vector (φ) mesons. The σ ∗ and φ mesons are predominantly
composed of s̄s quarks. Because the charge neutrality and β
equilibrium conditions are imposed in the core, the leptons
must be introduced as well. The Lagrangian density is, thus,
chosen to be

L =
∑
B

ψ̄B[iγμ∂μ − M∗
B(σ, σ ∗) − gωBγμωμ

− gφBγμφμ − gρBγμ �ρ μ · �IB]ψB

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) + 1

2

(
∂μσ ∗∂μσ ∗ − m2

σ ∗σ
∗2

)

+ 1

2
m2

ωωμωμ − 1

4
WμνW

μν + 1

2
m2

φφμφμ − 1

4
PμνP

μν

+ 1

2
m2

ρ �ρμ · �ρ μ − 1

4
�Rμν · �Rμν

−UNL(σ, ωμ, �ρ μ) +
∑

�

ψ̄�[iγμ∂μ − m�]ψ�, (1)

where

Wμν = ∂μων − ∂νωμ, Pμν = ∂μφν − ∂νφμ,
(2)�Rμν = ∂μ �ρν − ∂ν �ρμ,

with ψB(�) the baryon (lepton) field, �IB the isospin matrix for
baryon B, and m� the lepton mass. The sum B runs over the
octet baryons, N (proton and neutron), �, �+,0,−, and �0,−,
and the sum � is for the leptons, e− and μ−. The ω-, φ-, and
ρ-B coupling constants are, respectively, denoted by gωB , gφB ,
and gρB . In Eq. (1), UNL is a NL potential, which is explained
below.

When the baryons are treated as point-like objects (as in
QHD), the effective baryon mass, M∗

B , in matter is simply
expressed as

M∗
B(σ, σ ∗) = MB − gσBσ − gσ ∗Bσ ∗, (3)

015802-2



EQUATION OF STATE FOR NEUTRON STARS IN SU(3) . . . PHYSICAL REVIEW C 88, 015802 (2013)

TABLE I. Values of aB , bB , a′
B , and b′

B for the octet baryons in
the QMC or CQMC model. We assume that the scalar, strange (σ ∗)
meson does not couple to the nucleon.

B QMC CQMC

aB (fm) bB a′
B (fm) b′

B aB (fm) bB a′
B (fm) b′

B

N 0.179 1.00 – – 0.118 1.04 – –
� 0.172 1.00 0.220 1.00 0.122 1.09 0.290 1.00
� 0.177 1.00 0.223 1.00 0.184 1.02 0.277 1.15
� 0.166 1.00 0.215 1.00 0.181 1.15 0.292 1.04

where MB is the mass in vacuum, and gσB and gσ ∗B are the σ -
and σ ∗-B coupling constants, respectively. We hereafter call
the model in which the baryons are structureless the QHD-type
model.

In contrast, in the QMC and CQMC models, the coupling
constants, gσB and gσ ∗B , depend on the σ and σ ∗ fields, which
reflects the variation of baryon structure in matter [14,24].
Such dependencies are caused by the attractive interactions
due to the σ and σ ∗ exchanges. Thus, the in-medium baryon
mass can be written as [23]

M∗
B(σ, σ ∗) = MB − gσB(σ )σ − gσ ∗B(σ ∗)σ ∗, (4)

with the following, simple parametrizations [10,11,17,18,22]:

gσB(σ ) = gσBbB

[
1 − aB

2
(gσNσ )

]
, (5)

gσ ∗B(σ ∗) = gσ ∗Bb′
B

[
1 − a′

B

2
(gσ ∗�σ ∗)

]
, (6)

where gσN and gσ ∗� are, respectively, the σ -N and σ ∗-�
coupling constants at zero density. Here, we introduce four
parameters, aB , bB , a′

B , and b′
B , for describing the mass, and

their values are tabulated in Table I. The effect of the baryon
structure variation at the quark level can be described with the
parameters aB and a′

B . In addition, in the CQMC model, the
extra parameters, bB and b′

B , are necessary to express the effect
of hyperfine interaction between two quarks [15,16,22]. If we
set aB = 0 and bB = 1, gσB(σ ) becomes identical to the σ -B
coupling constant in QHD. This is also true of the coupling
gσ ∗B(σ ∗).

We here note that the RMF model with the coupling
constants depending on the scalar mean-field value in matter
(such as the QMC and CQMC models) seems similar to
the density-dependent meson-exchange (DDME) model [28],
where the coupling constants depend on the nuclear density
and those are parametrized in terms of some specific functions.
However, there are some remarkable differences between those
models; for example, the couplings in the QMC and CQMC
models are invariant under Lorentz transformation, while those
in the DDME model may depend on the choice of a frame.

In the QHD-type model, we add the following NL potential
to the Lagrangian density

UNL(σ, ωμ, �ρ μ) = 1
3g2σ

3 + 1
4g3σ

4 − 1
4c3(ωμωμ)2

−�ωρ(ωμωμ)( �ρμ · �ρ μ), (7)

so as to reproduce the measured properties of nuclear matter
and finite nuclei, for example, the incompressibility of nuclear
matter, Kv , the density dependence of symmetry energy, a4,
etc. Here, the potential involves four coupling constants, g2,
g3, c3, and �ωρ(≡ �vg

2
ρNg2

ωN ).
In RMF approximation, the meson fields are replaced by

the constant mean-field values: σ̄ , ω̄, σ̄ ∗, φ̄, and ρ̄ (the ρ0

field). The equations of motion for the meson fields in uniform
matter are, thus, given by

m2
σ σ̄ + g2σ̄

2 + g3σ̄
3 =

∑
B

gσBCB(σ̄ )ρs
B, (8)

m2
σ ∗ σ̄

∗ =
∑
B

gσ ∗BC ′
B(σ̄ ∗)ρs

B, (9)

(
m2

ω + 2�ωρρ̄
2)ω̄ + c3ω̄

3 =
∑
B

gωBρB, (10)

m2
φφ̄ =

∑
B

gφBρB, (11)

(
m2

ρ + 2�ωρω̄
2
)
ρ̄ =

∑
B

gρB( �IB)3ρB, (12)

TABLE II. Coupling constants and properties of symmetric
nuclear matter in the QMC and CQMC models. We assume
that gσ∗N = 0 and gσ∗� = gσ∗� . The hadron masses are taken
as follows: MN = 939 MeV, M� = 1116 MeV, M� = 1193 MeV,
M� = 1318 MeV, mσ = 550 MeV, mω = 783 MeV, mρ = 770 MeV,
mσ∗ = 975 MeV, and mφ = 1020 MeV. The saturation condition for
symmetric nuclear matter is supposed to be w0 = −15.7 MeV at
n0

B = 0.15 fm−3. The symmetry energy is taken to be a4 = 32.5 MeV
at n0

B , and the slope parameter of the symmetry energy is denoted
by L.a

Vector symmetry QMC CQMC

SU(6) SU(3) SU(6) SU(3)

Coupling constants
gσN 8.28 8.28 8.50 8.50
gωN 8.24 7.98 9.45 9.14
gρN 4.38 4.38 4.29 4.29
gφN – −2.72 – −3.12
gσ� 5.01 6.09 4.97 6.11
gσ� 2.45 3.53 3.24 4.51
gσ� 2.67 4.83 2.59 4.84
gσ∗� 1.09 0.00b 2.62 1.17
gσ∗� 7.53 5.19 8.46 5.80

Properties of symmetric nuclear matter
M∗

N/MN 0.80 0.80 0.76 0.76
Kv (MeV) 280 280 302 302
a4 (MeV) 32.5 32.5 32.5 32.5
L (MeV) 88.7 88.7 90.7 90.7

aThe symmetry energy, a4, is defined in terms of the 2nd derivative
of the total energy with respect to the difference between proton and
neutron densities, and the slope parameter, L, is then given by the
derivative of a4 with respect to the baryon density [41,42].
bBecause the σ -meson contribution in the QMC model already gives
U

(�)
� = −8 MeV at n0

B , the additional, attractive force due to the σ ∗

meson is not required.
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TABLE III. Coupling constants and properties of symmetric nuclear matter in the GM1, GM3, and NL3 models. The relations, gσ∗N = 0
and gσ∗� = gσ∗� , are assumed. For the NL3 model, we take mσ = 508.194 MeV, mω = 782.501 MeV, and mρ = 763.000 MeV [33]. The
other masses are the same as in Table II.

Vector symmetry GM1 GM3 NL3

SU(6) SU(3) SU(6) SU(3) SU(6) SU(3)

Coupling constants
gσN 9.57 9.57 8.78 8.78 10.217 10.217
g2 (fm−1) 12.28 12.28 27.88 27.88 10.431 10.431
g3 −8.98 −8.98 −14.40 −14.40 −28.885 −28.885
gωN 10.61 10.26 8.71 8.43 12.868 12.450
gρN 4.10 4.10 4.27 4.27 4.474 4.474
gφN – −3.50 – −2.88 – −4.250
gσ� 5.84 7.25 5.32 6.51 6.269 7.853
gσ� 3.87 5.28 2.85 4.04 4.709 6.293
gσ� 3.06 5.87 2.83 5.20 3.242 6.408
gσ∗� 3.73 2.60 2.03 1.95 5.374 4.174
gσ∗� 9.67 6.82 7.89 5.55 11.765 8.378

Properties of symmetric nuclear matter
n0

B (fm−3) 0.153 0.153 0.153 0.153 0.148 0.148
w0 (MeV) −16.3 −16.3 −16.3 −16.3 −16.299 −16.299
M∗

N/MN 0.70 0.70 0.78 0.78 0.60 0.60
Kv (MeV) 300 300 240 240 271.76 271.76
a4 (MeV) 32.5 32.5 32.5 32.5 37.4 37.4
L (MeV) 93.9 93.9 89.7 89.7 118.0 118.0

TABLE IV. Coupling constants and properties of symmetric nuclear matter in the TM1, FSUGold, and IU-FSU models. The relations,
gσ∗N = 0 and gσ∗� = gσ∗� , are assumed. For the TM1 model, we take MN = 938 MeV and mσ = 511.198 MeV [34], while, for the FSUGold
and IU-FSU models, mσ = 491.500 MeV, mω = 782.500 MeV, and mρ = 763.000 MeV [35,36]. The other masses are the same as in Table II.

Vector symmetry TM1 FSUGold IU-FSU

SU(6) SU(3) SU(6) SU(3) SU(6) SU(3)

Coupling constants
gσN 10.029 10.029 10.592 10.592 9.971 9.971
g2 (fm−1) 7.233 7.233 4.277 4.277 8.493 8.493
g3 0.618 0.618 49.856 49.856 0.488 0.488
c3 71.308 81.601 418.394 522.820 144.220 171.586
�ωρ

a – – 212.427 168.100 360.714 248.010
gωN 12.614 12.199 14.302 13.874 13.032 12.615
gρN 4.632 4.640 5.884 5.395 6.795 5.821
gφN – −4.164 – −4.736 – −4.306
gσ� 6.170 7.733 6.501 8.295 6.090 7.680
gσ� 4.472 6.035 4.820 6.615 4.517 6.107
gσ� 3.202 6.328 3.366 6.953 3.154 6.334
gσ∗� 5.015 3.691 5.994 4.458 5.476 4.204
gσ∗� 11.516 8.100 13.071 9.147 11.915 8.437

Properties of symmetric nuclear matter
n0

B (fm−3) 0.145 0.145 0.148 0.148 0.155 0.155
w0 (MeV) −16.3 −16.3 −16.30 −16.30 −16.40 −16.40
M∗

B/MB 0.634 0.634 0.61 0.61 0.61 0.61
Kv (MeV) 281 284 230 252 231.2 237.7
a4 (MeV) 36.9 36.9 32.59 32.59 31.30 31.30
L (MeV) 110.9 110.8 60.3 66.6 47.2 54.6

aThe coupling constant, �ωρ , also varies, because it is defined by �ωρ = �vg
2
ρNg2

ωN , where �v takes the same value in both SU(3) and SU(6)
cases.
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where the scalar density, ρs
B , and the baryon density, ρB ,

read

ρs
B = 1

π2

∫ kFB

0
dkk2 M∗

B(σ̄ , σ̄ ∗)[
k2 + M∗2

B (σ̄ , σ̄ ∗)
]1/2 , (13)

ρB = 1

π2

∫ kFB

0
dkk2 = k3

FB

3π2
, (14)

with kFB
being the Fermi momentum for baryon B.

In Eqs. (8) and (9), CB and C ′
B are, respectively, the scalar

polarizabilities (or the scalar-density ratios) at the σ -B and
σ ∗-B interactions. Here, the scalar polarizabilities is defined
by the ratio of the scalar density of a confined quark-field at
finite density to that in vacuum. In the QMC or CQMC model,
they can be expressed by the following parametrizations
[10,11,21,23]:

CB(σ̄ ) = bB[1 − aB(gσN σ̄ )], (15)

C ′
B(σ̄ ∗) = b′

B[1 − a′
B(gσ ∗�σ̄ ∗)], (16)

where the parameters aB , bB , a′
B , and b′

B take the same values
as in Eqs. (5) and (6) (see also Table I). In contrast, they
become unity in the QHD-type model (recall aB = a′

B = 0
and bB = b′

B = 1).
The total energy density, ε, and pressure, P , in the core

then read

ε =
∑
B

1

π2

∫ kFB

0
dkk2

[
k2 + M∗2

B (σ̄ , σ̄ ∗)
]1/2

+ 1

2
m2

σ σ̄ 2 + 1

3
g2σ̄

3 + 1

4
g3σ̄

4 + 1

2
m2

σ ∗ σ̄
∗2

+ 1

2
m2

ωω̄2 + 3

4
c3ω̄

4 + 1

2
m2

φφ̄2 + 1

2
m2

ρρ̄
2 + 3�ωρω̄

2ρ̄2

+
∑

�

1

π2

∫ kF�

0
dkk2

[
k2 + m2

�

]1/2
, (17)

P = n2
B

∂

∂nB

(
ε

nB

)
, (18)

where the total baryon density, nB , is given by a sum of each
baryon density

nB =
∑
B

ρB. (19)

In the QHD-type model, the pressure can alternatively be
expressed as

P = 1

3

∑
B

1

π2

∫ kFB

0
dk

k4

[
k2 + M∗2

B (σ̄ , σ̄ ∗)
]1/2 − 1

2
m2

σ σ̄ 2

− 1

3
g2σ̄

3 − 1

4
g3σ̄

4 − 1

2
m2

σ ∗ σ̄
∗2 + 1

2
m2

ωω̄2 + 1

4
c3ω̄

4

+ 1

2
m2

φφ̄2 + 1

2
m2

ρρ̄
2 + �ωρω̄

2ρ̄2

+ 1

3

∑
�

1

π2

∫ kF�

0
dk

k4[
k2 + m2

�

] . (20)

III. SU(3) SYMMETRY IN THE ISOSCALAR,
VECTOR-MESON COUPLINGS

To study the EoS and the properties of neutron stars,
it is very interesting to extend SU(6) spin-flavor symmetry
based on the quark model to the more general SU(3) flavor
symmetry [12,29]. Restricting our interest to three quark
flavors (up, down, and strange), SU(3) symmetry can be
regarded as a symmetry group of strong interaction. To
consider combinations of the meson-baryon couplings, it is
extremely useful to choose the SU(3)-invariant interaction
Lagrangian. Using the matrix representations for the baryon
octet, B, and meson nonet (singlet state, M1, and octet state,
M8), the interaction Lagrangian can be written as a sum of three
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FIG. 1. (Color online) Particle fractions, Yi , in the QMC and CQMC models (left panel, QMC; right panel, CQMC). As explained in the
text, in each panel, figure (a) is for the case where only the nonstrange mesons (σ , ω, and ρ) are considered in SU(6) symmetry; figure (b) is for
the case where all the mesons, including the σ ∗ and φ, are considered in SU(6) symmetry; and figure (c) is for the case where all the mesons
are included in SU(3) symmetry.
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FIG. 2. (Color online) Particle fractions, Yi , in the GM1, GM3, NL3, and TM1 models (upper left panel, GM1; upper right panel, GM3;
lower left panel, NL3; lower right panel, TM1). The labels (a), (b), and (c) in the figures are the same as described in the legend of Fig. 1.

terms, namely one coming from the coupling of the meson
singlet to the baryon octet (S term) and the other two terms
from the interaction of the meson octet and the baryons—one
being the antisymmetric (F ) term and the other being the
symmetric (D) term [12,30,31]:

Lint = −g8

√
2[αTr([B̄,M8]B) + (1 − α)Tr({B̄,M8}B)]

− g1
1√
3

Tr(B̄B)Tr(M1), (21)

where g1 and g8 are, respectively, the coupling constants for
the meson singlet and octet states, and α (0 � α � 1) is known
as the F/(F + D) ratio. For details, see Refs. [30,31].

We here focus on the isoscalar, vector-meson (ω and φ)
couplings to the octet baryons, because, as usual, the other
coupling constants can be determined so as to reproduce the
observed properties of nuclear matter and hypernuclei (as

discussed in Sec. IV).1 The physical ω and φ mesons are de-
scribed in terms of the pure singlet, |1〉, and octet, |8〉, states as

ω = cos θv |1〉 + sin θv |8〉 ,
(22)

φ = − sin θv |1〉 + cos θv |8〉 ,

with θv being the mixing angle.
In SU(3) symmetry, all possible combinations of the

couplings are then determined by four parameters: the singlet
and octet coupling constants, g1 and g8, the F/(F + D)
ratio for the vector mesons, αv , and the mixing angle, θv .
If we require the universality assumption for the (electric)
F/(F + D) ratio, we find αv = 1 [30,32]. In the limit of the

1When SU(3) symmetry is applied to the isovector, vector mesons,
the Fock term is, in fact, necessary to reproduce the observed
symmetry energy [11].
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ideal mixing, the mixing angle is given by

θ ideal
v = tan−1

(
1√
2

)
� 35.26◦. (23)

Furthermore, if the coupling ratio, z, is chosen to be

z ≡ g8

g1
= 1√

6
� 0.4082, (24)

we can obtain the usual SU(6) relations:

1

3
gωN = 1

2
gω� = 1

2
gω� = gω�, (25)

2gφ� = 2gφ� = gφ� = 2
√

2

3
gωN, gφN = 0. (26)

In the present calculation, we refer to the Nijmegen
extended-soft-core (ESC) model [30] to fix the mixing angle
and z. At present, this model may be the most complete model
for the baryon-baryon interaction. It can well describe not only
the N -N but also the Y -N and Y -Y interactions in terms of the
meson exchanges based on SU(3) symmetry. This model has
then suggested the values of θv and z as

θv = 37.50◦, z = 0.1949. (27)

We notice that the mixing angle is very close to the ideal
value, while the value of z is much smaller than that in SU(6)
symmetry. It may be expected that a small value of z helps
enhance the coupling constants [12]. We can find the relations
of the coupling constants in SU(3) symmetry as

gω� = gω� = 1

1 + √
3z tan θv

gωN,

(28)

gω� = 1 − √
3z tan θv

1 + √
3z tan θv

gωN,

gφN =
√

3z − tan θv

1 + √
3z tan θv

gωN, (29)

gφ� = gφ� = − tan θv

1 + √
3z tan θv

gωN,

(30)

gφ� = −
√

3z + tan θv

1 + √
3z tan θv

gωN .

Therefore, once the value of gωN is given, the other coupling
constants, gωY and gφB , are determined by Eqs. (28)–(30).

IV. MODELS

We examine two types of RMF models. One is based on the
QMC and CQMC models [10,11,23], in which the variation
of baryon structure in matter is taken into account. In these
models, it is not necessary to consider any NL potential
for describing the properties of nuclear matter around the
saturation density, n0

B . The other is the QHD-type models
with the NL potential given in Eq. (7). In fact, we adopt the
parametrizations of the GM1, GM3 [8], NL3 [33], TM1 [34],
FSUGold [35], and IU-FSU [36] models. Some of those
models are very popular, because they are accurately calibrated
by using various experimental data on infinite nuclear matter
and finite nuclei.

A. SU(6) symmetry

In the case of QHD-type, the coupling constants, gσN ,
gωN , and gρN , are determined so as to reproduce the binding
energy per nucleon, w0, and symmetry energy, a4, at n0

B . The
parameters, g2, g3, c3, and �ωρ , in Eq. (7) are chosen to be
the values given in the original papers. For the vector-meson
couplings to hyperons, we use the SU(6) relations given in
Eqs. (25) and (26), and the following coupling relations:

gρN = 1
2gρ� = gρ�, gρ� = 0. (31)

Furthermore, assuming that the σ ∗ meson does not couple to
a nucleon (gσ ∗N = 0), the couplings of σ -Y and σ ∗-Y may be
determined as follows. In RMF approximation, the potential
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FIG. 3. (Color online) Particle fractions, Yi , in the FSUGold and IU-FSU models (left panel, FSUGold; right panel, IU-FSU). The labels
(a), (b), and (c) are the same as described in the legend of Fig. 1.
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for hyperon Y in symmetric nuclear matter, U
(N)
Y , may be

calculated as

U
(N)
Y = −gσY σ̄ + gωY ω̄. (32)

Thus, we can determine the coupling constants, gσY , if we
take the following values suggested from the experimental
data of hypernuclei: U

(N)
� = −28 MeV, U

(N)
� = +30 MeV,

and U
(N)
� = −18 MeV [37–39].

In addition, if we consider the Nagara event [40], which
may suggest that the depth of the potential between two �s is
about −5 MeV, we may be able to fix the coupling constant,
gσ ∗�, by assuming that U

(�)
� � −5 MeV, where U

(�)
� is the

potential for � in �-hyperon matter:

U
(�)
� = −gσ�σ̄ (�) − gσ ∗�σ̄ ∗(�) + gω�ω̄(�) + gφ�φ̄(�).

(33)

Here, the superscript (Y ) stands for a quantity in Y -
hyperon matter. Furthermore, we assume the relation, gσ ∗� =
gσ ∗�, which is presented by SU(6) symmetry, and de-
termine the coupling constant, gσ ∗�, using the relation
U

(�)
� � 2U

(�)
� [38,39].

In the QMC and CQMC models, the NL interaction is not
necessary and the coupling constants can be determined by
the same way as in the QHD-type model. We, however, notice
that in Eqs. (32) and (33), the coupling constants for the scalar
mesons should be replaced by the field-dependent ones [see
Eqs. (5) and (6)].

In Tables II, III, and IV, we list the coupling constants
in SU(6) symmetry and the properties of symmetric nuclear
matter at n0

B .

B. SU(3) symmetry

As discussed in Sec. III, because the pure singlet and octet
states are mixed in SU(3) symmetry, the φ meson, as well
as the σ and ω mesons, contributes to the nuclear saturation

properties. Thus, we have to readjust the coupling constants to
satisfy the saturation condition, namely the binding energy per
nucleon, w0, at n0

B . We suppose that gσ ∗N = 0 and the coupling
constant, gσN , takes the same value as in SU(6) symmetry. The
coupling constant, gρN , is fixed so as to reproduce the value
of symmetry energy given in the original paper.

First, we consider the QHD-type models. Assuming that
the couplings, g2 and g3, in the NL potential takes the values
given in the original paper, we can determine not only gωN

and c3 but also gφN so as to reproduce the same saturation
condition as in the original paper. We here notice that, because
gφN is related to gωN through Eq. (29), gφN is not free. Even in
the case where the quartic term of the ω field is not involved,
namely c3 = 0, it is possible to reproduce the same saturation
condition, because the φ-meson contributions to the energy
density and pressure are quadratic [see Eqs. (17) and (20)],
and they have the same forms as in the ω-meson contributions.
For the vector-meson couplings to hyperons, we use the SU(3)
relations given in Eqs. (28) and (30), and the relations for the
ρ meson, Eq. (31). For the couplings of σ -Y and σ ∗-Y , we
may be able to use the same procedure as in SU(6) symmetry.

Next, in the QMC and CQMC models, we can also
reproduce the same properties of nuclear matter as in SU(6)
symmetry by only readjusting the coupling constant, gωN

[thus, gφN is also varied through Eq. (29)]. The other coupling
constants may be determined by the same ways as in SU(6)
symmetry.

The results in SU(3) symmetry are also given in Tables II,
III, and IV.

V. NUMERICAL RESULTS AND DISCUSSIONS

A. Properties of symmetric nuclear matter

As seen in Tables II, III, and IV, the properties of symmetric
nuclear matter are well reproduced in all the models.

For the QHD-type models, the results calculated by GM1,
GM3, and NL3 are presented in Table III, and those by TM1,
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FIG. 4. (Color online) Meson fields in the QMC and CQMC models (left panel, QMC; right panel, CQMC). The labels (a), (b), and (c) are
the same as described in the legend of Fig. 1.
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FIG. 5. (Color online) Meson fields in the GM1, GM3, NL3, and TM1 models (upper left panel, GM1; upper right panel, GM3; lower left
panel, NL3; lower right panel, TM1). The labels (a), (b), and (c) are the same as described in the legend of Fig. 1.

FSUGold, and IU-FSU are in Table IV. In the former group,
the NL potential involves the self-interaction terms of the σ
meson, while, in the latter group, in addition, the NL terms
of the vector (ω and �ρ ) mesons are taken into account.
In the GM1, GM3, and NL3 models, the same saturation
properties can be achieved in both SU(6) and SU(3) cases,
as explained in Sec. IV B [see also Eqs. (10) and (11)]. In
contrast, in the TM1, FSUGold, and IU-FSU models, the
symmetry energy, incompressibility, and slope parameter, L,
in SU(3) symmetry are slightly changed from the original
values [given in SU(6) symmetry], because the terms of
c3 and/or �ωρ in the NL potential, which has the quartic
dependence of the nuclear density in the energy density and
pressure of matter, also take part in reproducing the saturation
condition.

Furthermore, we notice the following two points. Firstly,
in the extension of SU(6) to SU(3) symmetry, the coupling,
gωN , becomes smaller, because the (total) repulsive force is
attributed not only to the ω but also to the φ, which is caused
by the mixing in Eq. (22). We note that the coupling constant,

gφN , is negative, because the mean-field value of the φ meson
has a negative sign (see Figs. 4–6).

Second, the coupling, gσ ∗Y (or the σ ∗ field itself), in SU(3)
symmetry is suppressed in all the models, compared with that
in the SU(6) case. In contrast, the σ -Y couplings in SU(3)
symmetry are more enhanced than in SU(6) symmetry. This
enhancement may counterbalance the additional, repulsive
force due to the φ meson in the Y -N interaction, because
the (total) repulsive force in the SU(3) case is stronger than in
the SU(6) case.

B. Neutron stars

In the core of a neutron star, the charge neutrality and β
equilibrium under weak processes are imposed in solving the
TOV equation [25,26]. To obtain the realistic relation between
the mass and radius of a neutron star, for the EoS at very low
nuclear densities (�0.068 fm−3), we use the models given
by Baym, Bethe, Pethick, and Sutherland [43,44]. In fact, the
radius is relatively sensitive to the EoS at low density.
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FIG. 6. (Color online) Meson fields in the FSUGold and IU-FSU models (left panel, FSUGold; right panel, IU-FSU). The labels (a), (b),
and (c) are the same as described in the legend of Fig. 1.

In the following calculations, we study three cases in each
model: (a) only the nonstrange mesons (σ , ω and ρ) are
included in SU(6) symmetry; (b) all the mesons including
the σ ∗ and φ are considered in SU(6) symmetry; (c) all the
mesons are included in SU(3) symmetry.

In Figs. 1–3, we show the particle fractions in the core
of a neutron star. As seen in the figures, from case (a) to
(c), in order, the hyperons are created at higher densities. For
example, the threshold densities of the � and �− productions
in SU(3) symmetry are higher than those in SU(6) symmetry,
which makes the fractions of hyperons small at high densities
and, thus, increases the neutron fraction.

In the models, except for FSUGold and IU-FSU, the � and
�0,− hyperons are created, but the � does not appear, because
the �-hyperon potential in nuclear matter, U

(N)
� , is chosen to

be repulsive (see Sec. IV A).2 However, in the FSUGold and
IU-FSU models, because the rather strong ω-ρ (NL) repulsive
interaction, �ωρω̄

2ρ̄2, is included [see Eq. (7)], the �0,− fields
are very suppressed at high densities (especially, in the SU(3)
case), and the �− alternatively appears beyond nB � 0.4–
0.6 fm−3. Furthermore, the order of the threshold densities for
the �− and �− is reversed in the SU(6) and SU(3) cases. This
is a very remarkable phenomenon, and the isoscalar-isovector
NL interaction, �ωρω̄

2ρ̄2, plays a unique role in the particle
fractions.

We here note that, in some figures, the calculation stops at
a certain density because the effective nucleon mass becomes
zero beyond that density.

The meson fields are presented in Figs. 4–6. As it should
be, in SU(6) symmetry, the strange-meson fields appear in
the density region where the hyperons are generated. On the
other hand, in SU(3) symmetry, the φ meson contributes to the
baryon interactions even at low densities because of the mixing

2We note that if the Fock term is included [10,11,45], the hyperons
except the �− disappear.

effect. However, the σ ∗ meson emerges above the density
at which the first hyperon (usually the �) is created. This
is because we assume that gσ ∗N = 0. In the FSUGold and
IU-FSU models, the fields of ω and ρ mesons (especially the
ρ) are very suppressed because of the isoscalar-isovector, NL
interaction.

In Figs. 7–9, we show the EoS in each model. Furthermore,
in Figs. 10–12, we present the mass-radius relation of a neutron
star calculated by the TOV equation. The detail of the neutron-
star properties is also shown in Table V.

As expected, because the isoscalar, vector-meson couplings
to the octet baryons are enhanced in SU(3) symmetry, the
extension from SU(6) to SU(3) symmetry hardens the EoS
very much. In each model, the hardest EoS is given by case
(c), while the softest one is obtained in case (a). This tendency
can be related to the fact that, as seen in Figs. 1–3, the densities
at which the hyperons appear in case (c) are rather higher than
those in case (a). In general, the strange mesons, especially
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FIG. 7. (Color online) Equations of state in the QMC and CQMC
models. The labels (a), (b), and (c) are the same as described in the
legend of Fig. 1.
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FIG. 8. (Color online) Equations of state in the GM1, GM3, NL3, and TM1 models (left panel, GM1 and GM3; right panel, NL3 and TM1).
The labels (a), (b), and (c) are the same as described in the legend of Fig. 1.

the φ meson, also play an important role in supporting a
heavy neutron star. In the mass-radius relations presented
in Figs. 10–12, we can again see that, in each model, the
maximum neutron-star mass in case (c) is heaviest, while the
lightest one is given in case (a). We note that, in Fig. 11,
the curve (red solid) for the NL3 model in SU(3) symmetry
cannot reach the maximum point because the nucleon mass
becomes negative before the maximum point.

We summarize the following several comments on the
mass-radius relations shown in Figs. 10–12. In the QMC and
CQMC models, the maximum neutron-star masses calculated
in SU(3) symmetry are consistent with the pulsars J1614-2230
and/or J0348+0432. In particular, the mass in the CQMC
model clearly exceeds the mass of J0348+0432. Because the
difference between the QMC and CQMC models is originated
by the hyperfine interaction between two quarks inside a
baryon, the large difference between the two maximum masses
is mainly generated by this microscopic interaction. It is
noticeable that the quark-quark hyperfine interaction is very
vital to obtain the correct mass spectra of octet baryons in a
nuclear medium [15,22].

In the GM1 model, the maximum neutron-star mass in
SU(3) symmetry is much larger than the observed masses of
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FIG. 9. (Color online) Equations of state in the FSUGold and
IU-FSU models. The labels (a), (b), and (c) are the same as described
in the legend of Fig. 1.

J1614-2230 and J0348+0432. In contrast, the maximum mass
in the GM3 model is clearly under the observed value (see the
left panel in Fig. 11). The difference between the two models
is in the values of the nuclear incompressibility and the slope
parameter, namely Kv = 300 (240) MeV and L = 93.9 (89.7)
MeV for the GM1(3) model (see Table III).

The NL3 model is a unique model, in which the mass of
J1614-2230 can be explained even in SU(6) symmetry (see
the right panel in Fig. 11). This model may be characterized
by the large values of symmetry energy (a4 = 37.4 MeV) and
slope parameter (L = 118 MeV) (see Table III).

The rather large values of a4 and L are also used in the
TM1 model, where only the SU(3) result can, however, reach
the masses of J1614-2230 and J0348 + 0432. Furthermore, the
difference between the maximum masses in SU(6) and SU(3)
symmetries is very large in the TM1 model (see also Table V).
This fact may be caused by the repulsive force due to the
NL c3ω̄

4 term in Eq. (7). Note that, to reproduce the same
saturation condition as in SU(6) symmetry, the strength of c3

in SU(3) symmetry is larger than that in SU(6) symmetry (see
Table IV).
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Unfortunately, the mass of J1614-2230 cannot be explained
by the FSUGold and IU-FSU models. However, in both models
the maximum mass in SU(3) symmetry becomes 1.8–1.9 M�,
which is not far from the observed mass. In these models,
the maximum mass in SU(6) symmetry is again very different
from the value in SU(3) symmetry (see Table V). Furthermore,
although the curves for M/M� in the SU(6) and SU(3) cases
normally coincide with each other in the low mass region
(see Figs. 10 and 11), the two curves clearly stay away from
each other even at M/M� = 0.8 in the FSUGold and IU-FSU
models (see Fig. 12). These facts may again be caused by the
very large difference between the values of c3 in SU(6) and
SU(3) symmetries (see Table IV).

Last, we shall see how the uncertainty of the hyperon
potentials in nuclear matter (see Sec. IV A) changes the present
main results. The potential depth for � (U (N)

� = −28 MeV)
may be more reliable than those for � and �, because the
experimental data on � hypernuclei are rather rich. Therefore,
we fix the former, while we shall change the values of the
latter potentials by 25%, namely U

(N)
� = +30 ± 7.5 MeV and

U
(N)
� = −18 ± 4.5 MeV, by readjusting the couplings, gσ�
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FIG. 12. (Color online) Mass-radius relations in the FSUGold and
IU-FSU models. The labels (a), (b), and (c) are the same as described
in the legend of Fig. 1.

and gσ�, respectively. In Table VI, we show the variation of
neutron-star properties in the FSUGold model. As we can
see in Table VI, although the threshold densities at which the
hyperons appear show some change (thus, the particle fractions
vary a little), the maximum mass and the radius are not much
altered. Therefore, the neutron-star mass and radius are not
sensitive to the variation of the hyperon potentials, which may
be consistent with the findings in Ref. [12].

VI. SUMMARY

We have calculated the particle fractions, the meson fields,
and the EoS in the core of a neutron star, using the popular RMF
models (such as GM1, GM3, NL3, TM1, FSUGold, and IU-
FSU) as well as the QMC and CQMC models. It is noticeable
that some of the RMF models are accurately parametrized to
compute the properties of infinite nuclear matter and finite
nuclei. On the other hand, because, in the QMC and CQMC
models, the quark degrees of freedom in a baryon are taken
into account, they allow us to consider the variation of the

TABLE V. Properties of a neutron star in SU(6) or SU(3)
symmetry. We list the neutron-star radius, Rmax (in km), the ratio of the
neutron-star mass to the solar mass, Mmax/M�, and the central density,
nc (in fm−3), at the maximum-mass point. In these calculations, we
consider all the mesons (σ , ω, ρ, σ ∗, and φ).

SU(6) SU(3)

Rmax Mmax/M� nc Rmax Mmax/M� nc

QMC 12.5 1.72 0.85 11.8 1.93 0.96
CQMC 12.6 1.84 0.84 12.1 2.08 0.90
GM1 12.7 1.86 0.82 12.2 2.14 0.87
GM3 12.1 1.63 0.93 11.4 1.85 1.05
NL3a 13.1 2.07 0.78 – – –
TM1 13.1 1.72 0.77 12.5 2.03 0.86
FSUGold 11.4 1.39 1.03 11.2 1.79 1.08
IU-FSU 11.3 1.55 1.03 11.3 1.88 1.02

aIn the NL3 model with SU(3) symmetry, the nucleon mass becomes
negative before the neutron-star mass reaches the maximum point.
Therefore, the maximum mass is not given in SU(3) symmetry.
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TABLE VI. Change in the neutron-star properties due to ambi-
guity of the hyperon potentials. The calculation has been performed
in the FSUGold model with SU(3) symmetry. We list the coupling
constants, gσ� and gσ�, for various potential depths, the neutron-star
radius, Rmax (in km), the ratio of the neutron-star mass to the
solar mass, Mmax/M�, and the central density, nc (in fm−3), at the
maximum-mass point. Furthermore, we also present the threshold
densities, nth

�− and nth
�− (in fm−3), at which the �− and �− are,

respectively, created.

(U (N)
� , U

(N)
� ) gσ� gσ� nth

�− nth
�− Rmax Mmax/M� nc

(+22.5, −13.5) 6.832 6.823 0.520 1.120 11.17 1.787 1.085
(+22.5, −18.0) 6.832 6.953 0.520 0.955 11.17 1.787 1.085
(+22.5, −22.5) 6.832 7.084 0.520 0.835 11.17 1.787 1.085

(+30.0, −13.5) 6.615 6.823 0.560 0.940 11.19 1.794 1.080
(+30.0, −18.0) 6.615 6.953 0.560 0.825 11.20 1.794 1.075
(+30.0, −22.5) 6.615 7.084 0.560 0.735 11.20 1.794 1.075

(+37.5, −13.5) 6.397 6.823 0.605 0.825 11.20 1.800 1.075
(+37.5, −18.0) 6.397 6.953 0.605 0.740 11.20 1.800 1.075
(+37.5, −22.5) 6.397 7.084 0.605 0.670 11.20 1.799 1.075

quark structure of baryon in dense mater. In particular, the
CQMC model involves the quark-quark hyperfine interaction,
and, thus, it can correctly describe the octet baryon spectra in
matter as well as in vacuum [22].

In the present calculations, we have examined the extension
from SU(6) spin-flavor symmetry based on the quark model
to SU(3) flavor symmetry in determining the isoscalar, vector-
meson couplings to the octet baryons. We have also studied
how the strange mesons (σ ∗ and φ) contribute to the internal
structure of a neutron star.

In SU(3) symmetry, we have found that the models except
GM3, FSUGold, and IU-FSU can explain the masses of
J1614-2230 and/or J0348 + 0432. In the GM3, FSUGold, and
IU-FSU models, although the maximum mass cannot reach
1.97 ± 0.04M�, the calculated mass is not far from that value.
Therefore, the extension from SU(6) to SU(3) symmetry and
the strange vector meson, φ, are very significant in sustaining
a heavy neutron star. In addition, the variation of baryon
structure in matter also helps prevent the collapse of a neutron
star. We have found that, if those effects are taken into account
at the RMF level, a massive neutron star could be sustained
even when hyperons exist inside the core.

Because of scarce experimental data on hypernuclei, the
meson couplings to hyperons have large ambiguities. We have,
thus, examined the sensitivity of the present result to the
variation of the hyperon-potential depths using the FSUGold
model. Then, we have found that the mass and radius of a
neutron star are not much altered even if the potential depths
are changed by 25%.

In RMF models, the NL potential, UNL, is indispensable for
reproducing the saturation condition for symmetric nuclear
matter and the properties of finite nuclei. In the present
calculations, it involves not only the usual, NL σ terms but
also the c3ω̄

4 term and the isoscalar-isovector �ωρω̄
2ρ̄2 term.

Among them, in particular, the c3ω̄
4 term hardens the EoS

and, thus, enhances a neutron-star mass. Furthermore, the
isoscalar-isovector coupling plays a unique role in the particle

fractions inside a neutron star. Because the σ -� and σ ∗-�
coupling constants are usually determined so as to fit the
(repulsive) mean-field potential for the � in nuclear matter,
it becomes difficult to create the � hyperon in the core of a
neutron star. However, in the FSUGold and IU-FSU models,
instead of the �0,−, the �− can emerge with a considerable
fraction even at rather low density.

As the power counting [46,47] suggests, there may be
many possible NL couplings and many-body forces containing
various meson fields, which may contribute to the EoS. It is,
thus, interesting to study how such interactions contribute to
the properties of a neutron star. We note that, at the MF level,
the NL potential may be regarded as many-body interactions
among baryons because the meson fields are just auxiliary
fields and, thus, they can be replaced with bilinear forms of
baryon fields.

In RMF models, the parametrization is usually performed
using experimental data measured around n0

B . However,
because the region of 0.8–1.1 fm−3 (>6n0

B ) may be im-
portant in the EoS for a neutron star, no one knows if
such parametrizations work correctly at such high densities.
Therefore, although in this paper we have studied RMF models
from various standpoints, it may be difficult to winnow the
correct model out at the RMF level. As suggested in the
Dirac-Brueckner-Hartree-Fock calculations [48], it may, at
least, be imperative to include the density dependence of the
parameters to obtain conclusive results on the EoS.

In the present calculations, we have not considered the Fock
(exchange) term. In naive QHD-I [27], the Fock contribution
seems very small in symmetric nuclear matter. However, it
plays a very important role even around the normal nuclear
matter density as well as at high densities, if the ρ meson
is included and the tensor interaction, thus, arises [10,11]. It
is remarkable that, when the tensor interaction is taken into
account, the � hyperon does not appear in the core even at
high density [10,11,45]. Furthermore, the tensor contribution
is very important in reproducing the density dependence of
symmetry energy, a4.

We here note that the strange mesons, K and K∗, are not
considered in the present calculation, because they do not
contribute to the EoS, etc., at the relativistic Hartree level.
However, if the Fock term is included, they can contribute and
mix some baryons in matter. The pion also mixes the � and �
through the Fock term.

At very high density, the quark and gluon degrees of
freedom, rather than the hadron degrees of freedom, may take
place in the core matter [49]. Because the degrees of freedom
in quark-gluon matter are generally large, it is necessary
to assume a rather strong correlation between quarks and
gluons to support a massive neutron-star mass. It would be
very interesting to investigate how the quark-gluon phase
connects with the hadron one and how such degrees of freedom
contribute to the EoS for a neutron star.
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