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We apply thermal field theory methods to compute microscopically the nucleon self-energy arising from
one-pion exchange in isospin-symmetric nuclear matter and neutron matter. A self-consistent numerical scheme
is introduced and its convergence is demonstrated. The repulsive contribution from the Fock exchange diagram
to the energy per nucleon in symmetric nuclear matter is obtained.
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I. INTRODUCTION

The equation of state of bulk nuclear matter has attracted
considerable attention over time, as it has a substantial impact
on the properties of neutron stars as well as finite nuclei.
The equation of state is determined by two, generally related,
ingredients: the force between nucleons and the many-body
approximation used to compute the thermodynamic properties
of nuclear matter. Nuclear interactions are accurately modeled
in terms of potentials arising from meson exchange: on the
one hand models have been used which are based on phase
shift equivalent one-boson exchange [1] and, on the other
hand, more recently, (multi)pion-exchange potentials based on
chiral power counting [2]. The diversity of ab initio many-body
approaches includes variational Monte Carlo methods [3] and
propagator methods with (medium-) renormalized soft inter-
actions as, e.g., in non relativistic and covariant Brueckner-
type theories [4]. Perturbative calculations of nuclear matter
properties were revived with the advent of soft chiral potentials
[5].

In this work we apply thermal field theory (TFT) methods
to compute the leading-order nucleon self-energy in isospin-
symmetric nuclear and neutron matter. The method has been
applied in the past in the context of QED and QCD plasmas to
compute the quasiparticle energies of electrons and quarks,
respectively, in a thermal medium [6]. In the low-energy
regime of interest to us, the relevant degrees of freedom
are nucleons and pions. Chiral symmetry is an (approximate)
symmetry of the strong interaction. Because chiral symmetry
is spontaneously broken in nature, pions emerge as (pseudo-)
Goldstone bosons of the theory. The description of the strong
interaction in terms of chiral Lagrangians admits certain
approximation schemes in terms of power counting of small
quantities [7,8], which in principle allow for a systematic
order-by-order improvement of a given calculation. Below,
we will combine relativistic TFT methods and the chiral
Lagrangian description of nuclear interactions to address the
computation of the nucleon self-energy.

Approaches similar to ours were previously developed in
Refs. [9–12]. Fraga et al. [9] derived analytical expressions
for the zero-temperature self-energy of a nucleon due to pion
exchange in dilute nuclear matter to leading order in the chiral
expansion. Lutz et al. [10] and Kaiser et al. [11] (hereafter
KFW) used chiral Lagrangians and expansions in small Fermi
momentum to construct equations of state in the heavy-baryon

limit. The saturation in Ref. [10] arises due to correlations
induced by the one-pion-exchange interaction. In Ref. [11]
two-pion exchange produces nuclear binding at the three-loop
level with a suitably adjusted momentum cutoff. An effective
field theory of nuclear matter with nucleons and pions, which
allows for both local as well as pion-mediated multinucleon
interactions, was developed in Ref. [12] in the heavy-baryon
limit, and the main trends for the energy density of symmetric
nuclear and neutron matter were already reproduced at next-
to-leading order in their power-counting scheme.

In applying TFT to nuclear matter in a relativistic setting,
we have to maintain the covariance of the theory by using
fully relativistic thermal propagators for nucleons and pions.
Keeping the Lorentz symmetries intact is of advantage, in par-
ticular, for computing the scattering and radiation amplitudes
with full propagators and renormalized vertices. Specifically
the computation of particular electroweak processes in nuclear
and neutron matter (or transitions in nuclei), which are driven
by currents with particular Lorentz symmetry are conveniently
carried out in the Dirac basis.

The second goal of our work is to maintain self-consistency
among the propagators and the self-energies of the theory,
which means that the iterations are performed until the
Schwinger-Dyson equation for the nucleons is fulfilled. If
a firm perturbative expansion (with power-counting rules)
exists, a self-consistent approach generates higher-order terms
in every iteration, and therefore is not really necessary. Never-
theless, using the leading-order term in the chiral expansion of
the Lagrangian, we will check the impact of these higher-order
terms in a self-consistent solution.

This paper is structured as follows. In Sec. II we discuss
the chiral Lagrangian. Section III uses TFT to compute the
pion contribution to the nucleon self-energy. Our numerical
method and results for the self-energy are presented in Sec. IV.
Our conclusions are collected in Sec. V. We use natural units
h̄ = c = kB = 1. Four-vectors are denoted with capital letters,
for instance P μ = (p0, p).

II. LAGRANGIANS

Low-energy nuclear dynamics can be constructed on the
basis of the pion and nucleon degrees of freedom starting
from a chiral Lagrangian. The interaction Lagrangian LπN

between nucleons and pions is constructed such as to reflect the
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spontaneous chiral symmetry breaking of strong interactions at
low energies. Since the interactions of Goldstone bosons must
vanish at zero-momentum transfer and in the chiral limit (i.e.,
the pion mass mπ → 0), a low-energy expansion in powers
(the so-called chiral dimension) of the ratio of the momentum
or the pion mass over (4π times) the pion decay constant can
be performed. Consequently, the Lagrangian can be written as

LπN = L(1)
πN + L(2)

πN + · · · , (1)

where the superscript labels the order of the chiral dimension.
The terms in the expansion (1) are constructed by introducing
the following SU(2) matrix U in flavor space,

U = exp

(
i
τ · π

fπ

)
= 1 + i

fπ

τ · π − 1

2f 2
π

π2 + · · · , (2)

where τ is vector of Pauli matrices in isospin space, π is
the isotriplet of pions, and fπ the pion decay constant. The
leading-order term is given by [13]

L(1)
πN = ψ̄

(
iγ μDμ − m + gA

2
γ μγ5uμ

)
ψ, (3)

where ψ is the nucleon field, ψ̄ = ψ†γ0, m is the nucleon
mass, and gA is the axial-vector coupling. The physical value
of gA is determined from neutron beta decay and is given by
gA = 1.2695 ± 0.0029. Dμ is the covariant derivative,

Dμ = ∂μ + �μ, (4)

where �μ is the so-called chiral connection which couples an
even number of pions to the nucleon and is defined as

�μ = i{ξ †, ∂μξ} = i(ξ †∂μξ + ξ∂μξ †)

= − 1

4f 2
π

τ · (π × ∂μπ ) + · · · (5)

with ξ = √
U . The Lagrangian (3) also includes the axial-

vector current uμ which couples an odd number of pions to
the nucleon:

uμ = i[ξ †, ∂μξ ] = i(ξ †∂μξ − ξ∂μξ †) = − 1

fπ

τ · ∂μπ + · · · .
(6)

Keeping only the lowest-order term in the chiral Lagrangian (3)
the pion-nucleon Lagrangian reads [2]

L(1)
πN = ψ̄

(
iγ μ∂μ − m − gA

2fπ

γ μγ5τ · ∂μπ

)
ψ, (7)

where we have neglected the Weinberg-Tomozawa contribu-
tion arising from the chiral connection (5). The chiral one-pion
interaction term in Eq. (7) takes the light dynamical degrees
of freedom, i.e., pions, explicitly into account. The complete
interaction Lagrangian includes to lowest order an additional
four-fermion contact term. Thus, the Lagrangian of the system
can be written as

L = Lfree + L(1)
πN + LNN, (8)

where the first term is the Lagrangian of the noninteracting
system and the last term corresponds to the four-fermion
interaction. Figure 1 shows the two distinct leading-order
contributions to the self-energy of a nucleon originating from
the tree-level vertices in the Lagrangian (8).

FIG. 1. The diagrams contributing to the self-energy of the
nucleon to lowest order. The first one represents the chiral one-pion
exchange contribution to the nucleon self-energy. Solid lines refer to
nucleons, dashed lines to pions, and dots to pion-nucleon vertices.
The second diagram is the contribution from the four-fermion
contact interaction, with the square vertex representing the two-body
scattering matrix.

III. PION CONTRIBUTION TO THE SELF-ENERGY

A. Leading-order contribution

In this section we evaluate the one-pion contribution to
the nucleon self-energy, corresponding to the left diagram
in Fig. 1, within the imaginary-time formalism. The free
covariant propagator of the nucleons in energy-momentum
space is given by

S0(K) = �+
k γ0

ikn + μ − Ek

+ �−
k γ0

ikn + μ + Ek

, (9)

where the zeroth component of the four-momentum Kμ ≡
(k0, k) takes discrete values, k0 = ikn = (2n + 1)πiT , n ∈ Z,
and T is the temperature. �±

k are projectors onto positive (+)
and negative (−) energy states,

�±
k = 1

2Ek

[Ek ± (α · k + mγ0)] , (10)

where E2
k = k2 + m2 is the dispersion relation for noninter-

acting nucleons, m is their mass, and α ≡ γ0γ . The free pion
propagator is given by

D0(Q) = 1

2ωq

(
1

iωn − ωq

− 1

iωn + ωq

)
, (11)

where the zeroth component of the four-momentum Qμ ≡
(q0, q) takes discrete values q0 = iωn = 2nπiT , n ∈ Z, and
ω2

q = q2 + m2
π is the dispersion relation for noninteracting

pions, with mπ being the free pion mass. In terms of the free
propagators (9) and (11) the one-pion exchange contribution
to the nucleon self-energy reads


(P ) = −3g2
A

4f 2
π

T

∫
d3k

(2π )3

∑
ikn

D0(P − K)γ5( /P − /K)

×S0(K)γ5( /P − /K), (12)

where P μ = (p0, p) ≡ (ipn, p). We substitute the propaga-
tors (9) and (11) into Eq. (12) and carry out the summation over
the fermionic Matsubara frequency ikn. In general, this sum
generates physically distinct processes involving all possible
combinations of bosons and fermions and their antiparticles.
The result of the summation can be arranged according to
these underlying processes, but it is more convenient to
separate the self-energy into the “vacuum” and “thermal” parts

(P ) = 
0(P ) + 
T (P ), where the vacuum part is given
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by


0(P ) = 3g2
A

4f 2
π

∫
d3k

(2π )3

1

2ωpk

[
γ5( /P − /K)�+

k γ0γ5( /P − /K)

ipn + μ − Ek − ωpk

∣∣∣∣
k0=ipn−ωpk

+ γ5( /P − /K)�−
k γ0γ5( /P − /K)

ipn + μ + Ek + ωpk

∣∣∣∣
k0=Ek+μ

]
, (13)

and the thermal part is given by


T (P ) = 3g2
A

4f 2
π

∫
d3k

(2π )3

1

2ωpk

×
{[

1

ipn + μ − Ek − ωpk

− 1

ipn + μ − Ek + ωpk

]
γ5( /P − /K)�+

k γ0γ5( /P − /K)|k0=Ek−μnF (Ek − μ)

−
[

1

ipn + μ + Ek − ωpk

− 1

ipn + μ + Ek + ωpk

]
γ5( /P − /K)�−

k γ0γ5( /P − /K)|k0=−Ek−μnF (Ek − μ)

−γ5( /P − /K)

[
�+

k γ0

ipn + μ − Ek − ωpk

+ �−
k γ0

ipn + μ + Ek − ωpk

]
γ5( /P − /K)|k0=ipn−ωpk

nB(ωpk)

−γ5( /P − /K)

[
�+

k γ0

ipn + μ − Ek + ωpk

+ �−
k γ0

ipn + μ + Ek + ωpk

]
γ5( /P − /K)|k0=ipn+ωpk

nB(ωpk)

}
, (14)

where ω2
pk = (p − k)2 + m2

π and nF/B(x) = [exp(x/T ) ±
1]−1 are the Fermi/Bose distribution functions. The retarded
self-energy is obtained by analytical continuation, i.e., ipn →
p0 + i0+. We have verified that in the case of a Yukawa
interaction Eq. (14) transforms to the well known expression
for the self-energy of a fermion in finite-temperature quantum
field theory [6,14].

At sufficiently low temperature the occupation number of
antiparticles is so small that we can neglect their contribu-
tion in Eq. (14). Furthermore, we assume that there is no
macroscopic occupation of pionic modes in nuclear matter
at any temperature and density of interest; therefore, we also
drop the contributions proportional to the bosonic occupation
numbers. The remaining contribution arises from the pole at
k0 ≡ Ek − μ and we arrive at


T (P ) = 3g2
A

4f 2
π

∫
d3k

(2π )3

1

2ωpk

[
1

p0 − k0 − ωpk + i0+

− 1

p0 − k0 + ωpk + i0+

]
(s + /Q)nF (k0), (15)

where we have defined the quantities s = −(m/2Ek)(P − K)2

and Qμ = (q0, q), with components

q0 = 1

2
[(p0 − k0)2 + (p − k)2] − 1

Ek

(p − k) · k(p0 − k0),

(16)

q = − 1

2Ek

[(P − K)2k + 2(p − k) · k(p − k)]

+ (p0 − k0)(p − k). (17)

Later on we will enforce self-consistency in evaluating the
self-energy. This requires a Lorentz decomposition of the self-
energy, which in the most general case is given by


(P ) = 
s(P ) + γ5
ps(P ) + γ μ
μ(P ) + γ5γ
μ
A

μ (P )

+ σμν
μν(P ). (18)

The requirements of parity conservation, translational and
rotational invariance, as well as time-reversal invariance,
reduce this most general decomposition to the following form:


(P ) = 
s(P ) + γ0
0(P ) + γ · p
v(P ). (19)

Equation (15) can now be projected onto its Lorentz com-
ponents by multiplying it with 1, γ0, and γ , and taking the
trace over the γ matrices. Keeping only the thermal part of the
self-energy (and dropping the index T on the self-energies),
this leads us to the following decomposition coefficients:


s(P ) = −3g2
A

4f 2
π

∫
d3k

(2π )3

1

2ωpk

[
1

p0 − k0 − ωpk + i0+

− 1

p0 − k0 + ωpk + i0+

]
nF (k0)

m

2Ek

(P − K)2,

(20)


0(P ) = +3g2
A

4f 2
π

∫
d3k

(2π )3

1

2ωpk

[
1

p0 − k0 − ωpk + i0+

− 1

p0 − k0 + ωpk + i0+

]
nF (k0)

×
[

1

2
((p0 − k0)2 + (p − k)2)

+ 1

Ek

(p − k) · k(p0 − k0)

]
, (21)

|p|
v(P ) = +3g2
A

4f 2
π

∫
d3k

(2π )3

1

2ωpk

[
1

p0 − k0 − ωpk + i0+

− 1

p0 − k0 + ωpk + i0+

]
nF (k0)

×
{

1

2Ek

[(P − K)2k + 2(p − k) · k(p − k)]

− (p0 − k0)(p − k)

}
· p̂, (22)
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where p̂ = p/|p| is a unit vector. Equations (20)–(22) are our
final result for the chiral one-pion-exchange contribution to
the nucleon self-energy. It is evident that the other terms in
Eq. (14), which could become important at higher temperatures
and densities, can be evaluated in a completely analogous way.

B. Further approximations

For numerical computations the factor s + /Q in Eq. (15)
can be simplified. We start by rewriting the expression

2Ek /Q = 2Ek(q0γ0 − q · γ ) = μ[(p0 − k0)2 + (p − k)2]γ0

+ 2(P − K) · K /P − (P 2 − K2) /K

− 2μ(p0 − k0)(p − k) · γ . (23)

For the densities and temperatures of interest, nucleons are
constrained to the vicinity of their Fermi surface, therefore the
momentum of the nucleon can be expressed as p = pF n̂ +
δp. Here, pF is the nucleon Fermi momentum, n̂ is a unit
vector, and δp is the residual momentum, with |δp| � pF .
Furthermore, the relativity parameter x = pF /m is small as
well; numerically, we have

x ≈ 0.28

(
n

n0

)1/3

, (24)

where n is the density of the systems and n0 = 0.16 fm−3 is
the nuclear saturation density. Then, the nucleon energy is
Ep ≈ m(1 + p2/2m2) and the chemical potential μ ≈ m(1 +
p2

F /2m2). This implies that p0 = Ep − μ ≈ (p2 − p2
F )/2m ≈

x n̂ · δp is small compared to |p| ≈ pF . Therefore, we can
replace (P − K)2 ≈ −(p − k)2.

With these approximations we obtain

2Ek /Q ≈ 2m /Q ≈ μ(p − k)2γ0 − 2(p − k) · k /P

+(p2 − k2) /K − (p2 − k2)(p − k) · γ

≈ (p − k)2[(p0 + μ)γ0 − p · γ ], (25)

where we used the fact that p0 − k0 ≈ (p2 − p2
F )/2m − (k2 −

p2
F )/2m = (p2 − k2)/2m.

Therefore, the factor s + /Q in the integrand of the self-
energy (15) reads now

s + /Q ≈ (p − k)2

2m
[m + (p0 + μ)γ0 − γ · p]. (26)

Separating the contributions from particles and anti-
particles in the boson propagator, with these approximations
the self-energy reads


(P ) ≈ [m + (p0 + μ)γ0 − γ · p] [σ+(P ) + σ−(P )]

≡ [m + (p0 + μ)γ0 − γ · p]σ (P ), (27)

where

σ±(P ) = ± 3g2
A

8mf 2
π

∫
d3k

(2π )3

1

2ωpk

(p − k)2

p0 − k0 ∓ ωpk + iη
nF (k0),

(28)

is the reduced self-energy. Therefore, the coefficients of the
Lorentz decomposition of the self-energy can be expressed in

terms of σ (p),


s(P ) ≈ mσ (P ), 
0(P ) ≈ (p0 + μ)σ (P ),
(29)


v(P ) ≈ −σ (P ) .

The real part of the self-energy can now be computed with the
help of the Dirac identity. We obtain by explicitly evaluating
the Cauchy principal value of Eq. (28)

Re[σ (P )] ≡ Re[σ+(P ) + σ−(P )]

= 3g2
A

32mπ2f 2
π

∫ ∞

0
d|k| k2 nF (k0)

2|p||k|
∫ 1

−1
dx

(p − k)2

x − x0

(30)

where x0 = [p2 + k2 + m2
π − (p0 − k0)2]/(2|p||k|).

C. Enforcing self-consistency

The self-consistency of the numerical computation of the
self-energy is achieved by replacing the free nucleon propaga-
tor in Eq. (12) by the full nucleon propagator, determined by
the Schwinger-Dyson equation

S−1(P ) = S−1
0 (P ) − 
(P ) = [(p0 + μ)γ0 − γ · p]

×[1 − Re σ (P )] − m[1 + Re σ (P )] + Im 
(P ),

(31)

where the free nucleon propagator is given by S−1
0 (P ) = (p0 +

μ)γ0 − γ · p − m and we have used Eq. (27) for the nucleon
self-energy. The roots of detS−1(P ) determine the excitation
spectrum of the system,

p∗
0 = E∗

p − μ∗, (32)

where

E∗
p =

√
p∗2 + m∗2, (33)

m∗ = m[1 + Re σ (P ∗)], (34)

p∗ = p[1 − Re σ (P ∗)], (35)

μ∗ = μ[1 − Re σ (P ∗)]. (36)

We achieve self-consistency for the self-energy by replacing
the free quantities m, p, k, and μ in the integrand (but not
in the integration measure) of Eq. (30) by the corresponding
renormalized m∗, p∗, k∗, and μ∗. In practice, we start by
computing (30) with the free quantities, which define the
renormalized quantities (33)–(36) to first order in the iteration
process. We repeat the previous step until convergence is
reached. Approximations made in the numerical part of this
work are purely technical and concern only the computation
of traces in the self-energy diagram. It is evident from
Eqs. (33)–(36) that the pole structure and, therefore, the
quasiparticle spectra as well as the Lorentz structure of the
self-energies remain fully relativistic. During the iteration
procedure the quantities in Eqs. (33)–(36) are corrected in
each iteration differently according to the Lorentz structure of
the self-energy and propagators. Thus the Dirac structure of
the self-energies and propagators is maintained.
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IV. RESULTS

We will not attempt to evaluate the contributions to the
energy of nuclear matter from diagrams other than the one-pion
exchange discussed in the previous section. For that purpose
we define the energy per nucleon, excluding its rest mass m,
via the formula

E

N
= T + U − m, (37)

where T is the kinetic energy, U is the potential energy
and N is the particle number. In terms of the renormalized
quantities (34)–(36) the kinetic energy reads

T = gτ

π2n

∫
d|p| p2

(
m∗

E∗
p

m + |p∗|
E∗

p

|p|
)

nF (E∗
p − μ∗), (38)

where gτ is the isospin degeneracy factor (gτ = 2 in isospin-
symmetric nuclear matter and gτ = 1 in neutron matter). The
potential energy U is given by

U = gτ

2π2n

∫
d|p| p2

[
m∗

E∗
p

m + Ep − |p∗|
E∗

p

|p|
]

× σ (P ∗)nF (E∗
p − μ∗) . (39)

As we consider only spin-unpolarized matter, the spin sum-
mation has been carried out in Eqs. (38) and (39).

A. Symmetric nuclear matter

The Fock diagram evaluated in the previous section repre-
sents chiral one-pion exchange between two nucleons. Chiral
power counting requires to leading order an additional two-
body contact term. The corresponding self-energy diagrams
are shown by the left and the right diagrams in Fig. 1. In
passing we note that if in the nuclear medium the contact is
density independent then its contribution is given simply by

0 1 2 3 4 5
p [fm-1]

0.005

0.01

0.015

| R
e 

σ 
|

FIG. 2. (Color online) Real part of the reduced nucleon self-
energy as a function of momentum p at n = 0.1 fm−3 and T = 0.
The dotted (violet) line is the lowest-order result and simultaneously
the starting point of the iteration. The full (black) line represents the
final self-consistent result. The other lines correspond to 2, 3, 4, and
5 (from bottom to top) iteration steps.

0 1 2 3
p [fm-1]

0.008

0.009

0.01

0.011

0.012

0.013

0.014

0.015

| R
e 

σ 
|

T = 0 MeV
T = 20 MeV

FIG. 3. (Color online) Dependence of the one-pion exchange
contribution to the nucleon self-energy in isospin-symmetric nuclear
matter on the momentum at density n = 0.1 fm−3. The solid line
shows the real part of the self-energy for temperature T = 0 and the
dashed line for T = 20 MeV.


c = t (2)n, where n is the density and t (2) is the two-body
contact.

The reduced self-energy due to the chiral one-pion ex-
change in isospin-symmetric nuclear matter is shown in
Fig. 2 at T = 0 and n = 0.1 fm−3. As one observes, the self-
consistency procedure converges rapidly. In order to achieve
a relative accuracy �10−6 one needs about 10 iterations, the
exact number of iteration depending on the density. For small
densities the number of required iterations is small, while for
large densities the number of iterations needed to achieve
convergence is larger. While the self-energy does not tend
to zero for large external momenta, the result for the energy of
the system is convergent due to an additional integration over
a Fermi distribution function. Our numerical implementation
of the self-consistency shows that the perturbative expansion
is not perfect and iterations are necessary (see Fig. 2). We see

0 1 2 3
p [fm-1]

0

5

10

15

|R
e 

Σ|
 [M

eV
]

 Σs
 Σ0
 Σv

FIG. 4. (Color online) The Lorentz components of the real part of
the nucleon self-energy as a function of momentum p at n = 0.1 fm−3

and T = 0.
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0 0.05 0.1 0.15 0.2

n [fm-3]

0

5

10

15

20

E/
N

 [M
eV

]

Es/N
E0/N
Ev/N
π
KFW

FIG. 5. (Color online) Dependence of various contributions to
the energy per particle on density. The full result is shown by the
solid (black) line, the KFW result is shown by the dashed (red) line.
The remaining lines show the energy per particle according to the
contribution of various Lorentz components: the scalar component
Es (double dash-dotted, cyan), the zero component E0 (dash-dotted,
blue), and vector component Ev (dashed, green).

that chiral power counting at nonzero density and temperature
is not reliable anymore, since several new scales (temperature
and chemical potential) appear.

In Fig. 3 we show the reduced self-energy at zero temper-
ature in comparison to its form at T = 20 MeV. The change
with temperature can be seen to be rather moderate. In the
nonzero temperature case the self-energy is larger for low
momenta than at zero temperature, while for higher momenta
the variation of temperature does not affect the result very
much. This is due to the fact that we deal with comparatively

0 1 2 3
p [fm-1]

0.006

0.007

0.008

0.009

0.01

| R
e 

σ 
|

T = 0 MeV
T = 20 MeV

FIG. 6. (Color online) Dependence of the one-pion exchange
contribution to the nucleon self-energy in pure neutron matter on
the momentum, at density n = 0.1 fm−3. The solid line shows the
real part of the self-energy for temperature T = 0 while the dashed
line is for T = 20 MeV.

low temperatures, therefore the temperature is a relevant scale
only at low momenta.

In Fig. 4 we show the Lorentz components of the real part
of the full self-energy at n = 0.1 fm−3 and T = 0. It can be
seen that the vector self-energy is substantially smaller than
the other contributions to the self-energy, as expected.

Our numerical calculations of the Fock contribution to the
self-energy of nucleons can be validated in certain limiting
cases. We verified that our numerical result for the real part
of the reduced self-energy is in good agreement with the
analytical result quoted in Ref. [9] at zero temperature. A
further test is the comparison of the energies per particle
of nuclear matter with those of KFW, where the energy per
particle was computed directly without a reference to the
self-energy. Their result for the zero-temperature one-pion-
exchange Fock diagram, which is an expansion in the small
relativity parameter x, reads [11]

E(T = 0) = 3g2
Ap3

F

16π2f 2
π

(a0 + a2x
2), (40)

where the coefficients of this expansion a0 and a2 are functions
of the ratio pF /mπ alone and can be calculated analytically.1

In Fig. 5 we show the contributions of the one-pion exchange
to the energy of the matter from various Lorentz components
along with the full result which is the sum of the three
components. Our full result is in good agreement with the
analytical expression by KFW, Eq. (40), also shown in Fig. 5.

B. Pure neutron matter

The reduced self-energy of neutrons in pure neutron matter
is shown in Fig. 6. Compared to isospin-symmetric nuclear
matter, the self-energy in neutron matter is smaller. This is
due to the fact that in pure neutron matter one-pion exchange
involves only the π0 meson. At nonzero temperature, as in the
case of isospin-symmetric nuclear matter, we observe that, for
low momenta, the contribution of the self-energy is larger, but
the difference among the two cases tends to disappear with
increasing momentum.

V. CONCLUSIONS

In this work we have combined the methods of TFT and
chiral Lagrangians to compute the self-energy of nucleons
to leading order in the chiral expansion. In doing so, we have

1The explicit expressions of these functions are given by [11]

a0(v) = 1

3
− 3

4v2
+ 1

8v4
+ 1

v3
arctan 2v

−
(

3

8v4
+ 1

32v6

)
ln(1 + 4v2),

a2(v) = −1

5
+ 1

3v2
+ 9

40v4
+ 1

80v6

−
(

3

10v3
+ 1

8v5

)
arctan 2v − 1

320v8
ln(1 + 4v2),

where v = pF /mπ .
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maintained the covariance of the pion and nucleon propagators
and we have imposed self-consistency by solving a Schwinger-
Dyson equation for the nucleon self-energy. Our approach
has also been applied to pure neutron matter, with similar
results.

Clearly, to obtain a consistent phenomenology of both
isospin-symmetric nuclear and pure neutron matter, one needs
to introduce contact interactions which account for the short-
range two-body and three-body interactions. Furthermore,
the importance of second-order pion exchange was already
stressed by Lutz et al. [10] and KFW. In this respect
further steps might be undertaken to resolve the relativistic
dynamics of pions by including higher-order terms in the chiral
expansion and incorporating �-isobar excitations.

Methodologically, our approach differs from similar works
since we address the nucleon self-energy within a chiral effec-
tive thermal field theory by keeping a relativistic framework,

and at the same time we impose self-consistency by solving a
Schwinger-Dyson equation.

The in-medium electromagnetic and weak interactions
of nucleons can be computed in a relativistically covariant
manner starting from the self-consistent propagators derived
above.
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