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We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling
mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where
the dominant confining interaction for the free independent quarks inside a nucleon is represented by a
phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious
center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at
short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a
perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is
then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations.
The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties
such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications
of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear
matter binding energy with variations in the light quark mass.
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I. INTRODUCTION

The properties of nuclear matter has been an area of
considerable interest for the past few decades. Such studies
are quite important in nuclear physics, [e.g., in the context
of nucleon-nucleon (NN ) interaction, structure and properties
of finite nuclei, and dynamics of heavy ion collisions], astro-
physics (nucleosynthesis, structure and evolution of neutron
stars [1], big bang cosmology), and also particle physics
(production or interaction of hadrons). One of the fundamental
concerns in the study of nuclear matter is the nature of
the NN interaction. This problem is solved usually in a
self-consistent manner in various different approaches which
can be broadly classified into three general types, namely
the ab initio methods, the effective field theory method, and
methods based on phenomenological density functionals. The
ab initio methods include the Brueckner-Hartree-Fock (BHF)
approach [2–4], the relativistic Dirac-Brueckner-Hartree-Fock
(DBHF) approach [5–8], the Green function Monte Carlo
(GFMC) method [9–11] using the basic NN interactions given
by boson exchange potentials. The other approach of this type
pioneered by the Argonne Group [12,13] is also known as the
variational approach. The effective field theory (EFT) methods
[14] are based on chiral perturbation theory [15,16]. The third
type of approaches are based on the phenomenological models
with effective density dependent interactions such as Gogny
or Skyrme forces [17] (see also [18] for a systematic analysis
of Skyrme models) and the relativistic mean field (RMF)
models [19]. The parameters of these models are evaluated
by appealing to the bulk properties of nuclear matter and
properties of closed shell nuclei.

The RMF models represent the NN interactions through the
coupling of nucleons with isoscalar scalar mesons, isoscalar

vector mesons, isovector vector mesons, and the photon
quanta besides the self- and cross-interactions among these
mesons [20,21]. Although implemented at the Hartree level
only, these models have been very successful in simulating
the observed bulk properties of nuclear matter including the
nuclear equation of state (EOS), mass and radii of neutron
star as well as in explaining properties of finite nuclei.
Recently, the RMF model has also been extended to include
the Hartree-Fock theory and the short range repulsion using
unitary operator method [22] to study the symmetric nuclear
matter.

In all these approaches mentioned above nucleons are
treated as structureless point objects. However, incorporation
of structure of nucleon with meson couplings at the basic
quark level in the study of saturation properties of nuclear
matter can provide new insight. With such a hope, there has
been several attempts based on a simple bag model or some
phenomenological potential models to address the nucleon
structure. Using such quark-meson coupling (QMC) models
nuclear equations of state (EOS) have also been constructed
[23,24] and properties of nuclear matter have been studied
in great detail in a series of works by Saito, Thomas, and
collaborators [25] and by others [26–29].

Quantum chromodynamics (QCD) is the underlying theory
of the strong forces that hopefully would also explain nuclear
stability. Therefore the study of changes in nuclear properties
due to the fundamental parameters of QCD in particular
with the variation of light quark masses is legitimate. The
sensitivity of the relative binding energy to the relative
change in light quark masses was investigated for nuclei
A = 3–8 and computed in [30] for different Argonne potential
models, considering cases including the Urbana model IX
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three-body force, and for thorium in [31]. More recently,
Ref. [32] computed the variations in the nuclear binding of
light elements like deuteron, tritium, 7Li, 12C, and 16O from
the changes in quark masses in a one boson-exchange model.
Although, there are sizable differences between [30] and [32],
they agree within a factor less than 2, which can be due to
different nuclear models, and the detailed form of computing
the meson mass and coupling constant variations. In another
study, the anthropomorphic principle was used to constrain
variations in the quark masses and fine structure constant
from the abundances of carbon and oxygen in the universe
essential for life [33]. The nuclear equations of state and the
nuclear matter binding energy can also be affected by quark
mass variations with interesting implications for the stability
of heavy nuclei and stars. This motivates a study of such effect
within relativistic models of nuclear matter such as QMC
models.

In the present study, we have developed a modified quark-
meson coupling model (MQMC) [24,34,35], which is based on
a suitable relativistic independent quark potential model rather
than a bag to address the nucleon structure in vacuum. In such a
picture the light quarks inside a bare nucleon are considered to
be independently confined by a phenomenologically average
potential with an equally mixed scalar-vector harmonic form.
Such a potential has characteristically simplifying features
in converting the independent quark Dirac equation into an
effective Schrödinger like equation for the upper component
of the Dirac spinor which can be easily solved. The implication
of such potential forms in the Dirac framework has been
studied earlier by several authors [36]. It has been shown that
the spin-orbit interaction is absent in such models due to an
exact cancellation of terms coming from the vector and the
scalar part of the potential taken in equal proportion. This is
a welcome feature for a baryon sector, where the contribution
from spin-orbit interaction to baryon mass splittings is already
known to be negligible [37].

Eichen and Feinberg [38] in a gauge invariant formalism,
assuming the confinement mechanism to be purely color-
electric in character, obtained a similar Lorentz structure of
the potential. This typical Lorentz structure of the confining
potential renders the Dirac equation solvable for all possible
quark eigenmodes. Due to the harmonic nature of the potential;
the quark orbitals corresponding to the lowest eigenmode is
realized here in the familiar Gaussian form that makes the
perturbative treatment of the residual interactions such as
the short range one-gluon exchange and quark pion coupling
arising out of chiral symmetry restoration in the PCAC limit
as well as that due to the spurious center of mass motion in
the ground state, simple and straightforward in comparison
with other models. Therefore, it has provided a very suitable
alternative to the otherwise successful cloudy bag models and
has been extensively applied with remarkable consistency in
baryonic as well as mesonic sectors [39,40].

Taking gluonic and pionic corrections together with that
due to center of mass motion, baryon mass spectra in vacuum
has been successfully reproduced in this potential model [24].
This model has also been quite successful in studying nucleon
structure functions in deep inelastic scattering [41]. In view
of this we would like to adopt this model here to address

the nucleon structure properties of nucleons and nuclear
matter.

Corrections due to the spurious center of mass motion as
well as those due to short range one gluon exchange and
quark-pion coupling would be accounted for in a perturbative
manner to obtain the nucleon mass in vacuum. Then the NN
interaction in nuclear matter is realized by introducing an
additional quark coupling to sigma (σ ) and omega (ω) mesons
through mean field approximations. The relevant parameters
of the interaction are obtained self-consistently while realizing
the saturation properties such as the binding energy, pressure,
and compressibility of the nuclear matter. We examine the
effective nucleon mass, nuclear σ term as well as the effective
quark condensate at saturation density in comparison with the
respective values at zero density. We also study their variations
including the sensitivity of the nuclear matter binding energy
with the variation of the light quark masses.

The paper is organized as follows. In Sec. II, we provide a
brief outline of the model describing the nucleon structure
in vacuum where the nucleon mass can be obtained by
appropriately taking into account the center of mass correction,
pionic correction, and gluonic correction. The mean-field
properties of symmetric nuclear matter in this model is
discussed in Sec. III. The results and discussions are presented
in Sec. IV. Finally, in the last section, the conclusions are
drawn.

II. POTENTIAL MODEL

We choose from a phenomenological point of view a flavor
independent potential U (r) confining the constituent quarks
inside the nucleon in accordance with [34], where U (r) is

U (r) = 1
2 (1 + γ 0)V (r)

with

V (r) = (ar2 + V0), a > 0. (1)

Here (a, V0) are the potential parameters. This confining
interaction is believed to provide phenomenologically the
zeroth-order quark dynamics of the hadron, and corrections,
like gluon exchange, can be added perturbatively. The quark
Lagrangian density corresponding to the confining model,

L0
q(x) = ψ̄q(x)

[
i

2
γ μ←→

∂ μ − mq − U (r)

]
ψq(x), (2)

leads to the Dirac equation for an individual quark as

[γ 0εq − �γ �p − mq − U (r)]ψq(�r) = 0. (3)

The normalized quark wave function ψq(�r) can be written in
the two-component form for the ground state as

ψq(�r) = 1√
4π

(
ig(�r)/r

�σ · r̂f (�r)/r

)
χs. (4)

Defining

(ε′
q + m′

q) = (εq + mq) ≡ λq, (5)
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with

ε′
q = (εq − V0/2), m′

q = (mq + V0/2),

and r0q = (aλq)−1/4, (6)

it can be shown that the upper and lower components of ψq(r)
corresponding to the quark-flavor q for the ground state 1s1/2

are

gq(r) = Nq

(
r

r0q

)
exp

( − r2/2r2
0q

)
,

(7)

fq(r) = − Nq

λqr0q

(
r

r0q

)2

exp
(−r2

/
2r2

0q

)
,

where the normalization Nq , is given by

N 2
q = 8λq√

πr0q

1

(3ε′
q + m′

q)
. (8)

In the above, εq is the ground state 1s1/2 individual quark
energy obtained from the eigenvalue condition

(ε′
q − m′

q)

√
λq

a
= 3. (9)

The solution of Eq. (9) for the quark energy εq immediately
leads to the zeroth-order energy of the nucleon

E0
N =

∑
q

εq . (10)

We can now construct the nucleon state |N〉 as the symmetrized
product of the spin-flavor wave function of the three indepen-
dent quarks each in its ground state as in Eq. (4).

Considering the quark confinement inside the nucleon
through the phenomenological interaction potential U (r), the
model expression for the zeroth-order energy E0

N of the
nucleon core is obtained as in Eq. (10). However, there may
be appropriate correction to E0

N due to possible residual
interactions such as the quark-gluon interaction at short
distances originating from a one gluon exchange and quark
pion interaction arising out of the requirement for restoration
of chiral symmetry at the SU (2) × SU (2) level as well as
that coming from the spurious center of mass motion of the
ground state nucleon. We next consider these corrections for
the zeroth-order energy E0

N of the nucleon core as follows.

A. Center of mass correction

In this model, the quark constituents are independently
bound by a potential with fixed center to obtain the quark
orbitals in the nucleon, which are used to construct a composite
nucleon wave function. If the composite nucleon is to be
considered as a translationally invariant state, its wave function
must be corrected for the effects of spurious center of mass
(c.m.) motion. For center of mass correction, earlier workers
[34] had followed the prescription given by Peierls-Yoccoz
[42]. However, here we will extract the center of mass energy
to first order in the difference between the fixed center and
relative quark co-ordinates, using the method described by
Guichon et al. [23].

We assume that the Hamiltonian, HN , for the composite
nucleon can be written as

HN = Hin + Hc.m., (11)

where Hin is the Hamiltonian corresponding to the internal de-
grees of freedom and Hc.m. is the center of mass Hamiltonian.
We can write the total Hamiltonian from Eq. (2) as

HN =
∫

HNd3x. (12)

Thus, the Hamiltonian density can be written as

ĤN =
3∑

i=1

γ0(i)
[
�γ (i) · �pi + mq + 1

2
(1 + γ0(i))U (ri)

]
. (13)

The internal Hamiltonian density can be written in a similar
way in terms of the relative rather than the fixed coordinates
as

Ĥin =
3∑

i=1

γ0(i)

[
�γ (i) · �πi + mq + 1

2
(1 + γ0(i))U (ρi)

]
, (14)

where

�πi = �pi − 1

3

3∑
j=1

�pj and �ρi = �ri − 1

3

3∑
j=1

�rj = �ri − �Rc.m..

(15)

The center of mass contribution to the Hamiltonian density is
then the difference between the two:

Ĥc.m. = ĤN − Ĥin =
3∑

i=1

γ0(i)

[
1

3
�γ (i) ·

3∑
j=1

�pj

+ 1

2
(1 + γ0(i)) [U (ri) − U (ρi)]

]
. (16)

We now estimate the center of mass contribution to the nucleon
energy by calculating the expectation value of the center of
mass Hamiltonian. Here, we take the solutions for the quark
orbitals as given in Eq. (7), and the composite nucleon spin
flavor configuration |N〉 as per SU (6) prescription. Now, we
have

εc.m. = 〈N |Ĥc.m.|N〉 = 〈N |Ĥ(1)
c.m.|N〉 + 〈N |Ĥ(2)

c.m.|N〉, (17)

where

〈N |Ĥ(1)
c.m.|N〉 = 1

3
〈N |

3∑
i=1

γ0(i) �γ (i) ·
3∑

j=1

�pj |N〉

= 1

3
〈N |

3∑
i=1

γ0(i) �γ (i) · �pi |N〉

= 6

(3ε′
u + m′

u)r2
0u

. (18)
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In the above expression the terms j 
= i in fact vanish
effectively:

〈N |Ĥ(2)
c.m.|N〉 = 1

2
〈N |

3∑
i=1

(1 + γ0(i))[U (ri) − U (ρi)]|N〉

= 1

2
〈N |

3∑
i=1

(1 + γ0(i))(2�ri · �Rc.m. − R2
c.m.)|N〉

= 23ε′
u + 13m′

u

3(3ε′
u + m′

u)2r2
0u

. (19)

Thus, the total center of mass correction comes out as

εc.m. = (77ε′
u + 31m′

u)

3(3ε′
u + m′

u)2r2
0u

. (20)

B. Chiral symmetry and pionic corrections

Under the global, infinitesimal chiral transformation, we
have

ψq(x) −→ ψq(x) − i
τ · α

2
γ 5ψq(x). (21)

Substituting the above expression in the zeroth-order
Lagrangian and with little algebra, we get

L0′
q (x) −→ L0

q + i(mq + V (r))ψ̄q(x)γ 5(τ · α)ψq(x). (22)

The axial vector current of the quarks is not conserved as
the scalar term proportional to G(r) = (mq + V (r)/2) in the
Lagrangian density L0

q is chirally odd. The vector part of
the potential poses no problem in this respect. Therefore, in
the present model, chiral symmetry in SU (2) sector is restored
by introducing in the usual manner, an elementary pion field φ
of small but finite mass mπ � 140 MeV through the additional
terms in the original Lagrangian density Lq(x), so as to write

Lq(x) = L0
q(x) + L0

π (x) + Lπ
I (x), (23)

where

L0
π (x) = 1

2 (∂μφ)2 − 1
2m2

πφ2. (24)

The Lagrangian densityLπ
I (x) corresponding to the quark pion

interaction is taken to be linear in isovector pion field φ such
that

Lπ
I (x) = − i

fπ

G(r)ψ̄q(x)γ 5(τ · φ)ψq(x)

≡ −iGqqπ ψ̄q(x)γ 5(τ · φ)ψq(x), (25)

where fπ � 93 MeV is the phenomenological pion decay
constant and Gqqπ is the effective quark-pion coupling
strength. Then, the four-divergence of the total axial vector
current becomes ∂μAμ(x) = −fπm2

πφ(x) and gives the partial
conserved axial current (PCAC) relation. Now the Hamiltonian
from Eq. (24) in second quantized form is given by

Hπ =
∑

j

∫
d3kwkâj (�k)†aj (�k), (26)

where â
†
j (�k) and âj (�k) are the pion creation and annihilation

operators and wk = (k2 + m2
π )1/2 is the pion energy. Finally

the interaction Hamiltonian corresponding to Lπ
I (x) becomes

Hπ
I = − 1

(2π )3/2

∑
B,B ′,j

∫
d3k

[
V BB ′

j (k)b̂†B ′ b̂B âj (�k) + H.c.
]
,

(27)

where j corresponds to the pion-isospin index and H.c. denotes
the Hermitian conjugate. In the above equation, b̂

†
B and b̂B are

the creation and annihilation operators of the baryon state
with quantum numbers of N,�, . . ., etc. V BB ′

j (k) represents
the baryon pion absorption vertex function in the point-pion
approximation and is obtained as [34]

V BB ′
j (k) = − i

fπ

1

(2wk)1/2

∫
d3rG(r)eik·r

×〈B ′|ψ̄q(r)γ 5ψq(r)τj |B〉. (28)

Assuming all the quarks in the initial and final baryon are in a
1s1/2 state, then Eq. (28) becomes

V BB ′
j (k) = i

fπ

1

(2wk)1/2

√
π

2

N 2
q

k3/2λqr
4
0q

×〈B ′|
∑

q

(σq · �k)τj |B〉I (k), (29)

where

I (k) = 2
∫ ∞

0
drr5/2G(r)J3/2(kr)e−r2/r2

0q . (30)

The coupling of the nonstrange quarks to the pion causes a
shift in the energy of the baryon core. From the second-order
perturbation theory, the pionic self-energy is given by

�B(EB) =
∑

k

∑
B

′

V †BB
′
V BB

′

EB − wk − M0
B

′
, (31)

where
∑

k = 1
(2π)3

∫
d3k and B ′ is the intermediate baryon

state. For degenerate intermediate states on the mass shell
with M0

B = M0
B ′ , the self-energy correction becomes [34]

δMπ
B =

∑
B

(
EB = M0

B = M0
B ′

) = −
∑
k,B ′

V †BB ′
V BB ′

wk

. (32)

Using the explicit expression (29) for V BB ′
(k), one gets

δMπ
B = −1

3
Iπ

∑
B ′

CBB ′f 2
BB ′π , (33)

where

CBB ′ = (σBB ′ · σBB ′
)(τBB ′ · τBB ′

).

For intermediate baryon states B ′ we consider only the octet
and decouplet ground states. Now putting the values of fBB ′π
and CBB ′ , we get the pionic self-energy for the nucleon [34]

δMπ
N = −171

25
Iπf 2

NNπ , (34)

where

Iπ = 1

πmπ
2

∫ ∞

0
dk

k4u2(k)

w2
k

(35)
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with the axial vector nucleon form factor given as

u(k) =
[
1 − 3

2

k2

λq(5ε′
q + 7m′

q)

]
e−k2r2

0 /4. (36)

The pseudovector nucleon pion coupling constant fNNπ can
be obtained from the familiar Goldberg-Triemann relation
using the axial vector coupling constant value gA in the
model.

C. Gluonic corrections

The one-gluon exchange interaction is provided by the
interaction Lagrangian density

Lg
I =

∑
J

μa
i (x)Aa

μ(x), (37)

where Aa
μ(x) are the octet of gluon vector fields and

J
μa
i (x) is the ith quark color current. The gluonic cor-

rection can be separated in two pieces, namely, one from
the color electric field (Ea

i ) and another one from the
magnetic one (Ba

i ) generated by the ith quark color current
density

J
μa
i (x) = gcψ̄q(x)γ μλa

i ψq(x), (38)

with λa
i being the usual Gell-Mann SU (3) matrices and

αc = g2
c /4π . The contribution to the mass due to the relevant

diagrams can be written as a sum of a color electric and
magnetic part as

(�EN )g = (�EB)Eg + (�EB)Mg , (39)

where

(�EN )Eg = 1

8π

∑
i,j

8∑
a=1

∫
d3rid

3rj

|ri − rj | 〈B|J 0a
i (ri)J

0a
j (rj )|B〉,

(40)

and

(�EN )Mg = − 1

8π

∑
i,j

8∑
a=1

∫
d3rid

3rj

|ri − rj | 〈B| �J a
i (ri) �J a

j (rj )|B〉.

(41)
Finally, taking into account the specific quark flavor and

spin configurations in the ground state baryons and using the
relations 〈∑a(λa

i )2〉 = 16/3 and 〈∑a(λa
i λ

a
j )〉i 
=j = −8/3 for

baryons, one can write the energy correction due to color
electric contribution as

(�EN )Eg = αc

(
buuI

E
uu + busI

E
us + bssI

E
ss

)
, (42)

and due to color magnetic contributions as

(�EN )Mg = αc

(
auuI

M
uu + ausI

M
us + assI

M
ss

)
, (43)

where aij and bij are the numerical coefficients depending
on each baryon. In Fig. 1, we have shown the one gluon
exchange among the quarks. The color electric contributions
for the baryon masses vanishes when all the constituent quark
masses in a baryon are equal, whereas it is nonzero otherwise.
Therefore, we have auu = −3 and aus = ass = buu = bus =

FIG. 1. One gluon exchange contributions to the baryon energy.

bss = 0 for the nucleon case. The quantities I
E,M
ij are given in

the following equation:

IE
ij = 16

3
√

π

1

Rij

[
1 − αi + αj

R2
ij

+ 3αiαj

R4
ij

]
,

(44)

IM
ij = 256

9
√

π

1

R3
ij

1

(3ε′
i + m′

i)

1

(3ε′
j + m′

j )
,

where

R2
ij = 3

[ 1(
ε′
i
2 − m′

i
2) + 1(

ε′
j

2 − m′
j

2)]
,

(45)

αi = 1

(ε′
i + m′

i)(3ε′
i + m′

i)
.

In the calculation we have taken αc = 0.58 as the strong
coupling constant in QCD at the nucleon scale [34]. The color
electric contribution is zero here, and the gluonic corrections to
the mass of the nucleon are due to color magnetic contributions
only.

Finally treating all these corrections independently, one can
obtain the physical mass of the nucleon as

MN ≡ EN = E0
N − εc.m. + δMπ

N + (�EN )Eg + (�EN )Mg ,

(46)

where εc.m. is the energy associated with the spurious center
of mass correction, (�EN )Eg + (�EN )Mg is the color electric
and magnetic interaction energies arising out of the one-gluon
exchange process, and δMπ

N is the pionic self-energy of the
nucleon due to pion coupling to the nonstrange quarks. In
the above MN is the mass of the nucleon at zero density. In
the next section, we will calculate the effective mass M∗

N in the
medium using Eq. (46) where additional quark couplings to the
mesons would be introduced in a mean field approximation.
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TABLE I. Bare set parameters and energy corrections.

mq (MeV) V0 (MeV) a (fm−3) εq (MeV) εc.m (MeV) δMπ
N (MeV) (δEB )g (MeV) gA gNNπ

40 100.187229 0.892380 483.516 373.636 − 63.018 − 74.894 1.1179 10.19
50 96.287247 0.870341 482.483 369.668 − 65.749 − 73.302 1.1334 10.34
300 − 62.257187 0.534296 458.455 283.578 − 109.689 − 43.099 1.3844 12.68

III. EQUATION OF STATE FOR NUCLEAR MATTER

The Dirac equation (3) for individual quarks in the medium
is now given by[

γ 0
(
εq − gq

ωω0
) − �γ �p − (

mq − gq
σ σ

) − U (r)
]
ψq(�r) = 0,

(47)

where g
q
σ and g

q
ω are the quark couplings to the σ and ω

mesons. In the mean field approximation, the meson fields are
treated by their expectation values,

σ → 〈σ 〉 ≡ σ0 and ωμ → 〈ωμ〉 ≡ δμ0ω0. (48)

We can now redefine Eq. (6) in medium as

ε′
q = (ε∗

q − V0/2) and m′
q = (m∗

q + V0/2), (49)

where the effective quark energy, ε∗
q = εq − g

q
ωω0, and ef-

fective quark mass, m∗
q = mq − g

q
σσ0. Substituting this in

Eq. (49), the effective mass of the nucleon at finite densities
can be calculated from Eq. (46):

M∗
N = E∗

N. (50)

The baryon density ρB , the total energy density, and pressure
at a particular baryon density for the symmetric nuclear matter
are given in the usual form as

ρB = γ

(2π )3

∑
N=p,n

∫ kN
f

0
d3k = 2k3

f

3π2
≡ ρp + ρn, (51)

E = 1

2
m2

σ σ 2
0 − 1

2
m2

ωω2
0 + gωω0ρB

+ γ

(2π )3

∑
N=p,n

∫ kN
f

d3k

√
k2 + M∗

N
2, (52)

P = −1

2
m2

σ σ 2
0 + 1

2
m2

ωω2
0

+ γ

3(2π )3

∑
N=p,n

∫ kN
f k2d3k√

k2 + M∗
N

2
, (53)

where γ = 2 is the spin degeneracy factor for nuclear matter
and gω = 3g

q
ω is the ω-nucleon coupling.

The vector mean-field ω0 is determined through

ω0 = gωρB

m2
ω

. (54)

Finally, the scalar mean-field σ0 is fixed by

∂E
∂σ0

= 0. (55)

The scalar and vector couplings g
q
σ and gω are fitted to the

saturation density and binding energy for nuclear matter. For a

given baryon density, ω0 and σ0 are calculated from Eqs. (54)
and (55), respectively.

The compressibility modulus K is given by the standard
relation:

K = 9ρ2
B

∂2(E/ρB)

∂ρ2
B

, (56)

which measures the stiffness of nuclear matter at the saturation
point.

IV. RESULTS AND DISCUSSION

Starting with this simple composite model of the nucleon
in free space, we wish to study several mean field properties
of the nuclear matter, where the basic NN interaction is
realized through quark couplings to σ and ω mesons. We would
also like to investigate the variations of these nuclear matter
properties with the quark masses and their nuclear density
dependance.

A. Free nucleon properties

Apart from the bulk properties like binding energy and the
compressibility, we would like to address a few other properties
of the nucleon in nuclear matter such as nucleon mass MN ,
charge radius 〈r2〉1/2

N , axial vector coupling constant gA, pion-
nucleon coupling constant gNNπ , and nucleon σ term �N .

The expressions for 〈r2〉1/2
N , gA, gNNπ in free space follows

in the present model according to Ref. [34] as

〈
r2
N

〉
withoutc.m.

= 3

2

11ε′
q + m′

q

(3ε′
q + m′

q)
(
ε′2
q − m′2

q

) , (57)

and with c.m. correction

〈
r2
N

〉 = 〈B|1

3

3∑
r=1

(�ri − �Rc.m.)
2|B〉

= 11ε′
q + m′

q

(3ε′
q + m′

q)
(
ε′2
q − m′2

q

) . (58)

TABLE II. Parameters for nuclear matter. They are deter-
mined from the binding energy per nucleon, B.E. ≡ E/ρB − MN =
−15.7 MeV and pressure, P = 0 at saturation density ρB = ρ0 =
0.15 fm−3.

mq (MeV) gq
σ gω

40 5.46761 3.96975
50 5.28816 4.30828
300 4.07565 9.09078
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TABLE III. Properties for nuclear matter at saturation density.

mq σ0 ω0 M∗
N/MN K 〈rN 〉 εq εc.m. δMπ

N (δEB )g gA gNNπ

(MeV) (MeV) (MeV) (MeV) (fm) (MeV) (MeV) (MeV) (MeV)

40 15.07 7.46 0.90 222.48 0.94784 447.884 376.091 − 28.909 − 82.861 0.9448 7.64
50 15.74 8.09 0.90 223.81 0.94794 445.232 373.260 − 30.545 − 81.603 0.9624 7.74
300 26.93 17.08 0.77 258.913 0.94902 382.049 303.502 − 65.282 − 53.855 1.2629 8.73

The axial-vector coupling constant gA can also be obtained
as [34]

gA(n → p) = 5

9

(5ε′
u + 7m′

u)

(3ε′
u + m′

u)
, (59)

without considering center of mass corrections. Another
quantity of interest is the quark-pion coupling constant
Gqqπ . Using the familiar Goldberger-Treiman relation,
we have

Gqqπ

2Mq

= 1

2fπ

× 3

5
gA. (60)

Here Mq is the constituent quark mass MN/3. The pseu-
doscalar pion-nucleon coupling constant gNNπ which is
obtained from [34] at q2 = m2

π :

GNNπ (q2) = MN

fπ

gAu(q), (61)

where the axial-vector nucleon form factor is

u(q) =
[
1 − 3

2

q2

λq(5ε′
q + 7m′

q)

]
e−q2r2

0 /4. (62)

The medium dependence of gA, Gqqπ , and gNNπ will be
discussed later.

We wish to study several mean field properties of our
composite model of the nucleon by fixing first the free-space
nucleon properties. Here, the quark mass mq is kept as a
free parameter. There are two unknown potential parameters
(a, V0). These are obtained by fitting the nucleon mass MN =
939 MeV and charge radius of the proton 〈rN 〉 = 0.87 fm in
free space. We point out here that in the present model chiral
symmetry is explicitly broken since the Lagrangian L0

q(x) is
chirally odd with the explicit term G(r)ψ̄q(x)ψq(x), where
G(r) = mq + V (r)/2. In view of PCAC, mq in the Lagrangian
density is usually expected to be the current mass. In the bag
model picture, the quark masses are also taken in the current
mass level. Therefore, we investigate the variations of free
space nucleon properties vis-a-vis the saturation properties
of nuclear matter with the light quark mass mq taken within
moderately low values mq = 40 and 50 MeV. However, if
we consider mq to be an otherwise free parameter, we can
also consider here mq = 300 MeV at the constituent mass
range. With such choices of mq values we fit our basic inputs
corresponding to the free-space nucleon properties together
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FIG. 2. (Color online) Nuclear matter binding energy as a function of density for different quark mass.
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with the saturation properties of symmetric nuclear matter to
determine the model parameters (a, V0).

The parameters at zero density and the energy contributions
for various corrections to the nucleon mass including the
axial vector coupling constant gA are given in Table I.
Taking gluonic and pionic corrections together with those
due to center of mass correction, baryon mass spectra in
vacuum had been already reproduced in a similar potential
model [40]. The contributions due to pionic and gluonic
corrections for octet baryons and � have been described in
detail [40].

In the present work, since our focus is on the study of
the nuclear matter, we did not make fine tuning to reproduce
the mass of the baryon spectra. The gluon contribution to
the nucleon in the present calculation comes out to be about
−75 MeV. The pionic correction to � is − 99

171δMπ
N and the

gluonic correction to � as realized by putting auu = 3 and
aus = ass = buu = bus = bss = 0 in Eqs. (42) and (43), we
get M� = 1115.32 MeV.

B. Nucleons in medium and equation of state

We next fix the couplings, g
q
σ and gω, by fitting satura-

tion properties of the nuclear matter. We take the standard
values for the meson masses, namely mσ = 550 MeV and
mω = 783 MeV. The quark-meson coupling constants g

q
σ ,

gω = 3g
q
ω are fitted self-consistently to obtain the correct

saturation properties of nuclear matter binding energy, B.E. ≡
E/ρB − MN = −15.7 MeV and pressure, P = 0 at ρB =
ρ0 = 0.15 fm−3. These parameters are given in Table II.
Due to the additional quark-meson coupling in the nuclear
matter representing the NN interaction, the effective quark
mass becomes m∗

q = (mq − g
q
σ σ0). The compressibility comes

around 223 MeV for mq = 40 MeV, 224 MeV for mq =
50 MeV, and 259 MeV for mq = 300 MeV at nuclear matter
density which is usually taken to be about 200–300 MeV.
The mean field values of σ0 and ω0, compressibility, effec-
tive mass, the energy contributions from different correc-
tions, gA and gNNπ at the saturation point are provided in
Table III.
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FIG. 3. (Color online) Effective mass versus density with quark
mass mq = 40 MeV, mq = 50 MeV, and mq = 300 MeV.
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FIG. 4. (Color online) Charge radius versus density with quark
mass mq = 40 MeV, mq = 50 MeV, and mq = 300 MeV.

The binding energy per nucleon for nuclear matter as a
function of nucleon density ρN corresponding to each of the
choices of mq values have been calculated. Therefore in Fig. 2,
we plot this result for mq = 40 MeV, 50 MeV, and 300 MeV
to compare our result with those of NL3 [20] and QMC [29].
In the same figure, the equation of state for neutron matter in
the present model with mq = 40 MeV, 50 MeV, and 300 MeV
has also been depicted.

Figure 3 shows the effective nucleon mass, M∗/M , as a
function of baryon density for quark mass mq = 40 MeV,
50 MeV, and 300 MeV. This result is compared with that
obtained in QMC [29]. In all cases, the effective mass decreases
as the baryon density increases and then saturates at high
baryon densities. It may be noted here that the effective nucleon
mass of the Walecka model [19] at saturation density is about
540 MeV, a value considered to be extremely small. A value
of about 700 to 750 MeV is usually obtained in nonrelativistic
calculations which is considered to be more consistent with
the observed value of the density of states near the Fermi
surface. In QMC, M∗

N was found to be of the order of 723 MeV.
However, in the present analysis the effective mass M∗

N comes
out to be 855 MeV with mq = 40 MeV, 850 MeV with mq =
50 MeV, and 723 MeV with mq = 300 MeV. The Saito and
Thomas [25] model obtained M∗

N = 839–856 MeV with the
bag radius varying in the range of 0.6 fm to 1 fm.
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FIG. 5. (Color online) gA versus density with quark mass mq =
50 MeV, mq = 50 MeV, and mq = 300 MeV.
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We next calculate the spin-orbit potential strength,
Vso, following Ref. [35] and found that Vso = 0.75 MeV
for mq = 40 MeV, Vso = 0.83 MeV for mq = 50 MeV,
and Vso = 3.41 for mq = 300 MeV. It rises smoothly
with increasing quark mass. Phenomenological values
of the spin-orbit strength are in the range from
5 to 7 MeV.

The variations of the root mean square nucleon radius,
rN , are shown in Fig. 4 with baryon density for quark
mass mq = 40 MeV, mq = 50 MeV, and mq = 300 MeV.
The nucleon radius increases with the baryon density and
is approximately 0.95 fm at the saturation density. The rate
of increase tends to be larger for larger values of the quark
mass.

In Fig. 5, the variation of axial vector coupling constant gA

as a function of baryon density for quark mass mq = 40 MeV,
mq = 50 MeV, and mq = 300 MeV are shown. At bare
level, the gA = 1.118 for mq = 40 MeV, gA = 1.133 for
mq = 50 MeV, and gA = 1.384 for mq = 300 MeV which
qualitatively agrees with the experimental value gA/gV =
1.27590+0.00409

−0.00445 [43]. gA is observed to decrease with increase
in the density. At saturation density, gA = 0.945 for mq =
40 MeV, gA = 0.962 for mq = 50 MeV, and gA = 1.263 for
mq = 300 MeV. Since our MQMC model is a relativistic
model, the attractive scalar potential decreases the quark mass.
Thus the lower component of the wave function is enhanced

 0

 10

 20

 30

 40

 50

 60

 0  0.1  0.2  0.3  0.4  0.5  0.6

σ 0
 (

M
eV

)

ρB (fm-3)

mq=40 MeV
mq=50 MeV

mq=300 MeV

FIG. 7. (Color online) σ0 versus baryon density with quark mass
mq = 40 MeV, mq = 50 MeV, and mq = 50 MeV.

and hence it makes gA decrease with density. This is similar
to the observations made in [44]. The nucleon-pion coupling
constant gNNπ and quark pion coupling constant gqqπ with
mq = 40, 50 MeV and 300 MeV as a function of density are
plotted in Figs. 6(a) and 6(b), respectively. It is observed that
both gNNπ and gqqπ decrease by increasing the density. This
is due to the similar trend found in gA since they are related
through Goldberger-Treiman relation.

We have calculated the scalar mean field σ0 at various
densities which is plotted in Fig. 7 for mq = 40 MeV,
mq = 50 MeV, mq = 300 MeV. At saturation density, we
find σ0 = 15.44 MeV for mq = 40 MeV, σ0 = 16.11 MeV for
mq = 50 MeV, and σ0 = 26.93 MeV for mq = 300 MeV. It is
quite interesting to note here that the effective mass of the quark
that has entered in our calculation as m′

q = mq − g
q
σσ0 + V0/2

comes out to be 7.697 MeV at mq = 40 MeV and 14.9 MeV
for mq = 50 MeV at saturation density. Such a low effective
quark mass, which is of the order of up-down current quark
masses is in quite commensurate with PCAC requirement.

In Fig. 8, the pionic corrections δMπ
N to the mass of the

nucleon for quark masses 40 MeV, 50 MeV, and 300 MeV
are shown for different baryon densities. It is found that δMπ

N

increases with density and at saturation density the values are
−29 MeV, −30 MeV, and −65 MeV for the quark masses
40, 50, and 300 MeV, respectively. Since with increase in
density the quark-pion coupling strength and the pseudoscalar
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nucleon-pion coupling gNNπ decreases, the pionic correction
to the mass increases.

In Fig. 9, it is observed that the gluonic corrections to
the mass of the nucleon decreases by increasing the baryon
density, which is expected, because the average quark distances
increase as the nucleon swells. In the same figure, the gluonic
correction for the quark masses 40, 50, and 300 MeV are
compared. The rate of fall appears to be the same for different
quark masses.

C. Nucleon and nuclear matter σ terms

We next proceed to calculate the nucleon σ term, �N which
is an important property for chiral symmetry. The individual
nucleon σ term in the nuclear medium can be defined as (see
[45,46])

�N = mq

∂MN

∂mq

, (63)

from the Feynman-Hellman theorem. Note that, MN is
identified with M∗

N at finite density. Alternatively, the nucleon
σ term �N can be related to the quark condensates at low
densities as [45]

2mq[〈q̄q〉ρB
− 〈q̄q〉vac] = �NρB + · · · = mq

∂E
∂mq

, (64)

where E is the energy density of nuclear matter, which is given
as

E = M∗
NρB + δE . (65)

Here δE is the calculation to the energy density from the
nucleon kinetic energy plus the nucleon-nucleon interaction.
δE is said to be small at low densities. Then, from Eq. (64) one
can obtain the nuclear matter σ term per nucleon as

�NM = mq

∂(E/ρB)

∂mq

, (66)

which is distinct from the individual nucleon σ term in nuclear
matter, due to the nucleon kinetic energy and the interaction
among the nucleons in the nuclear medium. Now, we calculate
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FIG. 9. (Color online) (�EB )g versus baryon density with quark
mass mq = 40 MeV, mq = 50 MeV, and mq = 50 MeV.
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�N using Eq. (63) and �NM using Eq. (66) at various densities
with the results shown in Figs. 10 and 11, respectively, for
mq = 40 and 50 MeV.

The difference in the two results from Eqs. (63) and
(66) at various densities are plotted in Fig. 11. At zero
density we found �0

N = 49.59 MeV for mq = 40 MeV and
�0

N = 64.823 MeV for mq = 50 MeV. The experimental value
extracted from pion-nucleon scattering is �N ∼ 45 MeV [47].
At saturation density, we find �N to be �0

N = 28.8 MeV for
mq = 40 MeV �0

N = 38.9 MeV for mq = 50 MeV.
The sensible quantity for the stability of nuclei is the relative

variation of the binding energies with the quark mass, written
below for nuclear matter:

δB.E.

B.E.
= δ [E/ρB − MN ]

E/ρB − MN

= KNM (ρB)
δmq

mq

, (67)

which gives KNM = −1.02 at nuclear saturation density. The
general trend of KNM (ρB) with the density, follows from the
results presented in Fig. 10, it is negative and the magnitude
increases for larger densities, as we see in Fig. 12, which sug-
gests that compact objects could be more sensitive to variations
in quark masses. We compare our result of KNM = −1.02
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baryon density with quark mass mq = 40 MeV.

015206-10



NUCLEAR EQUATION OF STATE IN A RELATIVISTIC . . . PHYSICAL REVIEW C 88, 015206 (2013)

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

δε

ρB (fm-3)

FIG. 12. (Color online) Variation of nuclear and nucleon σ term
versus baryon density with quark mass mq = 40 MeV.

at the saturation density with the values of the sensitivity KA

for nuclei A = 3–8 found in the range of 1 to 1.5, computed
in [30] for different Argonne potential models, considering
cases including the Urbana model IX three-body force, and
for thorium K229Th = −1.45 [31]. More recently, Ref. [32]
computed for oxygen K16O = −1.082, and the sensitivity for
other light nuclei with a one boson exchange model.

It is to be noted here that in the present model the ratio of
the quark condensate in the leading order

〈q̄q〉ρB

〈q̄q〉vac

= 1 − �NρB

m2
πf 2

π

�
{

0.80 for mq = 40 MeV

0.74 for mq = 50 MeV
(68)

are somewhat smaller than the results found in Ref. [46] with
a Skyrme model of the nucleon and of the nuclear force.

Comparing our result with the ratio M∗
N/MN = 0.9 we find

that the condensate ratio at saturation density (low density)
essentially comes out as �(M∗

N/MN )2 as found by Saito and
Thomas [25]. This result is intermediate between the cubic
dependence found by Brown and Rho [48] and the linear
dependence proposed by Cohen et al. [45]. However, if we
take the quark mass mq as 300 MeV, we also get the saturation
property with reasonable agreement with the standard values
except for the nucleon σ term. At mq = 300 MeV, the value
of �0

N is much higher as compared to the experimental value.
Note that the quark mass at zero baryonic density is a few

times larger than the current up-down quark masses, which
was necessary in order to approach the nucleon σ term in
the vacuum. Presumably, such value of the quark mass is
parametrizing the complexity of the nucleon wave function
beyond the valence state, which should contribute to the
nucleon and nuclear matter matrix element of the q̄q operator.
However, we expect that the typical changes in the σ term
due to the nuclear environment will be kept in more refined
description of the nucleon wave function. It is noteworthy
to mention that, although we have employed such simplified
nucleon, we have obtained results for the sensitivity of the

nuclear binding energy comparable with the ones found in
previous studies.

V. CONCLUSION

In the present paper we have studied the EOS for nu-
clear matter using a modified quark meson coupling model
(MQMC). The properties of nuclear matter were calculated
relying in a self-consistent method starting with a relativistic
quark model with chiral symmetry for independent nucleons.
The nucleon in the nuclear medium is composed of the three
independent relativistic quarks confined by an equal admixture
of a scalar-vector harmonic potential in a background of scalar
and vector mean fields. We computed the corrections from the
center of mass motion, pionic, and gluonic exchanges within
the nucleon to obtain its effective mass. The nucleon-nucleon
interaction in nuclear matter is then realized by the quark
coupling to the scalar (σ ) and vector (ω) mesons through
a mean field approximation. Several basic characteristics
of nuclear matter, such as the compressibility, the nucleon
effective mass and nuclear σ term show better agreement with
the experimental data than those obtained in a model with
point-like nucleons. We have compared our results obtained
with the quark-meson-coupling model which is based on the
bag model and with the ones obtained within the nonlinear
Walecka model.

The sensitivity of the nuclear binding energy was computed
giving KNM � −1 (δBE/BE = KNMδmq/mq), and we found
that the sensitivity rises with density, as the nuclear σ term
tends to vanish for large densities. The calculation of KNM

receives sizable effects from the nuclear interaction and kinetic
energy, which decreases the sensitivity by almost a factor of
2 from the value computed only considering the individual
nucleon σ term at the nuclear matter density. Finally, we
have to mention that the model quark mass at zero baryonic
density is a few times larger than the current up-down quark
masses, in order to approach the nucleon σ term in the vacuum.
This quark mass is effectively taken care of the complexity of
the nucleon wave function beyond the valence state, assumed
here, which of course should contribute to the mean value of
the q̄q operator in the nucleon and nuclear matter states. We
expect that the typical changes in the σ term due to the nuclear
environment will be kept in more realistic descriptions of the
nucleon, beyond the valence state, as our comparison with
other models show that the values of the sensitivity are quite
compatible. Further implications of this model for nuclear
matter and compact stars will be taken up in our future work.
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