
PHYSICAL REVIEW C 88, 015205 (2013)

Production of J/� on the nucleon and on deuteron targets
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A coupled-channel model with πN , ρN , and J/�N channels is developed to predict the π + N → J/� + N

cross sections. The J/�-N interaction is parameterized in a form related to what has been predicted by the
effective field theory approach and lattice QCD. The other interactions within the model are constrained by the
decay width of J/� → ρ + π and the total cross-sectional data of πN reactions. The calculated meson-baryon
amplitudes are then used to predict the cross sections of the J/� production on the deuteron target by including
the contributions from the impulse term and the one-loop calculations of the final NN and J/�N rescattering
effects. Predictions of the dependence of the cross sections of π− + p → J/� + n, γ + d → J/� + n + p,
and π+d → J/� + p + p on the J/�-N potentials are presented to examine the feasibility of experimental
determinations of the J/�-N interaction. Within the vector meson dominance model, we have also applied the
constructed coupled-channel model to predict the γ + p → J/� + p cross sections near the J/� production
threshold.
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I. INTRODUCTION

The J/� meson, as a cc̄ bound state, can only interact
with the nucleon through the gluon-exchange mechanism.
By using the effective field theory method [1–4] and lattice
QCD [5], it was found that the J/�-N interaction is
attractive. Strong attraction was also found [6] within a
Pomeron-quark coupling model of cc̄-nucleus interactions.
Thus it is possible that J/� and a system of nucleons can
form nuclear bound states with hidden charm. If such exotic
nuclear states indeed exist and can be detected, we can get
useful information for understanding the role of gluons in
nuclei.

The strengths of the J/�-N interaction, parameterized
as a Yukawa form vJ/�N,J/�N = −α e−μr

r
and deduced from

Refs. [1–6], are rather different from each other. With μ =
0.60 GeV, the calculated J/�-N scattering lengths range
from −0.05 fm using α = 0.06 of Ref. [4] to −8.83 fm using
α = 0.60 of Ref. [6]. To understand quantitatively the role
of gluons in hadron interactions, it is important to investigate
how the J/�-N interaction can be extracted from experiments
to test these theoretical models. This is the objective of this
work. Clearly, this is also a necessary step toward searching
for possible nuclear bound states with hidden charm, as
investigated in Ref. [7].

We first consider the π + N → J/� + N reaction. At
energies above the J/� production threshold, this reaction
is strongly influenced by many possible reaction channels,
such as ρN , ππN , πππN , ππK� channels, because of
the unitarity condition. To proceed, we cast this complex
reaction problem into a manageable coupled-channel model
with only πN , ρN , and J/�N channels. The interaction
vJ/�N,J/�N is chosen to be of a form related to the Yukawa
form of Refs. [1–6]. With the J/�-π -ρ coupling constant
determined [7] by the partial decay width of J/� → πρ,
we can calculate the πN, ρN → J/�N transition potentials
vρN,J/�N and vπN,J/�N by using the one-π and one-ρ
exchange mechanisms, respectively, as illustrated in Fig. 1.

The other interactions, which do not connect with the J/�N
channel directly, will be treated as phenomenological complex
potentials with their parameters constrained by reproducing
the total cross sections of πN reactions and πN → ρN
reactions in the considered energy region. We also constrain
these potentials by reproducing the total cross-sectional data of
γp → ρ0p which can be related qualitatively to ρ0p → ρ0p
within the vector meson dominance model. To facilitate the
experimental determination of the J/�-N interaction, we
present results showing the dependence of the calculated cross
sections of π− + p → J/� + n on the potential vJ/�N,J/�N .

With the meson-baryon amplitudes generated from the
constructed coupled-channel model described above and the
Pomeron-exchange model of γ + N → J/� + N we had
developed in Ref. [7], we then examine the dependence of
the γ + d → J/� + p + n cross sections on vJ/�N,J/�N .
We also follow the suggestion of Ref. [8] to investigate
the π+ + d → J/� + p + p reaction. Instead of using the
factorization approximation in Ref. [8], we have performed
complete one-loop calculations to account for both the on- and
off-shell J/�N final-state interactions. In addition, we also
include the effects due to the final NN interaction by using the
scattering T -matrix generated from the Bonn potential [9].

If we use the vector meson dominance hypothesis to convert
the incoming photon into J/� and ρ, we can predict the
γ + N → J/� + N cross sections within the constructed
coupled-channel model. We see that our predictions also
depend on the J/�-N potential vJ/�N,J/�N . We also present
these results, which could be tested in a forthcoming experi-
ment [10].

In Sec. II, we present our coupled-channel model for J/�
production on the nucleon. The formula for calculating the
meson-baryon reaction amplitudes are given in Sec. III. In
Sec. IV, we give the formula for calculating the cross sections
of the π + N → J/� + N and γ /π + d → J/� + N + N
reactions. Our results are presented in Sec. V. A summary is
given in Sec. VI.
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FIG. 1. Reaction mechanisms of π + N → J/ψ + N (left) and
ρ + N → J/ψ + N (right).

II. COUPLED-CHANNEL MODEL FOR J/�

PRODUCTION

At energies near the J/� production threshold, the πN
reactions involve many meson-baryon channels such as ππN ,
πππN , and ππK�. Within the formulation of Ref. [11],
the scattering T matrix for such reactions are defined by the
following coupled-channel equations:

Tα,β(E) = vα,β +
∑

γ

vα,γ Gγ (E)Tγ,β, (1)

where α, β, γ denote the considered channels, Gα(E) is the
meson-baryon propagator of channel α, and vα,β are the
interaction potentials.

For investigating the J/�-N interaction, we treat πN
and ρN channels explicitly since their interactions with the
J/�N channel can be calculated, as is explained later. We
thus set α, β, γ = J/�N,πN, ρN , X in Eq. (1), where X
denotes collectively all other channels. By using the standard
projection operator technique [11,12], we can cast Eq. (1) into

Ti,j (E) = Vi,j (E) +
∑

k

Vi,k(E)Gk(E)Tk,j (E), (2)

where i, j, k = J/�N,πN, ρN . The energy-dependent in-
teractions in Eq. (2) are

Vi,j (E) = vi,j +
∑
X

vi,XGX(E)[1 + tX,X(E)GX(E)]vX,j ,

(3)

where the scattering amplitude tX,X in the subspace of the
channel X is defined by

tX,X(E) = vX,X + vX,XGX(E)tX,X(E). (4)

We now turn to defining the interaction potentials vij in
Eq. (3). As noticed in Refs. [3,7], the decay width 
J/�,ρπ of
J/� → πρ is significant. From the value of 
J/�,ρπ listed
by the Particle Data Group (PDG), we can determine [7]
the coupling constant gJ/�,πρ of the following interaction
Lagrangian:

LJ/�πρ = −gJ/�,πρ

mJ/�

εμναβ∂μρν∂αφJ/�,βφπ . (5)

We find [7] gJ/�,πρ = 0.032. By using LJ/�πρ and the well-
known [13] Lagrangian LπNN and LρNN , we can calculate
one-π (one-ρ) exchange transition potential of the ρ + N →
J/� + N (π + N → J/� + N ) process, as illustrated in
Fig. 1. Explicitly, their matrix elements can be written (with
the normalization to be specified in Sec. III and omitting spin

and isospin indices) as〈 �pJ/ψ, �pNf

∣∣vJ/ψN,πN

∣∣ �pπ, �pNi

〉
= 1

(2π )3

1√
2EJ/� ( �pJ/ψ )

√
mN

EN

( �pNf

)
√

mN

EN

( �pNi

)
× 1√

2Eπ ( �pπ )

(
−gJ/ψρπ

mJ/ψ

gρNN

)
εμναβqμpα

J/ψεβ(pJ/�)

× 1

q2 − m2
ρ

ū �pNf

[
γ ν − �qqν

m2
ρ

+ κρ

4mN

(γ ν �q− �qγ ν)

]
u �pNi

,

(6)〈 �pJ/ψ, �pNf

∣∣vJ/ψN,ρN

∣∣ �pρ, �pNi

〉
= −1

(2π )3

1√
2EJ/� ( �pJ/ψ )

√
mN

EN

( �pNf

)
√

mN

EN

( �pNi

) 1√
2Eρ( �pρ)

×
(

gJ/ψρπ

mJ/ψ

fπNN

mπ

)
εμναβpμ

ρ εν(pρ)pα
J/ψεβ (pJ�)

× 1

q2 − m2
π

ū �pNf
�qγ 5u �pNi

, (7)

where q = pNi
− pNf

and the coupling constants gρNN =
6.20, κρ = 1.825, fπNN = √

4π × 0.80 are taken from a
dynamical model [13] of πN scattering. All external particles
of the matrix element of the above equations are on their mass
shell with their momenta defined as pa = (Ea( �pa), �pa) and
Ea( �pa) = [m2

a + �p2
a]1/2.

We assume that the mesons and baryons in the channel X
do not contain charmed quarks. The coupling between X and
J/�N can then be neglected and we can set vJ/�N,X = 0.
It follows that for the interactions involving J/�N , the
second term of Eq. (3) vanishes and we have the following
simplification:

VπN,J/�N = vπN,J/�N, (8)
VρN,J/�N = vρN,J/�N , (9)

VJ/�N,J/�N = vJ/�N,J/�N . (10)

The matrix elements for vπN,J/�N and vρN,J/�N have
been given in Eqs. (6) and (7). For vJ/�N,J/�N , we follow
Refs. [2–5] and use the following Yukawa form:

vJ/�N,J/�N (r) = −α
e−μ0r

r
. (11)

To be consistent with the relativistic expressions in Eqs. (6)
and (7), we assume that Eq. (11) is the nonrelativistic limit
of a one-scalar meson exchange amplitude in field theory. We
then obtain〈 �p′

J/ψ , �pNf

∣∣vJ/�N,J/ψN

∣∣ �pJ/�, �pNi

〉
= 1

(2π )3

1√
2EJ/�( �p′

J/ψ )

√
mN

EN

( �pNf

)
√

mN

EN

( �pNi

)
× 1√

2EJ/� ( �pJ/�)
[gνμεν(p′

J/ψ )εμ(p′
J/ψ )]

× V0

q2 − μ2
0

ū �pNf
u �pNi

, (12)

where V0 = −8απmJ/� , and q = pNi
− pNf

.
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Since vπN,X, vρN,X, and tXX(E) cannot be calculated theo-
retically, we determine Vi,j (E) with i, j = πN, ρN in Eq. (3)
phenomenologically. For simplicity, we assume that they all
have the following local form in the nonrelativistic limit:

Vi,j (E) = v0
i,j (E)fi,j (�r); i, j = πN, ρN, (13)

where fi,j (�r) is unitless such as fi,j (�r) = 1/(1 + e(r−r0)/t ) or
e−r2/b2

. In the strong absorption (diffractive) model [12], the
form of fi,i(�r) for i = 1, 2 is similar to the nucleon density.
We specify fi,j (�r) later.

We next define

Fi,j (�q,E) = v0
i,j (E)

∫
e−i �q·�rfi,j (�r)d�r. (14)

When including appropriate covariant spin factors, the matrix
elements corresponding to the form of Eq. (13) are taken to be〈 �p′

π , �pNf

∣∣VπN,πN (E)
∣∣ �pπ, �pNi

〉
= 1

(2π )3
ū �pNf

FπN,πN (�q,E) u �pNi
, (15)〈 �p′

ρ, �pNf

∣∣VρN,ρN (E)
∣∣ �pρ, �pNi

〉
= 1

(2π )3
εν
ρ(p′

ρ)ū �pNf
FρN,ρN (�q,E) u �pNi

ερ,ν(pρ), (16)〈 �pρ, �pNf

∣∣VρN,πN (E)
∣∣ �pπ, �pNi

〉
= 1

(2π )3

1

mπ

pμ
πεμ(pρ) FρN,πN (�q,E) ū �pNf

[
1

mπ

γ5 �q
]
u �pNi

.

(17)

We determine the parameters v0
i,j and fi,j (�r) phenomeno-

logically by fitting the total cross sections of πN and πN →
ρN , and the γN → ρN cross sections which can be calculated
from the predicted ρN → ρN amplitudes using the vector
meson dominance hypothesis.

III. CALCULATIONS OF REACTION AMPLITUDES

In this work we follow the formulation of Ref. [11] within
which the scattering T matrix is related to the S matrix by

Sf,i(E) = δf,i − (2π )iδ(Ef − Ei)δ( �Pf − �Pi)Tf,i(E),

(18)

where Eα and �Pα are the total energy and momentum of the
state α. The normalizations for the plane wave state |�k〉 and
bound state |�a〉 are defined by

〈�k|�k′〉 = δ(�k − �k′), (19)

〈�a|�b〉 = δab. (20)

A. Meson-baryon reaction amplitudes

In our calculations, we need the meson-baryon (MB)
matrix elements in a fast moving frame. Following the
instant form of relativistic quantum mechanics [14], we write
for the two-particle M( �pM ) + B( �pB) → M ′( �p′

M ) + B ′(p′
B)

transition

〈 �p′
Mm′

jM
,m′

iM
; �p′

Bm′
jB

,mτB

∣∣TM ′B ′,MB(E)
∣∣ �pMmjM

,miM ; �pB,mjB
mτB

〉
= J ( �P , �k; �pM, �pB )J ( �P ′, �k′; �p′

M, �p′
B )

〈
m′

jM
,m′

iM
; m′

jB
,m′

τB

∣∣tM ′B ′,MB(�k′, �k; W )
∣∣mjM

,miM ; mjB
,mτB

〉
, (21)

where [mjM
,miM ] and [mjB

,mτB
] are the z components of the spin-isospin quantum numbers for M and B, respectively. The

total momenta �P , �P ′ and the energy W in the center of mass system are

�P = �pM + �pB, �P ′ = �p′
M + �p′

B, W = [E2 − �P 2]1/2 . (22)

The relative momentum �k and Jacobian J ( �P , �k; �pM, �pB) in Eq. (21) are defined by the Lorentz boost transformation [14]

�k = �pM +
�P

M0

[ �P · �pM

M0 + H0
− EM ( �pM )

]
, (23)

J ( �P , �k; �pM, �pB ) =
∣∣∣∣ ∂( �P , �k)

∂( �pM, �pB)

∣∣∣∣
1/2

=
[

EM (�k)EB(�k)H0

EM ( �pM )EB( �pB)M0

]1/2

, (24)

with

H0 = EM ( �pM ) + EB( �pB) , (25)

M0 =
√

H 2
0 − �P 2

= EM (�k) + EB(�k) . (26)

In Eq. (21), tM ′B ′,MB(W ) is the scattering operator in the center-of-mass frame. In the partial-wave representation, we can
write

tM ′B ′,MB(�k′, �k; W ) =
∑

JMJ ,T MT

∑
L′S ′,LS

∣∣yJMJ ,T MT

L′S ′,M ′B ′ (k̂′)
〉
tJT
L′S ′,M ′B ′,LS,MB (k′, k,W )

〈
y

JMJ ,T MT

LS,MB (k̂)
∣∣ (27)
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where the angle-spin-isospin vector is defined by

|yJMJ ,T MT

LS,MB (k̂) > =
∑

mjB
mjM

∑
mτB

miM

|mjM
,miM ; mjB

,mτB
>

×
∑

mL,mS

< J MJ |L S mL mS >< S ms |jM jB mjM
,mjB

>

× < T MT |iM τB miM mτB
> YL mL

(k̂) . (28)

Here [jM, iM ] and [jB, τB ] are the spin-isospin quantum numbers for M and B, respectively; 〈jm|j1j2m1m2〉 is the Clebsch-
Gordon coefficient; and YLmL

(k̂) the spherical harmonic function, as defined in Ref. [15]. With the same partial-wave expansion,
Eq. (28), for the meson-baryon potential Vi,j (E), Eqs. (2) and (21) lead to the following coupled-channel equation:

tJT
L′S ′,M ′B ′,LS,MB (k′, k.W )

= V JT
L′S ′,M ′B ′,LS,MB (k′, k.E) +

∑
L′′S ′′,M ′′B ′′

∫
k′′2dk′′V JT

L′S ′,M ′B ′,L′′S ′′,M ′′B ′′ (k′, k′′.E)GM ′′B ′′ (k′′,W )tJT
L′′S ′′,M ′′B ′′,LS,MB (k′, k.W ), (29)

where MB,M ′B ′,M ′′B ′′ = πN, ρN, J/�N , and the propa-
gator is

GMB(k,W ) = 1

W − EM (k) − EB(k) + iε
.

We use the procedures developed in Ref. [11] to calculate the
potential matrix elements V JT

L′S ′,M ′B ′,L′′S ′′,M ′′B ′′ (k′, k′′.E) from
the matrix elements Eqs. (6)–(17).

B. Deuteron wave function and N N amplitude

For the calculations on the deuteron target, we need the
deuteron bound state |� �pd ,MJd

〉 moving with a high momentum
�pd . Following Ref. [14], it is defined by〈 �p1,ms1mτ1 ; �p2,ms2mτ2

∣∣� �pd ,Md

〉
= δ( �pd − �p1 − �p2)

〈 �p1,ms1mτ1 ; �p2,ms2mτ2

∣∣� �pd ,Md

〉
,

(30)

where〈 �p1,ms1mτ1 ; �p2,ms2mτ2

∣∣� �pd ,Md

〉
= J ( �pd, �κ; �p1, �p2)

〈
ms1mτ1 ; ms2mτ2

∣∣χJdMd,TdMTd (�κ)
〉
(31)

with

|χJdMd,TdMTd (�κ)〉 =
∑
l=0,2

∣∣yJdMd,TdMTd

lsd ,NN (κ̂)
〉
ul(κ). (32)

Here sd = 1 is the deuteron spin and ul(κ) is the usual
deuteron radial wave function in its rest frame. The Ja-
cobian J ( �pd, �κ; �p1, �p2) and the relative momentum �κ can
be calculated by using the same Eqs. (23)–(26) with
the replacement �k → �κ , �pM → �p1, �pB → �p2, �P → �pd ,
and MB → NN .

We also need the NN amplitude

〈 �p′
1m

′
j1
,m′

τ1
; �p′

2m
′
j2
,mτ2

∣∣TNN,NN (E)
∣∣ �p1mj1 ,mi1 ; �p2,mj2mτ2

〉
= J ( �P , �k; �p1, �p2)J ( �P ′, �k′; �p′

1, �p′
2)

〈
m′

j1
,m′

τ1
; m′

j2
,m′

τ2

∣∣tNN,NN (�k′, �k; W )
∣∣mj1 ,mτ1 ; mj2 ,mτ2

〉
. (33)

The above matrix element can be calculated from Eqs. (21)–(28) with the replacement of MB → NN . We generated the NN
partial-wave matrix elements tJT

L′S ′NN,LSNN (k′, k; W ) from the Bonn potential [9].

IV. CALCULATIONS OF CROSS SECTIONS

A. Cross sections of meson-baryon reactions

We need to evaluate the cross sections for the reactions involving three meson-baryon (MB) channels with MB =
πN, ρN, J/�N . With the definitions Eqs. (18)–(21), the differential cross sections in the center of mass (c.m.) for the
M(�k) + B(−�k) → M ′(�k′) + B ′(−�k′) reaction can be written as

dσ

d�
= (4π )2

k2

ρM ′B ′(k′)ρMB(k)

(2jM + 1)(2jB + 1)

∑
mjM

,mjB

∑
m′

jM
,m′

jB

[∣∣〈m′
jM

,m′
iM

; m′
jB

,m′
τB

∣∣tM ′B ′,MB(�k′, �k; W )
∣∣mjM

,miM ; mjB
,mτB

〉∣∣2]
, (34)
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where the matrix element of tM ′B ′,MB(�k′; W ) can be calculated from Eqs. (27) and (28) and the solution of Eq. (29). The density
of state is defined by

ρMB(k) = π
kEM (k)EB(k)

E
. (35)

The total cross sections σ el
πN,πN of elastic πN → πN and σπN,ρN of πN → ρN can be calculated using Eqs. (27) and (34), and

the solution of the coupled-channel equation Eq. (29).

B. Total cross sections of π N reactions

The total cross sections σ tot
πN can be obtained from the πN elastic scattering amplitude using the optical theorem. With our

definitions Eqs. (18)–(21), we have

σ tot
πN = −Im [f̄πN,πN (θ = 0)], (36)

where the spin-averaged πN elastic scattering amplitude is

f̄πN,πN (θ ) = (4π )2

k2

ρπN (E)

2jN + 1

⎡
⎣∑

mjN

〈
0,miπ ; mjN

,mτN

∣∣tπN,πN (�k′, �k; E)
∣∣0,miπ ; mjN

,mτN

〉⎤⎦ (37)

and k = |�k| = |�k′| is the on-shell momentum, and cos θ = k̂′ · k̂.

C. Cross sections of photoproduction of J/� and ρ

We now note that with the vector meson dominance hypothesis, we can predict the cross section of γ + p → J/� + p within
the constructed coupled-channel model. This is done by writing the amplitude for γ (�q) + p(−�q) → J/�(�k′) + p(−�k′) as〈

m′
J/�,m′

jN

∣∣tJ/�p,γp(�k′, �q; W )
∣∣λγ ,mjN

〉 =
∑
mJ/�

〈
m′

J/�,m′
jN

∣∣tJ/�p,J/�p(�k′, �k; W )
∣∣mJ/�,mjN

〉 e

fJ/�

δmJ/�,λγ

+
∑
mρ

〈
m′

J/�,m′
jN

∣∣tJ/�p,ρ0p(�k′, �k; W )
∣∣mρ0 ,mjN

〉 e

fρ

δmρ0 ,λγ
, (38)

where fJ/� = 11.2 and fρ = 5.33.
Obviously we can get the γ (�q) + p(−�q) → ρ0(�k′) + p(−�k′) amplitude from Eq. (38) by interchanging J/� and ρ0. This will

allow us to calculate the total cross section σγp,ρ0p of γp → ρ0p. Clearly, within this model based on the vector meson dominance
hypothesis, σγp,ρ0p is closely related to the total cross section of ρ0p → ρ0p, which cannot be obtained experimentally but can
be essential in determining the parameters associated with our phenomenological potential VρN,ρN (E).

D. Cross sections for γ + d → J/� + n + p

In Fig. 2, we illustrate the mechanisms included in our calculations of the cross sections of J/� production on the deuteron
target. Since we are mainly interested in the J/�-N interaction [Fig. 2(c)], we examine how the predicted cross sections depend
on the J/�-N relative momentum in the final J/� + n + p state. This can be done most effectively by considering the following
differential cross section in the c.m. frame of the γ (�q) + d(−�q) → J/�(�k) + n( �pn) + p( �pp) reaction,

d2σ

d�pd|�κJ/ψ | = (2π )4 Eγ (�q)Ed (�q)

|�q|W
∫

d��̂κJ/ψ
�κ2
J/ψ

En( �pn)EJ/ψ (�k)Ep( �pp)

En(−�κJ/ψ )EJ/ψ (�κJ/ψ )

M0| �pp|
W

× 1

2(2Jd + 1)

∑
λγ ,md

∑
mJ/ψ ,mn, mp

∣∣〈�k mJ/ψ, �pp mp, �pn mn|T̂ Imp + T̂ J/ψN + T̂ NN
∣∣�q λγ , �−�q md

〉∣∣2
, (39)

where �q is the photon momentum chosen to be in the quan-
tization z direction, � �pd ,md

is the deuteron with momentum
�pd = −�q, and �pn, �pp, and �k are the momenta of the final
proton, neutron, and J/ψ , respectively. �κJ/ψ = (|�κJ/ψ |,�κJ/ψ

)
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FIG. 2. Graphical representation of J/ψ photoproduction on the
deuteron. Panels (a), (b), and (c) correspond, respectively, to the
impulse contribution, Eq. (43); NN rescattering, Eq. (50); and J/ψN

rescattering, Eq. (49).

is the momentum of J/� in the c.m. of the J/�-N subsystem.
The amplitudes T̂ Imp, T̂ NN , and T̂ J/�N are calculated from the
impulse (a), NN rescattering (b), and J/�-N rescattering (c)
mechanisms shown in Fig. 2.

In Eq. (39), W is the invariant mass of γ d and M0 =
EJ/�(�κJ/ψ ) + En(�κJ/ψ ) is the invariant mass of the J/ψ-N
system. The magnitude of the outgoing proton momentum �pp

can be calculated from M0 and W by

| �pp| = 1

2W

[(
W 2 − m2

p − M2
0

)2 − 4m2
pM2

0

]1/2
. (40)

The direction of �pp is specified by �p with respect to the
incident photon momentum �q. The other variables �k for the
outgoing J/� and �pn for the outgoing neutron in Eq. (39) can
then be calculated from �κJ/ψ and �pp as follows:

�k = �κJ/ψ + �pp

M0

( �pp · �κJ/ψ

M0 + W − Ep( �pp)
− EJ/ψ (�κJ/ψ )

)
,

(41)

�pn = −�κJ/ψ + �pp

M0

(
− �pp · �κJ/ψ

M0 + W − Ep( �pp)
− En(�κJ/ψ )

)
.

(42)

With Eqs. (40)–(42), all kinematic variables for calculating
the integrand of Eq. (39) are completely fixed for a given �p

and �κJ/ψ . Our task is to explore at what �p, the calculated
differential cross section d2σ

d�pd|�κJ/ψ | is most sensitive to the

amplitude T̂ J/ψN for the J/�-N rescattering mechanism (c)
of Fig. 2.

In the following three subsections, we give formulas for
evaluating the matrix elements of T Imp, T NN , and T J/�N .
We have evaluated the Clebsch-Gordon coefficients associated
with the isospin quantum numbers in Eq. (21) and thus all
isospin indices are suppressed and the amplitudes are on
specific charged states specified explicitly as n for neutron,
p for proton, etc.

FIG. 3. Reaction mechanisms of γ + N → J/ψ + N : (a)
Pomeron exchange and (b) pion exchange.

1. Impulse amplitude

The impulse amplitude of Eq. (39) [Fig. 2(a)] can be
straightforwardly written as

〈�k mJ/ψ, �pp mp, �pn mn|T̂ Imp
∣∣�q λγ , �−�q,md

〉
=

∑
ma

[〈�k mJ/ψ, �pp mp|TJ/ψp,γp|�q λγ , −�q − �pn ma〉

× 〈−�q − �pn ma, �pn mn

∣∣�−�q md

〉
+〈�k mJ/ψ, �pn mn|TJ/�n,γ n|�q λγ , −�q − �pp ma〉
× 〈 �pp mp,−�q − �pp ma

∣∣�−�q md

〉]
, (43)

where 〈 �pp; mp, �pn; mn|� �pd ;md
〉 has been defined by Eq. (31)

(omitting isospin indices). The γ + Ni → J/ψ + Nf ampli-
tudes in the above expression are taken from our previous
work [7],

〈�k mJ/�, �pNf
mNf

|TJ/�N,γN |�q λγ , �pNi
mNi

〉

= 1

(2π )3

1√
2EJ/� (�k)

√
mN

EN ( �pNf
)

√
mN

EN ( �pNi
)

1√
2|�q|

× [
ūmNf

( �pNf

)
ε∗
μ(k,mJ/�)

(
Mμν

P (�k, �pNf
, �q, �pNi

)

+Mμν
π

(�k, �pNf
, �q, �pNi

))
εν(�q, λγ )umNi

( �pNi

)]
(44)

where Mμν

P and Mμν
π are the contributions from the Pomeron

exchange and π exchange mechanisms, respectively, as shown
in Fig. 3.

For the Pomeron exchange, the amplitude can be written as

Mμν

P

(
k, pNf

, q, pNi

) = GP (s, t)T μν

P (t, q), (45)

with

GP (s, t) =
(

s

s0

)αP (t)−1

exp

{
− iπ

2
[αP (t) − 1]

}
, (46)

T μν

P (t, q) = i12
√

4παem

m2
J/ψβcβc

fJ/ψ

1

m2
J/ψ − t

×
(

2μ2
0

2μ2
0 + m2

J/ψ − t

)
F1(t){�q gμν − qμγ ν},

(47)

where t = (pNi
− pNf

)2, s = (q − pNi
)2, αP (t) = α0 + α′

P t

with α0 = 1.25 and α′
P = 1/s0 = 0.25 GeV−1, μ2

0 = 1.1 GeV,
αem = e2/4π = 1/

√
137, βc = 0.84 GeV−1, fJ/ψ = 11.2,

and F1(t) = (4M2
N − 2.8t)/(4M2

N − t)(1 − t/0.71 (GeV2))2.
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For the π exchange, the amplitude Mμν
π is

Mμν
π

(
k, pNf

, q, pNi

)
= e

fρ

gJ/�,ρ0π0

mJ/�

fπNN

mπ

×
(

�2

�2 − t

)4

× 1

t − m2
π

εμναβkαqβ

[
γ
(
pNf

− pNi

)]
γ 5, (48)

where the fρ = 5.33, gJ/�,ρ0π0 = 0.032, and � = 2000 MeV.
All of the parameters specified above for evaluating

Eqs. (46)–(48) were determined in Ref. [7] by fitting the total
cross-sectional data of γ + p → J/ψ + p up to the invariant
mass W = 300 GeV, as shown in Fig. 4.

2. J/ψ N rescattering amplitude

The amplitude T̂ J/ψN in Eq. (39) [Fig. 2(c)] is

FIG. 4. (Color online) The total cross section of γ + p → J/ψ +
p. W is the invariant mass of the γp system. The red solid curves are
calculated from the model of Ref. [7]. The data is from [16–24].

〈�k mJ/ψ, �pp mp, �pn mn|T̂ J/ψN |�q λγ , −�q md〉

=
∫

d3�k∗ ∑
ma, mb=−1/2, 1/2

∑
m∗

J/ψ=−1,0,1

{[
1

W − EN ( �pp) − EJ/ψ (�k∗) − EN (− �pp − �k∗) + iε

×〈�k∗ m∗
J/ψ, �pp mp|TJ/ψp,γp|�q λγ , �k∗ + �pp − �q ma〉〈�k mJ/ψ, �pn mn|TJ/ψn,J/�n(WJ/�n)|�k∗ m∗

J/ψ, �k + �pn − �k∗ mb〉

× 〈�k∗ + �pp − �q ma, �k + �pn − �k∗ mb

∣∣�−�q λd

〉] + [n ↔ p]

}
(49)

where WJ/�n = EJ/� (pJ/�) + EN (pn), 〈 �p m, �p′,
m′|� �pd ;md

〉 has been defined by Eq. (31), and 〈�k mJ/ψ,

�pn mn|TJ/ψn,J/�n(WJ/�n)|�k∗ m∗
J/ψ, �p − �k∗ mb〉 can be

calculated using Eqs. (21)–(29). The first term in the bracket
denotes the γ + p → J/ψ + p and J/ψ + n → J/ψ + n,
while the second term denotes γ + n → J/ψ + n and
J/ψ + p → J/ψ + p.

3. N N rescattering amplitude

The amplitude T̂ NN of Eq. (39) [Fig. 2(b)] can be written
as

〈�k mJ/ψ, �pp mp, �pn mn|T̂ NN |�q λγ , −�q md〉
=

∫
d3 �p∗ 1

W − EJ/ψ (�k) − EN ( �p∗) − EN (−�k − �p∗) + iε

×
∑

m∗,m,m′=−1/2,1/2

〈�k mJ/ψ, �p∗m∗|TJ/�N,γN |�q λγ , �p m〉

× [〈 �pp mp, �pn mn|Tnp,np(Enp)| �p∗ m∗, �p′ m′〉
× 〈 �p m, �p′ m′∣∣�−�q md

〉]
, (50)

where �p′ = �pp + �pn − �p∗, �p = �k + �p∗ − �q, Enp =
EN (pp) + EN (pn), 〈 �p; m, �p′; m′|� �pd ;md

〉 has been defined by
Eq. (31), and 〈 �pp mp, �pn mn|Tnp,np(Enp)| �p∗ m∗, �p′ m′〉 can
be calculated by using Eq. (33) and the NN → NN partial
wave amplitudes generated from the Bonn potential [9].

E. Cross section of π+ + d → J/� + p + p

By replacing TJ/�N,γN by TJ/�N,πN and changing nota-
tions appropriately, the formula presented in Subsec. IVD can
be used to calculate the differential cross section dσ

d�pd|�κJ/� | of

π+ + d → J/� + p + p.

V. RESULTS

Our first task is to determine the parameters of the
potentials of the coupled-channel model presented in Sec. II.
The parameters for the coupling potential Vi,J/�N with i =
πN, ρN, J/�N have been specified there. We determine the
parameters of Vi,j = v0

i,j (E)fi,j (r) with i, j = πN, ρN , as
already given in Eq. (13), by fitting the total cross-sectional
data σ tot

πN of the πN reaction, σ el
πN,πN of πN elastic scattering,

σπN,ρN of πN → ρN , and σγp,ρ0p of γp → ρ0p. We achieve
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FIG. 5. (Color online) The fits to the data of the total cross
sections σ tot

π±p
of π±p reactions, and the total elastic π±p → π±p

cross section σ el
π±p,π±p

. The data are from PDG [25].

this by choosing

fi,j (r) = 1

1 + e(r−c)/t
, (51)

where c = 0.8 fm, t = 0.4 fm for all i, j = πN, ρN . The
energy dependence of the total cross sections in the energy
region near the J/� production threshold (4 GeV < W <
6 GeV) can be fitted qualitatively by setting

v0
i,j (E) = (−i) [A + B(E − E0)2]. (52)

Our fits to σ tot
π±p are shown in Fig. 5. The small isospin

dependence in the data is neglected in our fits. In Fig. 6, we
see that the fits to the total cross-sectional data of π± + p →
ρ± + p (left) and γ + p → ρ0 + p (right) are also reasonable.
The resulting parameters A, B, and E0 are listed in Table I.

Note that the forms Eqs. (51) and (52) are purely
phenomenological, and our fits in Figs. 5 and 6 are only
qualitatively. However, they are sufficient for estimating the
order of magnitudes of the J/� production cross sections.
For a more quantitative calculation, we clearly need to improve
this phenomenological aspect of our model.

TABLE I. The parameters for v0
i,j (E) of Eq. (52). E is the total

energy in the enter of mass system.

i j A (GeV) B (GeV−1) E0 (GeV)

πN πN 0.43 1.18 4.0
πN ρN 0.04 0.09 4.0
ρN ρN 0.45 0.45 4.0

With the fits shown in Figs. 5 and 6, all of the parameters
for our calculations are completely fixed. In the next few
subsections, we present our predictions for future experimental
determinations of the J/�-N interaction.

A. π− + p → J/� + n

The simplest experiment to determine the J/�-N inter-
action within our coupled-channel model is to measure the
cross sections of the π− + p → J/� + n reaction. We first
observe that the coupled-channel effects can drastically change
the magnitudes and the energy dependence of the predicted
cross sections. This is illustrated in the left side of Fig. 7.
In the absence of coupled-channel effects, the results from
the Born approximation (setting TJ/�N,πN = VJ/�N,πN ) are
shown by the dotted curve. When the interactions associated
with the J/�N channel, Vi,J/� with i = πN, ρN, J/�N ,
are included in solving the coupled-channel equation, we
obtain the dashed curve, which is suppressed at high W in
contrast to the raising behavior of the dotted curve from
the Born approximation. When the complex potentials Vi,j

with i, j = πN, ρN are also included in our full calculations,
we obtain the solid black curve. We see that these complex
potentials can drastically reduce the magnitudes of the cross
sections. This is due to the fact that most of the incident
pions are absorbed before the J/� production takes place.
Within our model, this absorption effect is due to the very
large imaginary part of VπN,πN .

The coupled-channel effects on J/� + p → J/� + p are
shown in the right side of Fig. 7. We note that the J/�-
N interaction, as defined in Eq. (11), is real and therefore
does not have strong absorption effects on J/�-N scattering.

FIG. 6. The fits to the data of the total cross sections σπ±p→ρ±p of π±p → ρ±p (left) and σγp→ρ0p for γp → ρ0p (right). The data of
σπ±p→ρ±p are from Ref. [26], and the data of σγp→ρ0p are from Refs. [27–29].
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FIG. 7. (Color online) The cross sections of π− + p → J/� + n (left) and J/� + p → J/� + p (right). Black solid, full calculation;
dashed (red online), coupled channel, but setting Vi,J/� = 0 for i, j = πN, ρN ; and dotted (blue online), Born calculation Ti,j = Vi,j . W is
the total energy in the c.m. frame.

By comparing the differences between the dotted curve of
the Born approximation (TJ/�N,J/�N = VJ/�N,J/�N ) and the
dashed curve, we see that the coupled-channel effects due
to Vi,J/� with i = πN, ρN, J/�N is to increase the cross
section at all W . The coupled-channel effects due to Vi,j with
i, j = πN, ρN are very small, as can be seen by comparing the
dashed curve and the black solid curve in the right side of Fig. 7.
This is due to the fact that the J/�-π -ρ coupling constant
gJ/�ρπ = 0.032, calculated from the partial decay width of
J/� → πρ, is very small in the calculation of Eqs. (6) and
(7) for the one-meson-exchange matrix elements of vρN,J/�

and vπN,J/� .
We next examine the dependence of the π− + p → J/� +

n cross sections on the strength α of the J/�-N potential
vJ/�N,J/�N . The results from using α = 0.2, 0.09, 0.06 are
compared in the left side of Fig. 8. The predicted total cross
sections at peak positions are about 1.5 nb. Such small cross
sections are due to the strong absorption of the incident pion
and that the πN → J/�N transition potential VπN,J/�N

is weak, as discussed above. The differences between three
results are significant only in the region near W ∼ 4.25 GeV.
On the other hand, the predicted J/�N → J/�N cross

sections are more sensitive to α, as seen in the right side of
Fig. 8. This suggests that J/�-N interaction can be more
easily determined in the reactions of J/� production on
the deuteron target in the kinematic region where the cross
sections are sensitive to the J/�N → J/�N rescattering
mechanism [Fig. 2(c)]. This is what we examine in the next
two subsections.

B. γ + d → J/� + n + p

We consider only the energy region close to the J/�
production threshold. The results presented below and in the
next subsection are calculated at the energy 100 MeV above
the J/� production.

As discussed in Sec. IV D, our main task is to use Eq. (39)
to examine the dependence of the differential cross section

dσ
d�pd|�κJ/� | of this process on the J/�-N potential VJ/�N,J�N .
Obviously, we need to identify the region of the outgoing
proton angle θp with respect to the incident photon where
the J/�-N rescattering mechanism [Fig. 2(c)] dominates. We
find that this is in the region close to θp = 0, as can be seen in
the left side of Fig. 9. We see that in the low J/� momentum,

FIG. 8. (Color online) The total cross sections of π− + p → J/� + n (left) and J/ψ + p → J/� + p (right). W is the total energy
in the c.m. frame. The solid, dotted, and dashed curves are calculated by using the J/�-N potential, Eq. (11), with μ = 0.6 GeV and
α = 0.20, 0.09, 0.06, respectively.
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FIG. 9. (Color online) The differential cross section dσ/(d�pdκJ/� ) of γ + d → J/� + p + n vs the momentum κJ/� of J/� in the c.m.
frame of the J/� + n subsystem. The results are from coupled-channel calculations using the J/�-N potential, Eq. (11), with μ = 0.6 GeV
and α = 0.20. θp in panels (a) and (b) are the angles between the incoming photon and the outgoing proton. The dashed (red online), dotted
(blue online), and dashed-dotted (pink online) lines are the contributions from the amplitudes of the impulse term, J/�N rescattering, and
NN rescattering, respectively. The black solid lines are the coherent sum of these three amplitudes.

κJ/� < about 200 MeV, the contribution from the J/�
rescattering term (dotted curve) is much larger than that from
the other two mechanisms. On the other hand, the impulse
term dominates at θp = 180◦ as seen in the right side of
Fig. 9. Accordingly, three J/�-N potentials with the strengths
α = 0.2, 0.09, and 0.06 obtained by the effective field theory
approach and LQCD can be easily tested at θp = 0, but less
possible at θp = 180◦. This is shown in Fig. 10.

We note that the J/�-N scattering length can be related
unambiguously to the cross section only in the energy region
where the kinetic energy of the outgoing J/�-N system is
very low. To provide information for examining the feasibility
of possible experimental determinations of this interesting
quantity, we present the angular distribution of dσ

d�pd|�κJ/� | at
J/�-n kinetic energy TJ/�-n = 30 MeV (the relative J/�-n
momentum is κJ/� = 200 MeV) in Fig. 11. Our results are
qualitatively similar to Fig. 12(a) of a recent investigation [30]
of electroproduction of J/� on the deuteron (note that their
scattering angle θc.m. is the angle between the outgoing proton

and the initial deuteron momentum, while our θp is the angle
between the outgoing proton and the initial photon. Thus one
needs to set θp = π − θc.m. in comparing two results.) While
the models and the considered kinematics are different, both
investigations predict very small cross sections, which pose a
serious challenge in extracting the J/�-N scattering length
model independently.

C. π+ + d → J/� + p + p

For the calculated dσ
d�pd|�κJ/� | of the π+d → J/� + p + p

reaction, we find that the impulse term dominates at all angles.
Furthermore, the contributions from the J/�-N rescattering
[Fig. 2(c)] are weaker than those of the NN rescattering
[Fig. 2(b)]. Nevertheless, the data from experiments on this
reaction can be useful to determine the J/�-N interaction.
This is illustrated in Fig. 12 where the results from α = 0.20,
0.09, and 0.06 for θp = 0 and 180◦ are compared.

FIG. 10. (Color online) The differential cross section dσ/(d�pdκJ/� ) of γ + d → J/� + p + n vs the momentum κJ/� of J/� in the
c.m. frame of the J/� + n subsystem. θp is the angle between the incoming photon and the outgoing proton. The solid, dotted (blue online),
and dashed-dotted (red online) lines are from the coupled-channel calculations using the J/�N → J/�N potential, Eq. (11), with μ = 0.6
GeV and α = 0.20, 0.09, 0.06, respectively.
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FIG. 11. (Color online) The differential cross section
dσ/(d�pdκJ/� ) of γ + d → J/� + p + n vs the angle θp

between outgoing proton and incoming photon. The results are from
coupled-channel calculations using the J/�-N potential, Eq. (11),
with μ = 0.6 GeV and α = 0.20. TJ/ψ-n is kinematic energy of
J/ψ-n system. The sets of lines are the same as in Fig. 9.

D. γ p → J/�p in the coupled-channel model

With the vector meson dominance hypothesis, we can
predict the cross section of γ + p → J/� + p within the
constructed coupled-channel model. This is done by using the
amplitude given in Eq. (38). For three coupled-channel ampli-
tudes calculated with α = 0.2, 0.09, and 0.06 for VJ/�N,J/�N ,
our results are compared with those of the Pomeron-exchange
model (dot-dashed curve, green online) in the left of Fig. 13.

We note that the coupled-channel model results are ex-
pected to be valid only at energies near J/� production
threshold where the data are rather uncertain. On the other
hand, the use of Pomeron-exchange model at very low energies
is also questionable. Our results for α = 0.06 are close to
the three data points near 4.5 GeV. At W > about 5 GeV,
we clearly need to improve the model. The data from the
forthcoming experiment [10] at Jefferson Laboratory will be
useful to clarify the situation.

In the right side of Fig. 13, we show that the coupled-
channel effects can increase the cross section significantly. Our
results here as well as those shown in Fig. 7 suggest that any
attempt to determine the J/�-N interaction must include the
coupled-channel effects, as required by the unitarity condition.

VI. SUMMARY

We have developed a coupled-channel model with πN ,
ρN , and J/�N channels to predict the J/� production on
the nucleon. The J/�-N interaction potential VJ/�N,J/�N is
taken from the calculations using the effective field theory
method and lattice QCD. The J/�N → πN, ρN transi-
tion potentials VJ/�N,πN and VJ/�N,ρN are calculated from
one-ρ-exchange and one-π -exchange mechanisms with the
parameters determined by the decay width of J/� → πρ and
the previously determined πNN and ρNN coupling constants.
The interactions Vi,j with i, j = πN, ρN are treated as
phenomenological complex potentials with their parameters
constrained by the fits to the data of total cross sections of the
πN reactions, πN → πN , πN → ρN , and γp → ρ0p.

The calculated meson-baryon amplitudes are then used to
predict the cross sections of γ + d → J/� + N + N and
π + d → J/� + N + N reactions. The calculations on the
deuteron target involve the contributions from the impulse term
and the final NN and J/�N scattering. We have identified
the kinematic region where the J/�-N potentials can be
distinguished in π− + p → J/� + n, γ + d → J/� + n +
p and π+ + d → J/� + p + p reactions. Predictions of the
dependence of the cross sections of these reactions on the
J/�-N potentials are presented. Our results shown in Figs. 8,
10, and 12 can be used to examine the feasibility of the
experimental determinations of J/�-N interactions.

Within the vector meson dominance model, we have also
applied the constructed coupled-channel model to predict
the γ + p → J/� + p cross sections. Our results near the
J/� production threshold, as shown in Fig. 13, are very
different from what can be calculated from the conventional
Pomeron-exchange model, which is mainly constrained by

FIG. 12. (Color online) The differential cross section dσ/(d�pdκJ/� ) of π+ + d → J/� + p + p vs the momentum κJ/� of J/� in the
c.m. frame of the J/� + p subsystem. The black solid, dotted (blue online), and dashed-dotted (red online) lines are from the coupled-channel
calculations using the J/�-N potential, Eq. (11), with μ = 0.6 GeV and α = 0.20, 0.09, 0.06. θp is the angle between the incoming pion and
the outgoing proton.
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FIG. 13. (Color online) The cross section of γ + N → J/� + N reaction. W is the total energy in the c.m. frame. In the left side, the black
solid, dotted (blue online), dashed (red online) lines are calculated by using coupled-channel model with μ = 0.6 GeV and α = 0.20, 0.09, 0.06
and the dashed-dotted (green online) line is from Pomeron exchange. On the right side, the dashed (red online) and dashed-dotted (blue online)
lines are from the full calculation and the Born approximation calculation Ti,j = Vi,j . The parameters of vJ/�N,J/�N of the coupled-channel
model are μ = 0.6 GeV and α = 0.06. The data are from Refs. [16–18].

the γp → J/� + p cross section at high energies. It will be
interesting to distinguish these two models in the forthcoming
experiment at Jefferson Laboratory [10].
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