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Incoherent J/ψ electroproduction from the deuteron at energies available at Jefferson Laboratory
and the elastic J/ψ-nucleon scattering amplitude
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Calculations are presented for incoherent J/ψ electroproduction from the deuteron at Jefferson Laboratory
energies, including the effects of J/ψ-nucleon rescattering in the final state, in order to determine the feasibility of
measuring the J/ψ-nucleon scattering length, or the J/ψ-nucleon scattering amplitude at lower relative energies
than in previous measurements. It is shown that for a scattering length of the size predicted by existing theoretical
calculations, it would not be possible to determine the scattering length. However, it may be possible to determine
the scattering amplitude at significantly lower relative energies than the only previous measurements.
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I. INTRODUCTION

With the upcoming 12-GeV upgrade at Jefferson Labo-
ratory (JLab), electroproduction of the J/ψ at JLab on a
proton or deuteron will be possible. With the mass of the
J/ψ being 3.097 GeV, the threshold virtual photon energy
for electroproduction (at small Q2) on a single nucleon is
νthresh � 8.2 GeV in the LAB frame, and is thus accessible
with a 12-GeV electron beam. Most of the existing data
on J/ψ photoproduction and electroproduction is at much
higher energy. The 12-GeV upgrade provides the opportunity
to measure J/ψ production near threshold [1]. In addition,
measuring electroproduction on the deuteron provides the
opportunity to measure the J/ψ-nucleon elastic scattering
amplitude at lower energies than previous measurements, if the
rescattering of the produced J/ψ on the spectator nucleon in
the deuteron is non-negligible. This paper presents calculations
of the incoherent J/ψ production amplitude from the deuteron
near threshold (in order to determine if the J/ψ-nucleon
scattering length can be determined) and at somewhat higher
energy where the J/ψ-nucleon scattering amplitude may
be determined. We use a model that takes into account
quasielastic production from the deuteron (with production
on one nucleon while the spectator nucleon recoils freely) as
well as rescattering effects in the final state (proton-neutron
rescattering and J/ψ-nucleon rescattering).

The motivation for the work in the first part of this paper
(Secs. II–IV) was a proposal at JLab [2] to measure the
J/ψ-nucleon scattering length by the reaction γ ∗ + d →
J/ψ + p + n. The proposed experiment would detect the
outgoing proton and the decay products (e+e−) of the J/ψ ,
for a kinematically complete measurement. The reason the
J/ψ-nucleon scattering length is of interest is that several
authors have argued that a nuclear bound state of the J/ψ
may exist [3,4]. They propose that the force between a J/ψ
and a nucleon is purely gluonic in nature, and therefore is the
analog in QCD of the van der Waals force in electrodynamics,
since the hadrons are color neutral objects. There is very little
experimental data on elastic J/ψ-nucleon scattering. There
has only been one experimental measurement of it, at SLAC in
1977, where the J/ψ-nucleon total cross section was extracted
by measuring production of J/ψ on nuclei and using an

optical model for the rescattering of the J/ψ on the spectator
nucleons [5].

Measurement of the scattering length provides information
on the bound states of the two particles involved in the
scattering. In particular, for an attractive potential, if the
scattering length is positive then there exists a bound state.
Theoretical calculations of the J/ψ-nucleon scattering length
[3,4,6,7] predict a scattering length too small to produce a
J/ψ-nucleon bound state. However, it would be large enough
that there could exist a nucleus-J/ψ bound state in a large
enough nucleus. Since the scattering length is the negative
of the zero-energy scattering amplitude, in order to measure
this it is necessary for the two particles to scatter with small
relative momentum. In the case of γ ∗ + d → J/ψ + p + n

at the energies that are kinematically allowed in the proposed
JLab experiment, it is not possible to have an on-mass-shell
nucleon and J/ψ scatter at small relative momentum. For
an incident virtual photon of energy ν = 9 GeV, and an
outgoing J/ψ-neutron pair with zero relative momentum, the
minimum possible momentum of the neutron in the LAB frame
(deuteron at rest) is �0.85 GeV; for ν = 6.5 GeV and zero
relative momentum of the J/ψ-neutron pair, the minimum
LAB momentum of the neutron is �1 GeV. For zero relative
momentum of the outgoing pair, the initial LAB momentum of
an on-shell neutron in the deuteron (before the collision with
the J/ψ) must equal the final LAB momentum of the neutron.
Therefore, the momentum of the neutron inside the deuteron
would have to be 0.85 GeV (for ν = 9 GeV). However, the
deuteron wave function at that momentum is very small
(essentially zero).

So although the proposed experiment [2] may not be able
to measure the J/ψ-nucleon scattering length, it might still be
possible to measure the on-mass-shell J/ψ-nucleon scattering
amplitude, but at higher relative energies. The relative energy
of the J/ψ-neutron pair would still be significantly smaller
than in the only existing data (from the 1977 experiment
at SLAC). Under certain kinematic conditions, the dominant
contributions to the amplitude will come from proton-neutron
(p-n) rescattering and/or J/ψ-n rescattering after the J/ψ is
produced. If we fix the magnitude of the outgoing neutron’s
momentum at a moderately large value (here taken to be
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0.5 GeV) the contribution of the impulse diagram (where the
J/ψ is produced on the proton and the neutron recoils freely)
will be negligible, since the impulse diagram is proportional
to the value of the deuteron wave function at that momentum.
This higher-energy rescattering is the subject of the second
part of this paper (Sec. V).

This paper is organized as follows. Section II reviews the
general expression for the cross section of electroproduction
from a nucleus. In Sec. III the kinematics for the case of
zero and small relative momentum of the outgoing J/ψ-
neutron pair is discussed. In Sec. IV the calculation of
the invariant amplitudes for γ ∗ + D → J/ψ + p + n are
presented, including the one-loop diagrams corresponding to
the p-n and J/ψ-nucleon rescattering processes. In order
to calculate the amplitude corresponding to the low-energy
J/ψ-neutron scattering, which involves the scattering length,
model J/ψ-neutron scattering wave functions and potentials
are used, and it is shown that the resulting amplitude is
insensitive to the model used. In addition, it is shown that
for the kinematic conditions of the JLab experiment, the
dominant amplitude is the impulse diagram, corresponding
to J/ψ production on the neutron with the proton recoiling
freely, with no rescattering of any particles. This demonstrates
that the measurement of the J/ψ-nucleon scattering length
is not feasible for the JLab experiment. Finally, in Sec. V
calculations of the amplitude for γ ∗ + D → J/ψ + p + n are
presented under different kinematic conditions (not restricting
the outgoing J/ψ-neutron pair to small relative momentum).
There it is shown that if the J/ψ-neutron elastic scattering
amplitude is somewhat larger than the value measured at SLAC
at higher energy, it may be possible to extract this amplitude
from the JLab experiment.

II. ELECTROPRODUCTION FROM A NUCLEUS

We consider here electron scattering from the deuteron with
production of a vector meson, with the final state of the proton-
neutron system being a continuum state. The formalism for
the cross section for electroproduction from a nucleus can be
found in Ref. [8]. Here we summarize the relevant facts. We
consider here the completely unpolarized electron (initial and
final) cross section. Then the cross section can be written in
terms of the amplitudes for γ ∗ + d → p + n + V , i.e., vector
meson production from virtual photons. In the LAB frame,
with ε′ the final electron energy, �′ the final electron solid
angle, �V the vector meson solid angle, and p∗

pn the final
proton-neutron relative momentum in the p-n center-of-mass
frame, the eightfold differential cross section has the form

d8σ

dε′d�′d�V d3p∗
pn

= (kinematic factors)

× (
vT RT

f i + vT T RT T
f i + vLRL

f i + vT LRT L
f i

)
, (1)

where the factors

RT
f i = |〈f |J+1(q)|i〉|2 + |〈f |J−1(q)|i〉|2, (2)

RT T
f i = 2Re〈f |J ∗

+1(q)|i〉〈f |J−1(q)|i〉, (3)

RT L
f i = −2Re〈f |ρ∗(q)|i〉(〈f |J+1(q)|i〉 − 〈f |J−1(q)|i〉), (4)

RL
f i = |〈f |ρ(q)|i〉|2, (5)

are in terms of the matrix elements of the spherical vector
components of the electromagnetic current operator J between
the initial deuteron state |i〉 and final hadron (p + n + J/ψ)
state |f 〉. vT , vT T , etc., are kinematic factors that only depend
on the electron momenta. RT

f i is the sum of the squares
of the amplitudes for γ ∗ + d → p + n + V for transversely
polarized virtual photons, whereas RT T

f i is an interference
term between these two amplitudes. RL

f i is the square of the
amplitude for a longitudinally polarized virtual photon, while
RT L

f i is an interference term between the amplitudes for pro-
duction from transverse and longitudinally polarized photons.
The matrix element RT L

f i is proportional to cos φ, while RT T
f i

is proportional to cos 2φ, where φ is the angle between the
plane including the initial and final electron momenta, and
the plane including the three-momentum transfer q and the
J/ψ momentum pV . Thus if we integrate the cross section
over φ, the terms RT T and RT L drop out. Or, if we assume
helicity conservation (i.e., the helicity of the outgoing J/ψ is
equal to the helicity of the photon) then RT T = RT L = 0.
Moreover, several theoretical models [11,12] indicate that
for small Q2, the amplitude for J/ψ electroproduction from
transverse virtual photons is much larger than the amplitude
for production from longitudinally polarized virtual photons;
for Q2 = 0 (photoproduction) the production amplitude for
longitudinal photon polarization is of course exactly zero.
Therefore in what follows we will neglect RL

f i , and so the
differential cross section is simply given by RT

f i multiplied by
kinematic factors. Thus our task is to calculate

RT
f i = |〈f |J+1(q)|i〉|2 + |〈f |J−1(q)|i〉|2 ≡ |F+|2 + |F−|2,

(6)

where F± are the amplitudes for J/ψ production from positive
and negative helicity virtual photons. In the following we
will calculate the amplitude for γ ∗ + d → p + n + V by
evaluating Feynman diagrams corresponding to the various
processes contributing to it.

III. KINEMATICS FOR SMALL J/ψ-NEUTRON
RELATIVE MOMENTUM

We will assume kinematics where the outgoing J/ψ
and neutron have a small relative momentum. Since the
scattering length is the zero-energy limit of the scattering
amplitude, in order to measure it the relative momentum
of the J/ψ−n system must be small. An estimate of how
small can be obtained by requiring only S-wave scattering,
meaning the contribution of higher partial waves should be
negligible. The classical relation between impact parameter
and angular momentum yields an estimate for the maximum l
that contributes. If the relative momentum of the J/ψ−n pair
is p∗ and the impact parameter is b, then the orbital angular
momentum in the J/ψ−n c.m. frame is L � p∗b = b

√
2μT ∗

where T ∗ is the total kinetic energy in the two-body c.m. frame
and μ is the reduced mass. The largest angular momentum
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FIG. 1. (Color online) Momenta and angles in the overall c.m.
frame, for coplanar kinematics.

partial wave that will be scattered is obtained by setting b
equal to the range of the potential. With L2 = l(l + 1) (we
take h̄ = 1), the condition for only S-wave scattering is that
l 
 1, which implies L2 = b22μT ∗ 
 1. Taking the range of
the interaction to be � 1 fm yields T ∗ 
 30 MeV.

Experimentally, perhaps the simplest quantity to measure is
the total production cross section, integrated over all available
phase space, for a given incident photon energy. However, if
we restrict the photon energy such that the maximum J/ψ-
neutron c.m. kinetic energy T ∗

max is small in of all the available
phase space, then that means that the maximum proton-neutron
relative energy will also be small everywhere in the available
phase space: for a given value of the Mandlestam variable s for
a system consisting of three particles, the total kinetic energy
of any two of the particles (say 1 and 2) in their c.m. frame
satisfies

T ∗
12 �

√
s − m1 − m2 − m3. (7)

The low-energy J/ψ−n scattering amplitude is expected to be
much smaller than the low-energy p−n scattering amplitude,
and therefore the p−n rescattering would dominate over the
J/ψ−n rescattering, as contributions to the total production
cross section. Thus we need to restrict our considerations to
a kinematic range where the p−n rescattering is at relatively
high energy, while the J/ψ−n rescattering is at very low
energy, in order to have the possibility that the J/ψ−n
rescattering makes a noticeable contribution to the differential
cross section.

The ideal situation would be to have the final J/ψ and
neutron sitting at rest in the LAB, with the proton moving off
at high velocity. Such a final state is kinematically allowed
for other reactions, e.g., π+d → ηpp, γ ∗d → ηpn, but it is
not possible for the reaction γ ∗d → J/ψ pn, for any real or
virtual photon four-momentum.

Figure 2 shows the minimum possible outgoing neutron
LAB momentum and the corresponding proton LAB mo-
mentum vs θc.m. for fixed T ∗

Vn = 30 MeV (see Fig. 1 for
the definition of θc.m.); graphs are shown for photon LAB
energy ν = 9 GeV and for ν = 6.5 GeV. One can see that the
neutron’s momentum is always greater than at least 0.6 GeV.
Since the maximum nucleon momentum in the deuteron is
around 0.3 GeV (the deuteron momentum-space wave function
is negligible for momenta larger than that) that means that in
order for these final-state kinematics to occur, the neutron must
have acquired its large momentum through a scattering event.
In fact it will turn out that the dominant process corresponds
to the impulse approximation wherein the J/ψ is produced
on the neutron itself, and the proton simply recoils freely. For
the kinematics of interest here, rescattering processes (e.g.,
J/ψ-neutron rescattering, J/ψ-proton rescattering, proton-
neutron rescattering) make very small contributions to the total
amplitude.

We use the following notation throughout this paper:
q = (ν, q) is the virtual photon four-momentum in the LAB,
with q2 = −Q2 < 0; pp is the outgoing proton LAB three-
momentum; pn is the outgoing neutron LAB three-momentum;
pV is the J/ψ LAB three-momentum; and the same variables
with c.m. superscripts denote their values in the overall
(three-body) center-of-mass frame. θp, θn, and θV denote the
angle that the outgoing proton, neutron, and J/ψ momenta,
respectively, make with q, in the LAB frame.

IV. INVARIANT SCATTERING AMPLITUDES

The Feynman diagrams considered here are shown in Figs. 3
and 4. There are three diagrams for production on the proton,
and three similar diagrams where the J/ψ is produced on
the neutron. In all cases we are interested in kinematics
where the J/ψ and neutron have small relative momentum.
The diagrams are covariant, and hence give Lorentz invariant
amplitudes. In the diagrams, MγV is the Lorentz invariant

FIG. 2. Minimum possible neutron LAB momentum (solid curve), and the corresponding proton LAB momentum (dashed curve), vs. θc.m.,
for T ∗

Vn = 30 MeV and two values of photon LAB energy ν.

015204-3



GARY T. HOWELL AND GERALD A. MILLER PHYSICAL REVIEW C 88, 015204 (2013)

FIG. 3. (Color online) Feynman diagrams for γ ∗ + d → J/ψ + p + n, for production on the proton.

amplitude for the quasi-two-body process γ ∗ + N → V + N
(where N is a nucleon, and V stands for the J/ψ), while MV n

is the Lorentz invariant amplitude for the elastic scattering
process V + n → V + n (with n meaning neutron), and MVp

and Mnp are the same for elastic J/ψ-proton scattering and
neutron-proton scattering, respectively.

A. Impulse diagrams

Amplitudes F1a and F1b are the impulse diagrams, where
the J/ψ is produced on one of the nucleons and the other
nucleon (the “spectator”) recoils freely without interacting
with the other particles. In F1a the vector meson is produced

on the proton and the neutron is the spectator, while in F1b

the production occurs on the neutron and the proton is the
spectator. The invariant amplitudes in this case are

F1a = MγV (s1a, t1a)
D(p)

D(p)
(8)

F1b = MγV (s1b, t1b)
D(n)

D(n)
. (9)

Here MγV is the Lorentz invariant amplitude for the quasi-
two-body process γ ∗ + N → V + N (where N is a nucleon,
and V stands for the J/ψ), D is the covariant vertex
function for the virtual dissociation D → p + n, and D(p)
is the propagator denominator for the intermediate-state

FIG. 4. (Color online) Feynman diagrams for γ ∗ + d → J/ψ + p + n, for production on the neutron.
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nucleon, D(p) ≡ −p2 + m2 − iε. s1a, t1a, s1b, and t1b are the
Mandlestam variables for the two-body production process
γ ∗ + N → V + N . Evaluated in the LAB frame, and neglect-
ing any contributions to the deuteron vertex from antinucleons,
the deuteron vertex function is related to the nonrelativistic
deuteron wave function by [13]

ψD(krel) = −D(p)√
2p0(2π )3 D(p)

, (10)

where in the LAB frame, krel = p = −pn for F1a , and krel =
pp = −n for F1b (krel is the proton’s momentum inside the
deuteron, in the LAB frame, for both). In terms of the deuteron
wave function, the amplitudes are

F1a = −MγV (s1a, t1a) ψD(−pn)
√

2m(2π )3 (11)

F1b = −MγV (s1b, t1b) ψD(pp)
√

2m(2π )3. (12)

The amplitudes MγV used in calculations are to be taken from
experimental data on J/ψ production on a single nucleon; we
assume here that the amplitudes for production from a neutron
is the same as for production from a proton.

In the above expressions for the amplitudes F1a and F1b,
spin labels have been suppressed. The initial virtual photon and
the deuteron are in specific spin states, the final hadrons are in
specific spin states, and there is a sum over the spin states of the
intermediate-state virtual nucleon. For example, the amplitude
F1b, including spin state specification, is explicitly

F1b = −
√

2m(2π )3
∑
m1

MγV (m1, λ,mn, λV )

×ψM
D (pp,m1,mp), (13)

where m1 is the spin state of the intermediate-state neutron
(i.e., the line with momentum n in the Feynman diagram), mn

and mp are the spin states of the final neutron and proton, λ is
the photon polarization, λV is the J/ψ polarization, and M is
the deuteron spin state. In what follows we will assume that
the two-body amplitudes for spin flip are negligible compared
to the non-spin-flip amplitudes, and so the amplitudes are
diagonal in the nucleon spin, and also in the photon and J/ψ
spin. In that case we are able to calculate the spin-averaged
squares of the various amplitudes F1a , F2a , etc., and the
spin-averaged square of the total amplitude. We have included
the contribution from the D state in the deuteron wave function.
For ν = 9 GeV the D state was found to not make a significant
contribution to the amplitudes, but for ν = 6.5 GeV the D state
did contribute significantly, especially for the impulse diagram
F1b. The deuteron wave function used was the Argonne v18
wave function.

All two-body amplitudes MγV , M are related to the
corresponding two-body differential cross section by

dσ

dt
= 1

16πλ
(
s,m2

1,m
2
2

) |M|2, (14)

where the flux factor λ is given in terms of the incident particle
masses m1 and m2 by

λ(s,m2
1,m

2
2) = (s − m2

1 − m2
2)2 − 4m2

1m
2
2, (15)

and s and t are the Mandelstam variables for the two-body
process.

1. Parameterization of the amplitudes Mγ V

If the cross section for J/ψ production on a single nucleon
is parametrized as

dσ

dt
= A1e

B1t , (16)

with the parameters A1, B1 dependent on energy (in principle),
then the elementary production amplitude MγV is given by

MγV = −i
√

16πA1λ(s,−Q2,m2)e
1
2 B1t , (17)

where s and t are either s1a , t1a or s1b, t1b.
The parameters A1 and B1 that are needed for the elemen-

tary J/ψ production amplitude MγV were estimated from
the (scant) existing data on exclusive J/ψ production on
a nucleon. The only available data for the incident photon
energy ν � 10 GeV is from a photoproduction experiment at
Cornell in 1975 [14]. For ν in the range 9.3 to 10.4 GeV,
they determined A1 = 1.1 ± 0.17 nb/GeV2 = (2.8 ± 0.43) ×
10−6 GeV−4 and B1 = 1.31 ± 0.19 GeV−2. Those are the
values used in this analysis.

2. F1a and F1b

Since F1a is proportional to �(pn), and as seen in Fig. 2
the outgoing neutron’s momentum is always greater than
�0.6 GeV, the amplitude F1a will therefore be very small,
since the deuteron wave function is negligible for those values
of momentum. The amplitude F1b, on the other hand, is
proportional to �(pp); thus as seen in Fig. 2 for θc.m. < 0.3
rad F1b should be non-negligible since the proton momentum
is less than 0.4 GeV over that range of θc.m..

B. One-loop diagrams

The covariant expression for a general one-loop diagram
(see Fig. 5) is

F = −
∫

d4n

i(2π )4

(n′)
D(n′)

MγVM
D(n)D(k)

, (18)

FIG. 5. (Color online) General one-loop diagram. n and p2 are
the same particle (either neutron or proton). The line n can be either
a proton or a neutron.
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where n′, n, k are the internal four-momenta indicated in
the figure, M stands for either Mpn, MVn, or MVp (elastic
scattering amplitude for proton-neutron, V-neutron, or V-
proton scattering, respectively), and D(p) = p2 − m2

p + iε,
etc., are propagator denominators. Spin labels have been
suppressed in Eq. (18); in particular, there is an implicit sum
over the spin states of the intermediate-state particles (the lines
labeled n, k, and n′). There are four diagrams total for a given
set of outgoing proton, neutron and J/ψ momenta. Taking
p2 = pn, p1 = pp (so that the internal line n is the neutron, and
n′ and k are the proton) gives one diagram (p−n rescattering
diagram). The other three are: p2 = pn, p1 = pV , where the
internal line n is the neutron, k is the J/ψ , and n′ and p3 are the
proton (V −n rescattering diagram); p2 = pp, p1 = pn, where
the internal line n is the proton, and n′ and k are the neutron
(another p−n rescattering diagram); and p2 = pp, p1 = pV ,
where the internal line n is the proton, k is the J/ψ , and n′
and p3 are the neutron (V −p rescattering diagram).

All of the one-loop diagrams can be evaluated in the
same manner. We follow closely the method of [9]. We
first integrate over n0 by taking the positive-energy pole
at n0 = ωn − iε, where ωn = √

m2 + n2, coming from the
propagator denominator D(n). This corresponds to neglecting
antinucleon components of the deuteron wave function. We
also use the relation Eq. (10) (and we work in the rest frame
of the deuteron). This gives

F =
√

2m

(2π )3

∫
d3n

2ωn

�(n)
MγVM

D(k)
. (19)

Note that in this expression, the internal nucleon line n is
now on-mass-shell, since n0 = ωn. Thus in the time-ordered
diagram of Fig. 5, only the lines n′ and k can be off-shell; all
the rest are on-shell.

The above expression for the amplitude F can be separated
into two terms, one term in which the line k is on-mass-shell
and one in which k is off-mass-shell, by using the relation

1

x + iε
= −iπδ(x) + P 1

x
(20)

for the remaining propagator in Eq. (19) (with P representing
the principal value) and by choosing the coordinate system
shown in Fig. 6 where the nz axis is along the direction of
the vector p12 ≡ p1 + p2. The δ function term gives the on-
mass-shell part of the amplitude, and the principal value term
gives the off-mass-shell part. This separation is useful since the
elementary amplitudes MγV , M can be determined (at least

FIG. 6. Coordinate system used. For the on-shell amplitude, θ is
fixed for a given n ≡ |n| and p1, p2.

in principle) directly from experimental data on the relevant
two-body scattering processes only when all four particles
involved (two initial and two final) are on-mass-shell. This is
not the case if one of the particles involved is off-mass-shell.
But if for reasonable choices of the off-mass-shell amplitudes
the off-mass-shell part is small compared to the on-shell part,
then the off-mass-shell part will not play an important role.
The result for the on-shell and off-shell parts of the one-loop
amplitude is [9]

F = F on + F off, (21)

where

F on = −iπ
1√

2m(2π )3

1

2|p12|

×
∫ 2π

0
dφ

∫ n+

|n−|
dn n �(n)MγVM (22)

and

F off = 1√
2m(2π )3

1

2|p12|
∫ 2π

0
dφ

∫ ∞

0
dn n �(n)

×P
∫

d cos θ
MγVM

f12(n) + cos θ
. (23)

Here

f12(n) ≡ s12 + m2 − m2
k − 2E12ωn

2n |p12| , (24)

with n ≡ |n|. s12 ≡ (p1 + p2)2 is the Mandelstam s variable
for the elastic scattering of particles 1 and 2, mk is the mass of
the real particle, which the line k represents, E12 ≡ E1 + E2,
and θ is as shown in Fig. 6. Note that f12 is independent of θ
and φ.

In the amplitude F on, the limits of integration |n−| and n+
are the solutions of

f12(n±)2 = 1, (25)

which are

n± = E∗
2√
s12

|p12| ± p∗
2√
s12

E12, (26)

where p∗
2 , E∗

2 are the momentum and energy of outgoing
particle 2 in the c.m. frame of particles 1 and 2, and particle 2
is the same particle as the internal line with momentum n. The
range of n given by |n−| � n � n+ is the range of n for which
it is kinematically possible for the line k to be on-mass-shell
(given that n, p1, and p2 are on-shell). In F on the value of cos θ
is fixed at

cos θ = −f12(n) = − s12 + m2 − m2
k − 2E12ωn

2|p12|n . (27)

The amplitudes MγV , M in F on are evaluated, for a given
n and φ, at this value of cos θ . The amplitude M in F on

is fully on-shell, i.e., all four particle lines n, k, p1, and p2

are on-mass-shell. The amplitude MγV has only one particle
off-shell (n′), but given that the magnitude of n is small (due
to the deuteron wave function), n′ is almost on-shell: n′0 =
Md − ωn � Md − m � m, and so (n′)2 = m2 + O( n2

m2 ).
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FIG. 7. n± vs θc.m. for the amplitude F3a (J/ψ-neutron rescattering), for T ∗
Vn = 30 MeV, and ν = 9.0 GeV and ν = 6.5 GeV. Upper curve

is n+, lower curve is n−.

In the amplitude F off , k is never on-mass-shell; the principal
value imposes this, since for k to be on-mass-shell, cos θ must
equal −f12(n), which never occurs in the principal value.
Thus the amplitudes MγV , M that enter into F off have either
one particle off-mass-shell (for M) or two particles off-shell
(for MγV ). In our calculations the amplitude F off was much
smaller than F on, for any of the Feynman diagrams in Fig. 3
and 4 (except for F3a), for the kinematics considered here,
and for reasonable expressions for the off-shell amplitudes
MγV , M.

C. General features of the one-loop diagrams

Inspection of Eq. (22) shows that a necessary condition
for the on-shell part of a given one-loop diagram to be
non-negligible is that the corresponding |n−| must be small
enough so that the range of integration in Eq. (22) includes
the momenta where the deuteron wave function is significant.
Since n− depends on the final-state kinematics [Eq. (26)],
graphs of n− as a function of one of the final state variables
reveal regions where the on-shell amplitude can be significant,
and regions where it will be negligible.

For the diagram of most interest, F3a , particles 1 and 2 are
the J/ψ and neutron, respectively. Fig. 7(a) shows n± vs. θc.m.

for T ∗
Vn = 30 MeV, for ν = 9 GeV, and Fig. 7(b) shows the

same for ν = 6.5 GeV, for the diagram F3a . At both of these
photon energies, n− is greater than ∼0.6 GeV for all θc.m., and
so the on-shell amplitude will be negligible since the deuteron
wave function is negligible for that momentum.

For the amplitudes F2a , F2b, and F3b, the corresponding n−
graphs are shown in Fig. 9 for ν = 9 GeV and ν = 6.5 GeV,
for T ∗

Vn = 30 MeV. Note that at a given value of θc.m. and
T ∗

Vn, the neutron LAB momentum can range from a minimum
to a maximum allowed value (with these two values both
corresponding to pn and pV pointing in the same direction
in the LAB, with θ ′ = 0 in Fig. 8), and the values of n− for
F2a , F2b, and F3b depend on the neutron LAB momentum in
addition to θc.m. and T ∗

Vn. For our calculations, we have fixed the
neutron LAB momentum for a given θc.m. (and T ∗

Vn = 30 MeV)
at its minimum value; we denote this value by pn,min. One can
see from these graphs that for ν = 9 GeV, there are intervals
of the variable θc.m. for which the on-shell parts of F2a , F2b,
and F3b should be non-negligible, since n− < 0.05 GeV there

(note that for the diagram F3b, the J/ψ-proton rescattering
occurs at relatively high energy, if the J/ψ-neutron relative
energy is small; so F3b is not directly related to the J/ψ-
nucleon scattering length). For ν = 6.5 GeV, n− is larger
than �0.4 GeV, and so these on-shell amplitudes should be
small. This is borne out by the exact calculations, where the
one-loop on-shell amplitudes for ν = 6.5 GeV are in general
much smaller than those for ν = 9 GeV.

D. Parameters used in the elementary two-body amplitudes

For the calculation of the amplitudes, using Eq. (22)
and Eq. (23), the elementary amplitudes MγV and M are
phenomenological amplitudes obtained from existing experi-
mental data, related to the two-body cross section by Eq. (14).
We take the individual two-body differential cross sections to
be of the form

dσ

dt
= AeBt , (28)

where A and B can depend on energy. Thus we have

M = −i

√
16πλ

(
s,m2

1,m
2
2

)
A e

1
2 Bt , (29)

relating M to A and B.
The values of A and B depend on the relative momentum

(or energy) of the rescattering pair. Table I lists the values of
the momentum p of the neutron in the proton’s rest frame

FIG. 8. (Color online) LAB frame momenta. For a given θc.m. and
T ∗

Vn, the neutron LAB momentum can range between a minimum
and maximum value, both of which correspond to θ ′ = 0 in the
figure. pnV = pV + pn.
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FIG. 9. (Color online) n− vs θc.m. for proton-neutron rescattering and J/ψ-proton rescattering amplitudes, for T ∗
Vn = 30 MeV, pn = pn,min.

(for the p−n subsystem) and the momentum p of the J/ψ
in the proton’s rest frame (for the V −p subsystem), for the
case of T ∗

Vn = 0. Note that these quantities are independent of
θc.m. (easily shown in the overall c.m. frame). Also given in
Table I is the total kinetic energy of the pair in the c.m. frame
of that pair, T ∗

12. Given the values of the momentum p, we
can determine the parameters that enter into the elementary
amplitudes Mpn, MVp.

1. p−n scattering parameters

For ν = 9 GeV, the existing data [10] for p−n scat-
tering at incident momentum p = 2.25 GeV gives Bpn =
5.7 to 6.2 GeV−2. The value of Apn can be obtained from
the total p−n cross section by using the optical theorem and
neglecting the real part of the scattering amplitude

dσ

dt
|t=0 = 1

16π
σ 2

tot = Apn (30)

The measured value of σtot given in the table is then used
to calculate Apn. For ν = 6.5 GeV, the existing data for
p−n scattering at momentum p = 0.86 GeV gives Bpn =
6.9 GeV−2 [10] and Apn = 160 GeV−4 [15].

2. J/ψ− p scattering parameters

There is very little data on elastic J/ψ-proton scattering
from which to determine the parameters AVp and BVp that
are needed for the J/ψ-proton rescattering amplitude MVp.
For the present analysis, we have assumed that the t-slope
for elastic J/ψ-nucleon scattering is equal to the t slope
for the process γ ∗ + N → J/ψ + N , and so we have taken
BVp = BγV = 1.31 ± 0.19 GeV−2. We can obtain AVp from
the total J/ψ-nucleon cross section, using the optical theorem;
however, there has only been one measurement of σ

J/ψ N
tot [17].

In an experiment in 1977 at SLAC [5] J/ψ photoproduction
was measured on beryllium and tantalum targets, and the total
J/ψ-nucleon cross section was extracted by using an optical
model for the rescattering of the produced J/ψ from the
other nucleons in the nucleus. The value they obtained was
σ

J/ψ N
tot = 3.5 ± 0.8 mb, which gives via the optical theorem

AVp = 1.61 ± 0.4 GeV−4. In that paper, however, they also
note that the measured J/ψ-photoproduction cross section
together with vector meson dominance arguments would give
a J/ψ-nucleon total cross section of �1 mb. So we can assume
the value of the J/ψ-nucleon total cross section to be not
very well known. In addition, the photon energy in the SLAC
experiment was 20 GeV, and so assuming forward production
of the J/ψ , then the energy of the J/ψ in the LAB frame
would also be �20 GeV, giving a kinetic energy in the LAB
of �17 GeV. This is significantly larger than the kinetic energy
of the J/ψ in the proton rest frame considered here, where for
ν = 9 GeV it is 4.94 GeV and for ν = 6.5 GeV it is 1.1 GeV.
This introduces more uncertainty in the value of AVp to be
used. In Ref. [4], a theoretical calculation of the J/ψ-nucleon
scattering length yields a value for the total J/ψ-nucleon cross
section at threshold of 7 mb, and it is argued that the total
cross section should decrease as the energy is increased from
threshold. Thus at the energy of the J/ψ-proton rescattering
here, the value of AVp may be larger than the value measured
in the experiment at SLAC. For the purpose of calculating the
amplitude F3b, however, we will use the value measured at
SLAC.

3. Subthreshold J/ψ production

The threshold photon energy for production on a single
nucleon at rest is

νthresh = mV + m2
V + Q2

2m
(31)

TABLE I. Parameters used in elementary scattering amplitudes.

ν (GeV) Subsystem p (GeV) T ∗
12 (GeV) B (GeV−2) σtot (mb) A (GeV−4)

9 n−p 2.25 0.64 5.7–6.2 43–46 260
9 V −p 7.4 1.02 1.31 3.5 1.61
6.5 n−p 0.86 0.16 6.9 35 160
6.5 V −p 2.84 0.247 1.31 3.5 1.61

015204-8



INCOHERENT J/ψ ELECTROPRODUCTION FROM THE . . . PHYSICAL REVIEW C 88, 015204 (2013)

FIG. 10. Squares of amplitudes for ν = 9.0 GeV, T ∗
Vn = 30 MeV, pn = pn,min. The solid curve is the total (on-shell plus off-shell parts),

while the dashed curve is only including the on-shell part of the amplitude.

while for production on the deuteron it is

νthresh = mV + m2
V + Q2

2Md

(32)

For Q2 = 0.5 GeV, these are 8.47 GeV and 5.78 GeV, respec-
tively.

For ν = 6.5 GeV, which is below threshold for J/ψ
production on a single nucleon at rest, we assume that the
production mechanism is the same as for production on
a free nucleon. The Fermi motion of the nucleon in the
deuteron is what allows the production to occur, i.e., if the
nucleon is moving towards the photon with a large enough
momentum then the value of s1 = (q + p)2, where p is the
four-momentum of the nucleon in the deuteron, will be above
the threshold value. In the calculation of the amplitudes for
ν = 6.5 GeV this condition was imposed on the internal
nucleon momentum in the integrals involved.

E. Calculated on-shell and off-shell amplitudes

Using the parameters in Table I, the on-shell and off-shell
parts of the amplitudes were calculated. The squares of the
individual amplitudes F2a , F2b, and F3b are shown in Figs. 10
and 11; shown in the graphs is a curve, which includes only the
(square of the) on-shell part of the amplitude, and also a curve
which is the square of the total amplitudes including both the
on-shell and off-shell parts. For the off-shell parts, the same
parametrizations of the elementary amplitudes MγV and M
were used as for the on-shell parts. As stated previously, the
off-shell parts are very small compared to the on-shell parts,
which means that knowledge of the exact forms of the off-shell
elementary amplitudes MγV and M are not needed.

Since the J/ψ-nucleon scattering length is expected to be
small (much smaller than, e.g., the proton-neutron scattering
length), the J/ψ-neutron rescattering diagram F3a should be

a small contribution to the total amplitude. This is borne out
in the next subsection, where F3a is calculated using a model
potential and wave function, for a value of the scattering length
on the order of that predicted by theoretical models.

F. J/ψ-neutron rescattering diagrams and the scattering length

Diagram F3a [Fig. 3(c)] is the J/ψ-neutron rescattering
diagram. This is the diagram where the J/ψ and neutron
scatter from each other with small relative momentum; hence
this amplitude will involve the scattering length for the
J/ψ-neutron interaction.

For this diagram, we have p12 = pVn ≡ pV + pn in
Eqs. (22)–(27), and θ is the angle between pVn and n (see
Fig. 6). For T ∗ = 0, where T ∗ = T ∗

n + T ∗
V (∗ indicates the c.m.

frame of the V −n system), we have n+ = |n−| [see Eq. (26)],
and so F on

3a = 0. For small T ∗ (below, e.g., 100 MeV), F on
3a

will be small because n− � 0.45 GeV for the possible JLab
kinematics (see Fig. 7). Thus the main contribution to F3a is
from F off

3a , for which the intermediate-state J/ψ is always off-
mass-shell. However, because of the propagator denominator
f12(n) + cos θ , where

f12(n) + cos θ = 1

2|pVn|n
(
k2 − m2

V

)
, (33)

contributions to F off
3a from values of n for which k is far off-

mass-shell will be small. To obtain estimates of F off
3a , we will

therefore evaluate it using on-mass-shell values of MγV and
MVn.

The relation between the invariant amplitude MVn and the
scattering amplitude f (k, θ ) is [16]

M = −8π
√

sVn f (k, θ ) (34)

for the on-energy-shell amplitudes. The half-off-energy shell
amplitudes are related in the same way.
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FIG. 11. Squares of amplitudes for ν = 6.5 GeV, T ∗
Vn = 30 MeV, pn = pn,min. The solid curve is the total (on-shell plus off-shell parts),

while the dashed curve is only including the on-shell part of the amplitude.

Our normalization conventions are the following. The
scattering length a is given by

lim
k→0

f (k, θ ) = −a. (35)

The off-energy-shell amplitude is given by

f Vn(k1, k2) = −(2π )2μ 〈k2|V |�(+)
k1

〉
= −(2π )2μ 〈�(−)

k2
|V |k1〉

= −(2π )2μ 〈k1|V |�(−)
k2

〉∗, (36)

where V is the potential, μ is the reduced mass, k1 is the
initial relative momentum [in terms of n, k in Fig. 3(c)], k2 is
the final relative momentum [in terms of pV , pn in Fig. 3(c)],
and �k2 is the exact scattering wave function for asymptotic
relative momentum k2. Since this off-energy-shell scattering
amplitude depends on the scattering wave function �

(−)
k2

and
the potential V , both of which are unknown for J/ψ-nucleon
elastic scattering, we will resort to models in order to estimate
the amplitude.

We normalize our S-wave scattering wave function �k, and
define the radial wave function u(r), by

�k(r) = 1√
(2π )3

eiδ(k) u(r)

r
, (37)

where δ(k) is the S-wave phase shift. In order to calculate the
matrix element, we will specify a model zero-energy wave
function u0(r), which determines the potential V (r) via the
Schrodinger equation, and use that potential to solve for the
wave function for k = 0 (the subcript zero on u0 indicates it is
for k = 0).

We assume the J/ψ-nucleon potential is of finite range, and
so is zero for r larger than some distance R. The phase-shift
δ(k) satisfies the following well-known properties as k → 0:

(i) for a repulsive potential, or an attractive potential that
doesn’t admit a bound state: δ → −ak as k → 0;

(ii) for an attractive potential which admits a single bound
state: δ → π − ak as k → 0

The zero-energy wave function �0(r) outside the range of
the potential is then

�out
0 (r) = 1√

(2π )3
eiδ(0) u

out
0 (r)

r
= 1√

(2π )3

r − a

r
(38)

for both cases, while the zero-energy radial wave function
uout

0 differs by a minus sign for the two cases; this is purely
due to including the factor eiδ(k) in the definition of �k in
Eq. (37). Our normalization conventions give a > 0 for either
a repulsive potential or an attractive potential with a bound
state, and a < 0 for an attractive potential that doesn’t admit a
bound state. In all cases a is the intercept on the r axis of u0

out(r).
Theoretical calculations [4,6] give values of |a| � 0.3 fm,

with effective range re � 2.0 fm. It is thought that the potential
is attractive, but too weak to support a bound state. Below,
calculations of F3a are made for both cases of an attractive
potential: a > 0 (bound state) and a < 0 (no bound state).

G. Positive scattering length a

For the case of a positive scattering length and attractive
potential (which possesses a bound state), we have uout

0 (r) =
−(r − a). We choose the simplest zero-energy wave function
u0(r) consistent with the standard continuity requirements on
u(r) at r = 0 and r = R required by the Schrödinger equation.
This yields

uin
0 (r) =

(
− 1 + 3a

R

)
r +

(
− 3a

R2

)
r2 +

(
a

R3

)
r3. (39)

One further requirement on uin
0 is that uin

0 have no zeros on
the interval [0, R] (besides at r = 0). This ensures that the
corresponding potential V (r) is nonsingular, since for k = 0,
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FIG. 12. (Color online) Squares of amplitudes, and electroproduction differential cross section Eq. (47), for ν = 9 GeV, T ∗
Vn = 30 MeV,

pn = pn,min. The solid curves in (b) and (c) include all amplitudes, while the dashed curves (which are not distinguishable from the solid curve)
omit F3a for both positive and negative scattering length a, for the model potential of Eq. (43).

V (r) = 1
2μ

u′′
u

. The zeros of uin
0 are at r = 0 and

r

R
= 3

2
± 1

2

√
4
R

a
− 3 (40)

and the right-hand side must lie outside the range [0, 1]. This
requires either

R < a (41)

or

R > 3a. (42)

The potential is

V (r) = 1

2μ

1

r

r − R

R2
(
3 − R

a

) − 3Rr + r2
(43)

and one can see that for R > 3a the potential is repulsive.
Therefore we require R < a.

1. Model wave function for k �= 0

Given this model potential we can proceed to calculate the
off-shell scattering amplitude Eq. (36) and the amplitude F off

3a

once we calculate the wave function u for nonzero k for a
given a and R. Taking a = 0.3 fm, R = 0.1 fm, and solving
the Schrödinger equation for k < 100 MeV numerically, we
find that the wave function �k(r) and the off-shell amplitude

f (p, k) depend very weakly on k over the entire momentum
range from k = 0 to k = 100 MeV.

Since we are only interested in the J/ψ-neutron relative
momentum up to around 100 MeV, it is legitimate to approx-
imate the off-energy-shell amplitude f Vn(p, k) � f Vn(p, 0)
for the range of k we are interested in. For our model wave
function uin

0 we can evaluate f Vn(p, 0) analytically

f Vn(p, 0) = −2π2√
(2π )3

∫
d3re−ip·rU (r)�0(r)

= 6a

p2R2

(
− 1 + sin pR

pR

)
. (44)

The momentum p appearing in f (p, 0) is the relative momen-
tum of the J/ψ-neutron pair in their center-of-mass frame,
before they scatter in diagram F3a; it is thus the magnitude of
n (or −k) in the outgoing V −n center-of-mass frame, and so
we must boost n to that frame.

H. Negative scattering length a

If the potential is attractive but too weak to support a bound
state, then a < 0 and we have uout

0 (r) = r − a. In this case the
zero-energy wave function is

uin
0 =

(
1 − 3a

R

)
r +

(
3a

R2

)
r2 −

(
a

R3

)
r3. (45)
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The requirement that u have no zeros on [0, R] imposes no
restriction on a and R in this case. Theoretical calculations
give a around −0.3 fm, and effective range re � 2.0 fm [4,6].
Using these values with our model wave function and potential
implies R = 1.3 fm. Again there is very little variation with
k of the wave functions and off-shell amplitudes for k from
0 to 0.1 GeV, so to calculate F3a in this case we will again
approximate f Vn(p, k) � f Vn(p, 0). This yields

f Vn(p, 0) = 6a

p2R2

(
1 − sin pR

pR

)
. (46)

I. Results

The electroproduction differential cross section in the LAB
frame, shown in Figs. 12 and 13, is given by

d8σ

dE′d�′dppd�pd�n

= v0VT E′

8(2π )3Md E

1

8(2π )5

p2
p

Ep

p3
n

|EV p2
n − Enpn · pV | |F |2

(47)

where F = F1a + F1b + F2a + F2b + F3a + F3b is the total
amplitude for J/ψ production from a virtual photon, and

v0 =
√

16E2E′2 − Q4 = 4EE′ cos2(θ ′/2), (48)

VT = 1

2

Q2

q2
+ Q2

v0
, (49)

and

E′ = E − ν = 12 GeV − ν. (50)

In the above, E is the initial electron energy (taken to be
12 GeV), E′ is the final electron energy, and θ ′ is the scattering
angle of the electron relative to the initial electron momentum
(all quantities in the LAB frame).

The results are shown in Figs. 12 and 13. For ν = 9 GeV,
the squares of the individual amplitudes F1b, F2b, F3b, and
F3a are also shown in Fig. 12(a), along with the square of
the total amplitude including all diagrams. As can be seen in
that graph, the amplitude F3a makes a negligible contribution
to the total amplitude. There are intervals of θc.m. where the
amplitudes F1b, F2b, and F3b individually dominate the total
amplitude. However, by comparing Fig. 12(a) with Fig. 12(c),
which shows the electroproduction differential cross section
on a linear scale, over the range of θc.m. for which the cross
section is non-negligible (for 0 < θc.m. < 0.2 rad) the cross
section is due exclusively to the impulse diagram F1b. The
very small “bump” visible in Fig. 12(c) at θc.m. � 0.3 rad is
due to the proton-neutron rescattering amplitude F2b.

For ν = 6.5 GeV, the difference between the cross section
including F3a and omitting F3a is visible in the logarithmic-
scale graphs [Figs. 13(a) and 13(b)], but not in the linear-scale
graph, Fig. 13(c).

F3a was also calculated using three other potentials: a
square-well potential yielding a = 0.3 fm and R = 0.1 fm,
and also the potential of Eq. (43) but with a = 0.3 fm, R =
0.29 fm, and a square-well potential yielding a = 0.3 fm but
with R = 0.29 fm. There was a negligible difference between
the values of F3a calculated with these potentials.

J. Conclusion

It does not appear to be possible to measure the J/ψ-
nucleon scattering length via production on the deuteron,

FIG. 13. Electroproduction differential cross section Eq. (47) for ν = 6.5 GeV, T ∗
Vn = 30 MeV, pn = pn,min, and a = ±0.3 f m. In (c), the

dashed curves (not distinguishable from solid curve) are omitting F3a for both positive and negative a, for the model potential of Eq. (43).
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FIG. 14. (a) plus kinematics and (b) minus kinematics. For plus, pp is always on the opposite side of the photon momentum q direction as
the neutron momentum. For minus, pV is always on the opposite side of the photon momentum q direction as the neutron momentum.

under the kinematic conditions available at JLab. For small
values of the relative momentum of the outgoing J/ψ-neutron
pair, the initial momentum of the neutron inside the deuteron
that is required for on-mass-shell rescattering of the J/ψ-
neutron pair is larger than ∼0.6 GeV (see Fig. 7), where
the deuteron wave function is negligible. The off-mass-shell
part of the rescattering amplitude was calculated using model
J/ψ-nucleon potentials and was found to make a negligible
contribution to the total amplitude. The vast majority of
J/ψ production events, for T ∗

Vn � 0.03 GeV, will be at small
values of θc.m., where the impulse diagram F1b dominates,
and therefore information on J/ψ-nucleon elastic scattering
at small relative energy cannot be obtained.

V. INTERMEDIATE ENERGY J/ψ PRODUCTION
ON THE DEUTERON

It may be possible to extract the J/ψ-nucleon elas-
tic scattering amplitude from the γ ∗ + D → J/ψ + p + n
experiment, at higher relative energy of the J/ψ-nucleon
pair, under different kinematic conditions for the final-state
particles than was considered in the previous sections of this
chapter. Under certain kinematic conditions, the dominant
contributions to the amplitude will come from rescattering
diagrams (p−n rescattering and J/ψ−n rescattering). If we
fix the magnitude of the outgoing neutron’s momentum at
a moderately large value (here taken to be 0.5 GeV) the
contribution of the impulse diagram will be negligible, since
the impulse diagram is proportional to the value of the deuteron
wave function at that momentum (see Fig. 4 for the impulse
and rescattering diagrams). For the analysis presented here,
we

(i) use coplanar kinematics,
(ii) fix the magnitude of the outgoing neutron momentum

at pn = 0.5 GeV,
(iii) fix the four-momentum-transfer-squared t = (q −

pV )2 at a particular value, and
(iv) plot amplitudes or differential cross sections vs θn (the

angle that the outgoing neutron momentum pn makes
with direction of the incoming photon momentum) for
fixed pn and t (see Fig. 14).

For some range of ν and t , these graphs will display peaks
due to p−n and J/ψ−n on-mass-shell rescattering. For ν =
10 GeV, the peak due to J/ψ−n rescattering is evident (see
Fig. 17), but for ν = 9 GeV it is not evident (see Fig. 18). This
analysis is similar to what has been done in Ref. [9] for the
reaction γ + D → π + N + N .

The kinematics here are very different than in the previous
sections. There it was the relative energy of the J/ψ-neutron
system that was kept fixed, at a small value, while the parameter
that was varied was the production angle of the J/ψ in the
overall center-of-mass system.

A. Intermediate-energy J/ψ production

We are interested here in kinematics available at JLab after
the 12-GeV upgrade. The maximum (virtual) photon energy
is then around 11 GeV. Here we evaluate the amplitude for
virtual photon four-momentum q = (ν, q) with ν = 10 GeV,
Q2 = −q2 = 0.5 GeV, keeping pn = 0.5 GeV and t fixed.
The results presented here are for t = −2 GeV2; calculations
were done for larger values of |t |, with similar results (although
the total amplitude decreases with increasing |t |). We consider

FIG. 15. |n−| vs θn, for photon energy ν = 10 GeV, and t =
−2 GeV2. (a) and (b) are for the minus kinematics, (c) and (d) are for
the plus kinematics.
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FIG. 16. |n−| vs θn for J/ψ-p rescattering, for photon energy ν = 10 GeV, and t = −2 GeV2. (a) is for the minus kinematics, (b) is for
the plus kinematics.

the same set of diagrams as before, shown in Figs. 3 and 4.
The impulse diagrams, F1a and F1b, are negligible for these
kinematics.

Note that for a given t , pn, and θn, there are two sets of
allowed values of the proton and J/ψ momentum {pp, pV };
we have called the two sets the “plus” set and the “minus” set. If
we define x and z axes as in Fig. 14, with the x component of the
neutron momentum always positive, then the plus kinematics
is as shown in Fig. 14(a) and the minus kinematics is as shown
in Fig. 14(b). For the plus kinematics, ppx is negative for all
θn (while pV x takes both positive and negative values over the
range of θn), while for the minus kinematics, pV x is negative
for all θn (while ppx takes both positive and negative values
over the range of θn).

Figsures 15 and 16 show graphs of |n−| vs θn for the
three different pairs of outgoing particles. Since the value of
|n−| varies greatly with θn, the value of the amplitude of the
corresponding rescattering diagram varies greatly also, and
has a prominent peak at the value of θn for which |n−| = 0.

1. Calculation of amplitudes

For the calculation of the amplitudes, the elementary
two-body amplitudes MγV and M are taken to be of the
diffractive form Ae

1
2 Bt with parameters determined from

existing experimental data. For the J/ψ-nucleon rescattering
diagrams, the only available data is from the experiment
at SLAC [5] discussed in Sec. IV D. They determined the
total J/ψ-nucleon cross section to be σ

J/ψ N
tot = 3.5 ± 0.8 mb,

which gives via the optical theorem AVn = 1.61 ± 0.4 GeV−4.
The energy of the J/ψ in this experiment was ∼20 GeV in the
Lab frame (nucleon at rest). However, for our kinematics the
rescattering of the J/ψ on the nucleon takes place at an energy
in the outgoing neutron’s rest frame of from 6–10 GeV, which
is significantly smaller than in the SLAC experiment; thus
the value of AVn at our energy may be significantly different.
Since the entire reason for measuring the cross section for this
process is to extract the J/ψ-nucleon scattering amplitude in
an energy region where it has not been measured before, we
have used several different values of the parameter AVn in the
calculations, from one times the SLAC value up to ten times the
SLAC value. Since the total cross section σtot for J/ψ-nucleon
scattering goes like

√
AVn [Eq. (30)], this corresponds to a

range of σtot (which is what was actually measured in the
SLAC experiment) of from 1 to ∼3 times the SLAC value.
In Ref. [4], theoretical calculation of the J/ψ-nucleon elastic
scattering cross section at threshold yielded 7 mb, which is
twice the value measured at the higher energy at SLAC.

The full calculation of the amplitudes must of course
include the off-shell parts. If we use the same parametrization

FIG. 17. Electroproduction differential cross section vs θn, including all diagrams, for photon energy ν = 10 GeV, Q2 = 0.5 GeV2 and
t = −2 GeV2, for three values of AVn: Solid curve: AVn = 1.6 GeV−4. Dashed curve: AVn = 8.0 GeV−4. Dotted curve: AVn = 16 GeV−4. In
(a), the large peaks at θn � 45◦ and θn � −85◦ are due to p−n rescattering, while the small peaks (or bumps) at θn � 80◦ and θn � −70◦ are
due to J/ψ-neutron rescattering. (b) shows detail of left half of (a).
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FIG. 18. Amplitude squared vs θn, including all diagrams, for
AVn = 16 GeV−4, for photon energy ν = 9 GeV and t = −3 GeV2.
The peak or bump on either side is due to p−n rescattering, while
the peak due to J/ψ-nucleon rescattering is not visible.

of the elementary amplitudes as in the on-shell part, then the
off-shell parts were found to be very small compared to the
on-shell parts.

The amplitudes F2b and F3b, where the J/ψ is produced
on the neutron and then rescattering (of the neutron or J/ψ ,
respectively) occurs on the proton, are much smaller than F2a

and F3a , and do not exhibit the well-defined peaks that F2a

and F3a do. Figure 17 shows the eightfold electroproduction
differential cross section, Eq. (47), versus θn. In that figure,
the negative values of θn are for the minus kinematics,
and the positive values are for the plus kinematics. Graphs
are shown for three different values of the J/ψ-neutron
elastic scattering parameter AVn: AVn = 1.6 GeV−4 (which
is the value determined in the experiment at SLAC), AVn =
8.0 GeV−4, and AVn = 16 GeV−4. It is seen that only if AVn

is of the order of 10 times as large as the previously measured
value is there a noticeable peak due to the J/ψ-neutron
rescattering, for the plus kinematics. The p−n rescattering
peak is much larger than, and close enough to, the J/ψ-neutron
rescattering peak that it obscures the J/ψ peak. For the minus
kinematics, the same statement holds; in addition, however,
the size of the p−n rescattering peak varies (by ∼40%) as the
value of AVn is varied. Note also that the position of each of
the peaks is simply given by the value of θn where the value
of the corresponding |n−| is zero (see Fig. 15).

It’s important to note that the peak due to the J/ψ-neutron
rescattering isn’t observable at lower energies. Figure 18 shows
the square of the total amplitude for photon energy of ν =
9 GeV and t = −3, for AVn = 10 × 1.6 GeV−4. On this graph
the peak due to p−n rescattering is visible, but there is no
visible peak due to J/ψ-neutron rescattering.

B. Conclusion

We have shown here the possibility of measuring the elastic
J/ψ-nucleon scattering amplitude for energies significantly
smaller than the energy of the only existing data. If the
total J/ψ-nucleon cross section σ

J/ψN
tot at these energies is

of the order of 2–3 times the previously measured value,
then the differential cross section as a function of θn should
exhibit well-defined peaks corresponding to on-mass-shell
p−n and J/ψ−n rescattering, for virtual photon energy
of ν = 10 GeV and four-momentum-transfer-squared t =
(q − pV )2 = −2 GeV2. However, at lower photon energy
(below 9 GeV) the J/ψ−n rescattering peak would not be
distinguishable. As it is expected [4] that σ

J/ψN
tot should

increase as the energy decreases, it is not impossible that the
lower-energy cross section could be larger than the measured
value by a factor of ∼2.

VI. CONCLUSION

This paper is concerned with determining information
regarding J/ψ-nucleon elastic scattering. As discussed in
Sec. IV J, it does not appear possible to measure the J/ψ-
nucleon scattering length via production on the deuteron under
the kinematic conditions available at JLab. As discussed in
Sec. V B, however, it will be possible to extract the J/ψ-
nucleon scattering amplitude at higher relative momentum if
σ

J/ψN
tot is large enough.
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