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We study the effect of parton angular momentum on the twist-four correction to the left-right asymmetry in the
electron-deuteron parity-violating deep-inelastic scattering (PVDIS). We show that this higher-twist correction
is transparent to the dynamics of parton angular momentum needed to account for the Sivers and Boer-Mulders
functions and spin-independent parton distribution functions. A sufficiently precise measurement of the PVDIS
asymmetry may, thus, provide additional information about the parton dynamics responsible for nucleon spin.
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I. INTRODUCTION

As a complement to the studies at high-energy frontier,
measurements at the intensity frontier (or precision frontier)
provide powerful tools in the search for physics beyond
the standard model (BSM). Observables such as the muon
anomalous magnetic moment are measured to very high
precision, and experimental results are then compared with
theoretical predictions. To the extent that the latter are
sufficiently reliable, any possible deviation would point to
BSM physics. Alternately, these experiments can provide new
insights into the dynamics of the standard model.

Electron-deuteron parity-violating deep-inelastic scattering
(eD PVDIS) is an excellent example of this class of studies.
Historically, it provided the first experimental measurement
of weak mixing angle θW [1]. Nowadays, with the prospect of
the Jefferson Laboratory 12-GeV upgrade and the use of a new
spectrometer called SoLID, the left-right asymmetry of PVDIS
can be measured with 0.5% precision over the kinematic range
0.3 < xB < 0.7 [2]. With this level of precision, one will be
able to probe or constrain an interesting set of BSM scenarios,
such as a leptophobic Z′ boson [3,4] and supersymmetry [5],
as well as to study hadronic physics effects, which are yet to be
fully understood, such as charge symmetry violation (CVC)
and higher-twist (HT).

The effect of HT [6] is a potentially important standard
model correction that originates from the interaction between
partons. This correction in general scales as (Q2)−(τ−2)/2,
with the twist τ > 2, so its effect is enhanced at low Q2.
In the framework of the operator product expansion (OPE),
the higher-twist correction can be expressed as a convolution
of a high-energy and low-energy piece; the former (embodied
in the Wilson coefficients) can be calculated using perturbative
methods, whereas the latter involves hadronic matrix elements
that require understanding of nonperturbative QCD. Studying
the higher-twist correction may help us in probing correlations
between the confined quarks and gluons inside the nucleon, so
it is interesting to explore HT matrix elements within various
model approaches. One advantage of eD PVDIS process is that
the HT contribution to the leading term in the PV asymmetry
(defined below) arises from a single operator matrix element
and can, in principle, be separated kinematically from the

subleading terms that have a more complicated HT structure.
With this motivation in mind, several previous works [7–10]
have been carried out to study the twist-four (i.e., τ = 4)
correction to the left-right asymmetry of eD PVDIS. In what
follows, we report on a study that follows up these earlier
works.

The study of HT may also shed light on another important
issue, namely, the spin structure of the nucleon. Nearly twenty-
five years ago, the EMC collaboration [11] performed a DIS
experiment with longitudinally-polarized muons on a target
of longitudinally polarized protons, obtaining a value for the
structure function g1(xB) over the range 0.01 < xB < 0.7. After
extrapolating to the low- and high-xB region, the collaboration
obtained a value for the leading moment of g1(xB) that
contradicted the Ellis-Jaffe sum rule [12] and implied that
the spin of a proton is not built up entirely from the quark
spin. The result has been confirmed by a variety of subsequent
studies. A key question in nuclear physics research has thus
become explaining in detail the source of nucleon spin in terms
of QCD degrees of freedom.

From a theoretical perspective, arriving at a decomposition
of the nucleon spin in terms of gauge-invariant matrix elements
of local operators that afford a straightforward partonic
interpretation has been a vexing problem, and different
approaches have been pursued over the years [13–17]. In
each case, reference is usually made to the interpretation in
the light cone—gauge dependence notwithstanding—given
its historical importance for thinking about parton dynamics.
However, while the meaning of the quark helicity is gauge
invariant, the relative importance of other aspects of partonic
angular momentum (gluon helicity and quark and gluon orbital
angular momentum) in general vary with the choice of gauge
and even definition. Nonetheless, it is interesting to ask how
different observables may probe different aspects of partonic
angular momentum and to do so in a way that is both gauge
invariant and as insensitive as possible to a particular angular
momentum decomposition.

In this respect, we will study HT in the context of light-cone
quantization. In early work within this framework, it has been
shown that one particular component of parton angular mo-
mentum, identified as quark orbital angular momentum (OAM)
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under light-cone quantization using light-cone gauge, is
responsible for the nonzero value of Sivers function and Boer-
Mulders function [18,19] in semi-inclusive deep-inelastic
scattering (SIDIS) [21]. In light of these results, it is also
interesting to study how the inclusion of the same component
of parton angular momentum modifies the current model
predictions for HT corrections to eD PVDIS. Indeed, in all
the previous studies of eD PVDIS, only the Fock component
of the nucleon wave function with zero parton OAM has been
included.

After including quark OAM in the light-cone amplitudes,
we observe a rather nonintuitive phenomenon: although the
absolute magnitude of individual nonzero quark OAM
contributions can be significant, they largely cancel against
each other. We will argue that this cancellation is largely
independent of the detailed model for the relevant light-cone
amplitudes. As a result, the twist-four correction to PVDIS is
almost transparent to the inclusion of quark OAM. In contrast,
other hadronic quantities, such as the parton distribution
functions (PDFs), Sivers function, and Boer-Mulders function,
manifest non-negligible dependence on quark OAM. General-
izing from the particular choice of light-cone quantization and
light-cone gauge, we thus conclude that whatever features of
parton angular momentum are responsible for the observed be-
havior of the PDFs, Sivers, and Boer-Mulders functions, they
should have a relatively minor impact on the HT correction to
eD PVDIS of interest here. Moreover, any deviation from the
light-cone predictions obtained here and in previous works
[7–9], should they be observed experimentally, would signal
the importance of other aspects of parton angular momentum
and/or higher Fock space components of the nucleon wave
function.

The discussion of the computation leading to these
observations is arranged in the following order: in Sec. II we
summarize the relevant results of the general formulation of
the twist-four correction to eD PVDIS; in Sec. III we introduce
the light-cone wave function with quark OAM dependence; in
Sec. IV we present the analytic expressions of the hadronic
matrix elements needed for the twist-four correction, and
demonstrate the generic cancellation between nonzero quark
OAM components; in Sec. V we present the numerical results
using one specific choice of nucleon wave function, and
discuss their physical significance. Detailed formulas appear
in the Appendix.

II. HIGHER TWIST IN PVDIS: GENERAL FORMULATION

Here, we review the well-known results for the twist-four
correction in eD PVDIS. We will simply quote the central
equations that are relevant to our study without any derivation
and refer the reader to Refs. [8,9] for the details.

In eD PVDIS, longitudinally polarized electron beams are
incident on unpolarized deuteron targets. One measures the
PV right-left asymmetry

ARL = dσR − dσL

dσR + dσL

(1)

FIG. 1. Kinematics of e-D PVDIS: a deuteron of momentum P

interacts with an incoming electron of momentum k via an exchange
of a single photon or z boson, and breaks into hadrons, which are
denoted collectively as X.

where dσR/L is the differential cross section for the scattering
of the right-/left-handed electrons. At the one-boson exchange
(OBE) level, the leading parity-violating piece comes from the
interference between photon and Z-boson exchange diagrams
(see Fig. 1). The low-energy Z-boson exchange interaction
can be described by the following effective four-fermion
interaction:

LPV = GF√
2

[ēγ μγ5e(C1uūγμu + C1d d̄γμd)

+ ēγ μe(C2uūγμγ5u + C2d d̄γμγ5d)], (2)

where, at tree level, we have

C1u = −1

2
+ 4

3
sin2θW , (3)

C1d = 1

2
− 2

3
sin2θW , (4)

C2u = −1

2
+ 2sin2θW , (5)

C2d = 1

2
− 2sin2θW . (6)

Neglecting contributions from sea quarks, assuming charge
symmetry (up

V = dn
V , etc. with qN

V being the valence quark
PDF of nucleon N ), the leading-twist SM prediction is given
by the Cahn-Gilman formula [20]

ARL = GF Q2

2
√

2πα

3

5

[
(2C1u − C1d ) + (2C2u− C2d )

1 − (1−y)2

1 + (1−y)2

]
,

(7)

where Q2 = −q2 and y = Pq/Pk.
To include corrections from possible BSM and as well

as other SM pieces, we can reparametrize the Cahn-Gilman
formula [8]

ARL = − GF Q2

2
√

2πα

3

5

[
ã1 + ã2

1 − (1 − y)2

1 + (1 − y)2

]
(8)

with ãi = −(2Ciu − Cid )(1 + Ri). Here, Ri describes any
deviation of the Ci from the expressions in Eqs. (3) to (6),
including both SM and BSM corrections. In this paper we
concentrate on RHT

1 , namely the higher-twist correction to ã1.
Bjorken and Wolfenstein [22,23] showed that if one

assumes isospin symmetry and neglects sea quark contribu-
tions, then there is only one matrix element that contributes
to RHT

1 (for a detailed review of these arguments in a more
modern context, see Ref. [8]). This observation significantly
simplifies the theoretical interpretation of the asymmetry,
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allowing us to concentrate on one particular matrix element
without needing to to disentangle the contributions from
many different sources. In brief, the Bjorken and Wolfenstein
argument works as follows: ARL arises from the interference
between the electromagnetic and weak neutral currents. First,
one can decompose both currents into an isoscalar S and an
isovector V term. The matrix elements of the S × V cross term
vanishes because deuteron is an isosinglet. Furthermore, at
leading twist, we have 〈SS〉 = 〈V V 〉. Therefore, the difference
between 〈SS〉 and 〈V V 〉 that enters hadronic tensor Wμν

W
μν
ud (P, q)

= 1

8πMD

∫
d4zeiq·z 〈D(P )| ū(z)γ μu(z)d̄(0)γ νd(0)

+ (u ↔ d) |D(P )〉 (9)

with MD being the mass of deuteron, is the only matrix element
giving a HT correction to R1.

Below, we will compute the matrix element (9) using an
expansion of string operators [24] in order to extract the twist-
four piece; the latter is expressed in terms of the deuteron twist-
four distribution function Q̃D(xB), which will be computed in
Sec. IV.

III. LIGHT-CONE AMPLITUDES

The main challenge in proceeding from (9) is our ignorance
of the details of the nucleon wave functions. As QCD is
nonperturbative at the hadronic scale, analytical expressions
for the wave functions are unknown. At present, lattice
QCD can provide only HT contributions to structure function

moments and not the xB dependence of the RHT
1 that is of

interest to the SoLID experiment. Consequently, one must turn
to various models that seek to incorporate nonperturbative
dynamics. Previous works on RHT

1 include the use of the
MIT bag model [8] and isotropic light-cone wave functions
that contain both quark and gluon Fock components [9];
their results yield similar shapes for the xB dependence but
differ somewhat in magnitude, with a maximum RHT

1 of
0.003 ∼ 0.005 at 0.2 < xB < 0.7 for Q2 = 4 GeV2, which
is a little bit lower than the achievable precision level in the
SoLID experiment.

In this work we study how the inclusion of additional parton
angular momentum might modify the RHT

1 prediction. For
this purpose, we adopt the formalism developed in Ref. [25],
starting from a light-cone formulation of quark states, which is
equivalent to the well-known “infinite momentum frame” point
of view that gives the PDF its intuitive meaning as a parton
momentum probability distribution [6]. We then perform a
light-cone expansion of the nucleon state, retaining only the
portion of Fock space containing three valence quarks with
all possible quark OAM. To illustrate, we consider a spin-up
proton. Its three valence quarks can form a total helicity of
±1/2,±3/2; therefore in order to keep the total proton spin
in the z direction to be 1/2 we need to assign different z
component quark OAM (i.e., lz) for different combinations.

A spin-up proton state, then, can be parametrized as the
follows:

|P↑〉 = |P↑〉lz=0 + |P↑〉lz=1 + |P↑〉lz=−1 + |P↑〉lz=2

(10)

with

|P↑〉lz=0 = εabc

√
6

∫
[DX3]

(
ψ (1)(1, 2, 3) + i

(
kx

1 k
y
2 − k

y
1 kx

2

)
ψ (2)(1, 2, 3)

)
u
†
a↑(1){u†

b↓(2)d†
c↑(3) − d

†
b↓(2)u†

c↑(3)} |0〉 (11)

|P↑〉lz=1 = εabc

√
6

∫
[DX3](k+

1⊥ψ (3)(1, 2, 3) + k+
2⊥ψ (4)(1, 2, 3))(u†

a↑(1)u†
b↓(2)d†

c↓(3) − d
†
a↑(1)u†

b↓(2)u†
c↓(3)) |0〉 (12)

|P,↑〉lz=−1 = εabc

√
6

∫
[DX3](−k−

2⊥ψ (5)(1, 2, 3))(u†
a↑(1)u†

b↑(2)d†
c↑(3) − u

†
a↑(1)d†

b↑(2)u†
c↑(3)) |0〉 (13)

|P↑〉lz=2 = εabc

√
6

∫
[DX3]k+

1⊥k+
3⊥ψ (6)(1, 2, 3)(u†

a↓(1)d†
b↓(2)u†

c↓(3) − u
†
a↓(1)u†

b↓(2)d†
c↓(3)) |0〉 , (14)

where k±
i⊥ = kx

i ± ik
y
i , while u

†
ai(1) means the creation operator of an up-quark (same for down-quark) with color a, spin i and

momentum k1, etc., satisfying the light-cone anticommutation relation

{uai(p), u†
bj (p′)} = 2p+(2π )3δabδij δ(p+− p′+)δ(2)( �p⊥− �p′

⊥). (15)

The integration measure is1

∫
[DX3] =

√
2

dx1dx2dx3√
2x12x22x3

d2�k1⊥d2�k2⊥d2�k3⊥
(2π )9

× 2πδ(1 − x1 − x2 − x3)

× (2π )2δ(2)(�k1⊥ + �k2⊥ + �k3⊥) (16)

The proton wave function amplitudes {ψ (1) . . . ψ (6)} are gen-
erally unknown functions. Although the expansion (11)–(14)
is generic, the explicit form of ψ (i) is model dependent. In this
work, we chose the form of ψ (i) derived in Ref. [18] by starting

1There might be difference in constant factors in the definition
of integration measure by different authors, which only affects the
overall normalization.
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from the static solution of a constituent quark model [26]
(which works well in predicting many electroweak properties
of the baryons) and applying a Melosh rotation to the
solution to obtain nonzero lz components [27]. This choice
of proton wave function is used to predict the first moment
of Sivers function, and turns out to agree fairly well with the
experimental measurements from HERMES and COMPASS
[28].2

IV. MATRIX ELEMENTS BETWEEN NUCLEON STATES

Following Ref. [24], in order to obtain the twist-four
distribution function Q̃D(x) we need to evaluate the matrix
elements between state |D(P )〉 of the following operators:

QA(b, z) ≡ : ū(b1z)taz/γ5u(b2z)d̄(b3z)taz/γ5d(b4z) :
(17)

QV (b, z) ≡ : ū(b1z)taz/u(b2z)d̄(b3z)taz/d(b4z) :,

where z is a coordinate on light cone, and the parameters b ≡
{b1, b2, b3, b4} characterize the light-cone separation between
quark field operators.

When computing the matrix elements of QV,A in Eq. (17)
we assume an incoherent impulse approximation in which the
incoming photon strikes only one of the two nucleons (see,
e.g., Ref. [29] for further discussions regarding the impulse
approximation); hence, matrix elements of the operators (17)
can be related to the same matrix elements taken between
proton states (or equivalently between neutron states, given
isospin symmetry). Also, since the quantities we compute do
not depend on the proton spin, we can take it to be +1/2 along
the z direction without loss of generality.

Now, starting from the operators (17), we define two
distribution functions Q±(xξ ) via

〈P (p)↑| {QV (b, z) ± QA(b, z)} |P (p)↑〉

≡ (p · z)2
∫ 4∏

k=1

dxξk
δ

(∑
i

xξi

)
e−i(p·z)

∑
k bkxξk Q±(xξ ) (18)

with xξ collectively representing {xξ1 , xξ2 , xξ3 , xξ4}, the light-
cone momentum fractions: ξ+

i = xξi
p+. Meanwhile |P (p)↑〉

is the spin-up proton state with momentum p. Substituting
(11)–(14) into (18) we are able to express Q±(xξ ) in terms
of the proton wave function amplitudes. It is easy to observe
that only diagonal terms (i.e., terms with the same lz in initial
and final states) could give nonvanishing contributions. After
a rather lengthy derivation with the aid of Eq. (A2), we obtain

Q±(xξ )=−32π3

3

∫
d2�ξ1⊥
(2π )3

. . .
d2�ξ4⊥
(2π )3

× θ (−xξ1 )θ (xξ2 )θ (−xξ3 )θ (xξ4 )θ (1−xξ2−xξ4 )

× δ2(�ξ1⊥ + �ξ2⊥ + �ξ3⊥ + �ξ4⊥)

×
∑

lz

ψ±
lz

(−ξ1,−ξ3, ξ2, ξ4), (19)

where the explicit formulas of ψ±
lz

are given in
Appendix B.

2References [18] and [28] defined their first moment of Sivers
function with a sign difference.

The proton twist-four distribution function can now be
expressed in terms of the Q± (refer to Eq. 42 of Ref. [9]
after some rearrangement)

Q̃p(xB) ≡ 2Re
∫ 1

−1

∏4
k=1 dxξk

xξ2xξ3 (xξ2 + xξ3 )
δ

(∑
k

xξk

)

×{(xξ2 + xξ3 )δ(xB + xξ1 + xξ2 ) − xξ3δ(xB + xξ1 )

− xξ2δ(xξ4 − xB)}[(1 + P14P23)Q+(xξ )

− (P12 + P34)Q−(xξ )]. (20)

Here Pij is the permutation operator, e.g.,
P12Q+(xξ1 , xξ2 , xξ3 , xξ4 ) = Q+(xξ2 , xξ1 , xξ3 , xξ4 ). The
deuteron twist-four distribution function Q̃D(xB) can be
expressed in terms of Q̃p(xB) through an incoherent impulse
approximation [30], which says that a general deuteron
hadronic tensor can be related to the corresponding hadronic
tensors of proton and neutron by

MDW
μν
D (p, q) ≈ MNWμν

p

(
p

2
, q

)
+ MNWμν

n

(
p

2
, q

)
, (21)

where MN is the mass of nucleon. In the equation above
each hadronic tensor is multiplied by the particle’s mass,
because following Eq. (9) the hadronic tensor we defined has
dimension −1. Now we can express both sides of Eq. (21)
in terms of dimensionless structure functions {Fi(xB)}. Using
isospin symmetry and the fact that Q̃(xB) is proportional to
x−1

B Fud
1 (xB) (see Eq. 34 of Ref. [9]), we obtain3

1
2Q̃D(xB/2) ≈ Q̃p(xB) + Q̃n(xB) ≈ 2Q̃p(xB). (22)

Finally, following the logic of Ref. [9], one can the derive
the twist-four contribution to R1

RHT
1 (xB,Q2) = 1

Q2

αsπ

5
(
1 − 20

9 sin2θW

) xBQ̃D(xB)

uD(xB) + dD(xB)

(23)

with qD(xB) being the parton distribution function for quark
of flavor q in the deuteron

〈D(P )| q̄(z)z/q(−z) |D(P )〉 = 2(P · z)
∫ 1

−1
dxe2i(P ·z)xqD(x).

(24)

Note that we neglect the logarithmic Q2 dependence of the
structure functions in this analysis. We can express qD in
terms of PDF of the proton and neutron again by the impulse
approximation (21), but now comparing the structure function
F2(xB) on both sides, which is proportional to x−1

B q(xB ). The

3In Ref. [9], the authors did not multiply their hadronic tensors by
particle mass in the impulse approximation formula, therefore the
corresponding relation they obtained is off by a factor 1/2; same for
the relation of quark distribution functions.
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result is

qD(xB/2) ≈ qp(xB) + qn(xB), (25)

where qp(x) and qn(x) are defined as in Eq. (24) but for
proton/neutron states. Furthermore, neglecting CSV effects
we have

un(xB) = dp(xB), dn(xB) = up(xB). (26)

Therefore, it is sufficient to just calculate up(xB) and dp(xB)
using the proton light-cone wave function (11)–(14). Using
(A3) and (A4), we can compute the quark PDFs of the
(spin-up) nucleons by calculating the matrix element on LHS
of Eq. (24) with nucleon states, and compare it with the form on
RHS to extract the PDFs. Same with the twist-four distribution
functions, only terms diagonal to lz survive, so we can separate

the result into components of different lz as the following:

up(xB) + dp(xB) = dn(xB) + un(xB)

= 1

(2π )6

∫ 1

0
dx1

∫
d2�k1⊥d2 �q⊥

×(1 − xB − x1)
∑

lz

Alz (q, 1, 2), (27)

where the functions Alz (q, 1, 2) are given in Appendix B.
We now proceed to show that a partial cancelation occurs

between contributions of lz = +1 and lz = −1. For this
purpose, we combine (19) and (20), together with the fact that
ψ±

lz
(q, l, q ′, l′)∗ = ψ±

lz
(q ′, l′, q, l), to simplify the expression

of Q̃p(xB) as

Q̃p(xB) = Q̃+
p (xB) + Q̃−

p (xB), (28)

where

Q̃+
p (xB) = 64π3

3

∫ 1

0

4∏
i=1

dxξi
δ(xξ1 − xξ2 + xξ3 − xξ4 )θ (1 − xξ2 − xξ4 )

{
δ(xB − xξ1 + xξ2 )

xξ2xξ3

+ δ(xB − xξ1 )

xξ2 (xξ2 − xξ3 )
− δ(xB − xξ4 )

xξ3 (xξ2 − xξ3 )

+ δ(xB + xξ3 − xξ4 )

xξ1xξ4

} ∫ 4∏
i=1

d2�ξi⊥
(2π )3

δ2(�ξ⊥1 − �ξ⊥2 + �ξ⊥3 − �ξ⊥4)
∑

lz

Reψ+
lz

(ξ1, ξ3, ξ2, ξ4) (29)

Q̃−
p (xB) = 64π3

3

∫ 1

0

4∏
i=1

dxξi
δ(xξ1 − xξ2 − xξ3 + xξ4 )θ (1 − xξ2 − xξ3 )

{
δ(xB + xξ1 − xξ2 )

xξ2xξ3

− δ(xB − xξ4 )

xξ3 (xξ2 + xξ3 )
− δ(xB − xξ1 )

xξ2 (xξ2 + xξ3 )

+ δ(xB − xξ1 + xξ2 )

xξ2xξ3

} ∫ 4∏
i=1

d2�ξi⊥
(2π )3

δ2(�ξ⊥1 − �ξ⊥2 − �ξ⊥3 + �ξ⊥4)
∑

lz

Reψ−
lz

(ξ2, ξ3, ξ1, ξ4) (30)

First we qualitatively analyze the contribution from each lz
component to Q̃±

p (xB). This can be done by simply referring to
Eqs. (B1)–(B8) of the Appendix B. The result is summarized
in Table I. We observe that the lz = +1 (−1) piece contributes
mainly to Q̃−

p (Q̃+
p ). Also notice that we do not include the

lz = 2 component as its effect is tiny.
Next we study the behavior of different contributions to

Q̃±
p (xB) with respect to xB , showing that those associated

with the lz ± 1 components largely cancel. The individual
contributions from the latter are shown in the top two panels
of Fig. 2. We observe that the lz = −1 contribution, which
contributes only to Q̃+

p (xB) changes sign at xB ≈ 0.4, whereas

TABLE I. The contributions from different lz components to
Q̃±

p (xB ). The lz = 0, +1 components contribute mostly to Q̃−
p

(“dominant”) and less so to Q̃+
p (“subdominant”), while the lz = −1

component contributes only to Q̃+
p .

lz Contribution to Q̃+
p (xB ) Contribution to Q̃−

p (xB )

0 subdominant dominant
+1 subdominant dominant
−1 all zero

the lz = +1 contribution does not. Consequently, the two
contributions will cancel against each other for xB ∼> 0.4.
While the cancellation is not exact, it becomes more effective
at larger values of xB , a region that is weighted most strongly
in RHT

1 by the factor of xB in the numerator of Eq. (23)
and the corresponding presence of uD(xB) + dD(xB) in the
denominator.

We also note that this sign change and cancellation appears
to be rather generic. To see why, let us naively take

∫ 4∏
i=1

d2�ξi⊥
(2π )3

δ2(. . .)Reψ±
lz

≈ constant ≡ C, (31)

assuming the function above is well-behaved with respect
to {xξi

}. This approximation simply means that we do not
care about the details of the proton wave function amplitudes.
Under this approximation, the numerical integration (29) and
(30) can be performed quite trivially, and the result is shown in
the lower two panels of Fig. 2. In this case, we show Q̃±

p (xB)
as the lz = ±1 components contribute primarily to one or
the other of these two quantities (see Table I). Although the the
assumption in Eq. (31) breaks down at large and small xB , one
can see that a sign change of Q̃+

p (xB) from negative to positive
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FIG. 2. (Color online) Top panels: full results for lz ± 1 contributions to Q̃p(xB ). Bottom panels: behavior of Q̃∓
p (xB ) ignoring the details

of nucleon wave function amplitudes. The constant C is defined in Eq. (31).

occurs near xB = 0.4, implying that Q̃+
p (xB) and Q̃−

p (xB) will
have different signs for xB ∼> 0.4. Therefore, according to
Table I, the contribution to Q̃p(xB) from lz = 1 and lz = −1
should partially cancel other for xB ∼> 0.4. Furthermore, since
the argument above does not depend on the details of the
nucleon wave function (as long as it is well behaved), this
feature of partial cancellation should be generic.

V. NUMERICAL RESULTS AND DISCUSSION

Equations (29) and (30) are our starting point for the
numerical evaluation of Q̃p(xB), which involves an eightfold
integration. To perform this integration, we adopt the Monte
Carlo numerical integration called Divonne contained in the
CUBA Library, which is an algorithm package designed for
multidimensional numerical integration [31]. For each lz
component, we evaluate the value of Q̃p(xB) at a series of
discrete {xB,i}, and then link them together using a best-fit line.
Also, we take αs = 0.5 at 1 GeV following the renormalization
group (RG) prediction of the running coupling constant at
four-loop order together with a three-loop threshold matching,
with the quark thresholds taken to be Mc = 1.5 GeV and
Mb = 4.7 GeV respectively [32].

Our main result is shown in Fig. 3, which gives RHT
1 versus

x ′
B ≡ 2xB at Q2 = 4 GeV2. First, let us compare this outcome

with that of Refs. [8,9]. It turns out that all three calculations
predict similar curve shape for RHT

1 , only with slightly different
positions of peak and zero-point. Concerning the magnitude,
our work predicts a maximum absolute value |RHT

1 | ≈ 2.6 ×
10−3 between 0.2 < x ′

B < 0.7, which is smallest in magnitude

among all the three predictions, and is about a half of the size
to that of Ref. [9]. This is understandable because the authors
include a three-quark + 1-gluon Fock-space component whose
contribution is comparable in magnitude to that of the pure
three-quark state. Nonetheless, all three calculations suggest
that |RHT

1 | lies below that of the expected SoLID precision.
Next we study the OAM dependence in detail. To that end,

we first introduce some nomenclature: in the following, we will
use the notation (|lz| ⊗ |lz′ |), which denotes a generic matrix
element taking between two hadronic states, of which one of
them has absolute value of quark OAM in the z direction being
|lz| and the other being |lz′ |.

From our arguments at the end of Sec. IV, we expect that
although lz = ±1 individually contribute a significant amount
to Q̃p(xB), they should largely cancel against each other for

FIG. 3. (Color online) The twist-four correction to R1 at Q2 =
4 GeV2. The blue dashed curve shows the lz = 0 contribution; purple
dot-dashed curve shows the lz = 1 contribution; brown dot-dashed
curve shows the lz = −1 contribution; the red solid curve is the sum
of all. lz = 2 contribution is negligible and therefore not included.
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FIG. 4. (Color online) The unnormalized QDF of spin-up proton,
split into contributions from different lz components. Blue thick-
dashed curve shows contribution from lz = 0 component; purple
dot-dashed curve shows contribution from lz = 1 component; brown
dot-dashed curve shows contribution from lz = −1 component; green
thin-dashed curve shows contribution from lz = 2 component; red
solid curve is the sum of all contributions.

xB > 0.4, making the total (1 ⊗ 1) contribution rather small,
and therefore leaving the (0 ⊗ 0) contribution as the dominant
piece. This expectation is born out by the curves in Fig. 3. The
purple dot-dashed curve and brown dot-dashed curves give
the individual (lz = 1) ⊗ (lz = 1) and (lz = −1) ⊗ (lz = −1)
contributions, respectively, which exhibit the expected cancel-
lation for x ′

B > 0.4. The blue dashed curve and red solid curve
give the (0 ⊗ 0) and total contributions, respectively. It is clear
that the former dominates the total. This (0 ⊗ 0) dominance is
a rather unique feature of the particular twist-four contribution
of interest here, and one that is not shared by other diagonal
matrix elements. For example, if one calculate proton quark
PDFs (leading twist) using the same set of wave functions, the
(0 ⊗ 0) and (1 ⊗ 1) contributions are comparable; moreover,
since they have the same sign, the two |lz| = 1 pieces do not
cancel each other (see Fig. 4).

On the other hand, we also note that there are hadronic
matrix elements that depend crucially on the existence of
nonzero quark OAM in light-cone quantization. In particular,
in Ref. [18], the authors studied the Sivers function [33] and
Boer-Mulders function [34], which are examples of transverse
momentum dependent parton distribution functions (TMDs),
appearing in semi-inclusive deep-inelastic scattering. Impor-
tantly, both distribution functions depend on off-diagonal
matrix elements of lz: the Sivers function is sensitive to (0 ⊗ 1)
while Boer-Mulders function is sensitive to both (0 ⊗ 1) and
(1 ⊗ 2). Simply speaking, the existence of nonzero quark
OAM is responsible for the nonvanishing values of the Sivers
and Boer-Mulders functions. Combining this observation with
our analysis of the HT matrix element, we conclude that the

TABLE II. The dependence on different quark light-cone OAM
components of various distribution functions.

Dominant Subdominant
Distribution functions contribution(s) contribution(s)

Quark distribution functions (0×0), (1⊗1) (2⊗2)
PVDIS twist-four correction (0⊗0) (1⊗1), (2⊗2)
Sivers function (0⊗1) (1⊗2)
Boer-Mulders function (0⊗1), (1⊗2) –

twist-four correction to eD PVDIS is essentially transparent
to the parton angular momentum dynamics that generate the
Sivers and Boer-Mulders functions.

It is also interesting to study the impact of sea-parton
dynamics on the behavior of the HT matrix element. To
that end, we performed a qualitative analysis of the contri-
bution made by the Fock space component containing three
quarks + one gluon, using the general form suggested in
Ref. [35] that includes nonzero gluon OAM. The authors of
Ref. [9] computed the contribution of the 3q + 1g state with
lz = 0, which turns out to have a similar shape to that of
the lz = 0 3q-state contribution. To our knowledge, however,
there exist no explicit functional forms for the 3q + 1g nucleon
wave function with nonzero parton OAM. Consequently, our
analysis is purely analytic at this point. We observe that, in
contrast to the 3q state contribution, the matrix element of
3q + 1g state for a fixed lz can contribute significantly to both
Q̃±

p (xB) simultaneously; therefore there is no obvious correla-
tion between lz and Q̃±

p (xB) and hence no obvious pattern of
partial cancellation. In Table II we summarize the importance
of different (|lz| ⊗ |l′z|) contributions to various distribution
functions, considering only the contributions of 3q states.

Combining observations, we may draw the following
conclusion: if a future eD PVDIS measurement yields a
sufficiently precise determination of RHT

1 as a function of
x ′

B , one can compare the experimental curve with our cur-
rent theoretical prediction. A significant deviation from the
predicted curve (e.g., the peak and zero-point are shifted
by a considerable amount), could signal the importance of
parton angular momentum dynamics beyond those responsible
for the Sivers, Boer-Mulders, and spin-independent parton
distribution functions.

VI. SUMMARY

The next generation of parity-violating electron-scattering
experiments are poised to probe both possible BSM physics as
well as novel features of hadron and nuclear structure. In this
work, we have studied one particular hadronic effect, namely,
the twist-four contribution to ã1, the y-independent term in the
PV asymmetry. Using a set of proton light-cone wave functions
with nonzero quark orbital angular momentum, we evaluated
the twist-four contribution as a function of xB , identifying the
contributions from different OAM-components. Our total for
the correction RHT

1 is similar in both shape and magnitude
to those obtained in previous works, indicating that higher
precision than expected with the SoLID experiment would
be needed to discern this HT effect. An effort to achieve
such precision may be worthwhile, because RHT

1 appears
to be rather unique, in the sense that it is not significantly
affected by the parton angular momentum physics responsible
for the existence of some other DIS observables such as the
Sivers and Boer-Mulders functions. Thus, by combining the
results of a more precise measurement of the asymmetry with
measurements of other distribution functions, it is possible to
probe complementary aspects of parton angular momentum
and, perhaps, shed new light on the role of angular momentum
in the structure of the nucleon.
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APPENDIX A: MATRIX ELEMENTS OF TWO- AND FOUR-FERMION OPERATORS

In this section we present matrix elements of two-fermion operators (u†u and d†d) and four-fermion operators (u†ud†d)
between nucleon states. For this purpose let us consider two arbitrary components of proton light-cone wave function defined as
the following:

|ψα〉 ≡ εabc

√
6

∫
[DX3]ψα(1, 2, 3)u†

aλ1
(1)u†

bλ2
(2)d†

cλ3
(3) |0〉

(A1)∣∣ψβ

〉 ≡ εabc

√
6

∫
[DX3]ψβ(1, 2, 3)u†

aλ′
1
(1)u†

bλ′
2
(2)d†

cλ′
3
(3) |0 〉

It is straightforward to work out the matrix elements of the four-fermion operator between these two states (the symbol “1” denotes
the four-momentum k1 = (x1p

+, �k1⊥), which is given by x1 = 1 − xq − xl = 1 − x ′
q − x ′

l and �k1⊥ = −�q⊥ − �l⊥ = −�q ′
⊥ − �l′⊥)

〈ψα| u†
iρ(q)ui ′ρ ′ (q ′)d†

jλ(l)dj ′λ′(l′)|ψβ〉 = 32π3

3
(δii ′δjj ′ − δij ′δi ′j )δλ3λδλ′

3λ
′
√

xqxlx ′
qx

′
l δ(xq + xl − x ′

q − x ′
l )δ

2(�q⊥ + �l⊥ − �q ′⊥ − �l′⊥)

×
∫

dx1d
2 �k1⊥δ(1−x1−xq − xl)δ

2( �k1⊥ + �q⊥ + �l⊥)
(
δλ1ρδλ2λ

′
2
δρ ′λ′

1
ψ∗

α (q, 1, l)ψβ (q ′, 1, l′)

+ δλ1λ
′
2
δλ2ρδρ ′λ′

1
ψ∗

α (1, q, l)ψβ (q ′, 1, l′) + δλ1ρδλ2λ
′
1
δρ ′λ′

2
ψ∗

α (q, 1, l)ψβ (1, q ′, l′)

+ δλλ′
1
δλ2ρδρ ′λ′

2
ψ∗

α (1, q, l)ψβ (1, q ′, l′)
)

(A2)

and those for two-fermion operators,

〈ψα| d†
jλ(l)dj ′λ′(l′)|ψβ〉 = 4

3
xlδ(xl − x ′

l )δ
2(�l⊥ − �l′⊥)δλ3λδλ′

3λ
′δjj ′

∫
dx1dx2d

2�k1⊥d2�k2⊥δ(1 − x1 − x2 − xl)

× δ2(�k1⊥ + �k2⊥ + �l⊥)
(
δλ1λ

′
1
δλ2λ

′
2
ψβ(1, 2, l) + δλ1λ

′
2
δλ2λ

′
1
ψβ(2, 1, l)

)
ψ∗

α (1, 2, l) (A3)

〈ψα| u†
jλ(l)uj ′λ′(l′)|ψβ〉 = 4

3
xlδ(xl − x ′

l )δ
2(�l⊥ − �l′⊥)δλ3λ

′
3
δjj ′

∫
dx1dx2d

2�k1⊥d2�k2⊥δ(1 − x1 − x2 − xl)

× δ2(�k1⊥ + �k2⊥ + �l⊥)
(
δλ1λδλ2λ

′
2
δλ′λ′

1
ψ∗

α (l, 1, 2)ψβ (l, 1, 2) + δλ1λ
′
2
δλ2λδλ′λ′

1
ψ∗

α (1, l, 2)ψβ (l, 1, 2)

+ δλ1λδλ2λ
′
1
δλ′λ′

2
ψ∗

α (l, 1, 2)ψβ (1, l, 2) + δλ1λ
′
1
δλ2λδλ′λ′

2
ψ∗

α (1, l, 2)ψβ (1, l, 2)
)
. (A4)

APPENDIX B: COMPLETE FORMULAS FOR QUARK PDFs AND Q̃ P (X B) IN TERMS
OF PROTON WAVE FUNCTION AMPLITUDES

In this section we present explicit expressions needed to compute the quark PDFs and the twist-four distribution function.
The distribution functions Q̃±

p (xB) in Eqs. (29) and (30) are expressed in terms of ψ±
lz

(q, l, q ′, l′), which have the following
expressions:

ψ+
lz=0(q, l, q ′, l′) = 2ψ (1,2)∗(q, 1, l)ψ (1,2)(q ′, 1, l′) (B1)

ψ−
lz=0(q, l, q ′, l′) = 2{ψ (1,2)∗(1, q, l)ψ (1,2)(1, q ′, l′) + ψ (1,2)∗(q, l, 1)ψ (1,2)(q ′, l′, 1) + ψ (1,2)∗(1, l, q)ψ (1,2)(q ′, l′, 1)

+ψ (1,2)∗(q, l, 1)ψ (1,2)(1, l′, q ′) + ψ (1,2)∗(1, l, q)ψ (1,2)(1, l′, q ′)} (B2)

ψ+
lz=1(q, l, q ′, l′) = 2ψ (3,4)∗(1, q, l)ψ (3,4)(1, q ′, l′) (B3)

ψ−
lz=1(q, l, q ′, l′) = 2{ψ (3,4)∗(q, 1, l)ψ (3,4)(q ′, 1, l′) + ψ (3,4)∗(l, q, 1)ψ (3,4)(l′, q ′, 1) + ψ (3,4)∗(l, 1, q)ψ (3,4)(l′, q ′, 1)

+ψ (3,4)∗(l, q, 1)ψ (3,4)(l′, 1, q ′) + ψ (3,4)∗(l, 1, q)ψ (3,4)(l′, 1, q ′)} (B4)

ψ+
lz=−1(q, l, q ′, l′) = 2{ψ (5,5)∗(q, 1, l)ψ (5,5)(q ′, 1, l′) + ψ (5,5)∗(1, q, l)ψ (5,5)(q ′, 1, l′)

+ψ (5,5)∗(q, 1, l)ψ (5,5)(1, q ′, l′) + ψ (5,5)∗(1, q, l)ψ (5,5)(1, q ′, l′)} (B5)
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ψ−
lz=−1(q, l, q ′, l′) = 0 (B6)

ψ+
lz=2(q, l, q ′, l′) = 2{ψ (6,6)∗(q, 1, l)ψ (6,6)(q ′, 1, l′) + ψ (6,6)∗(1, q, l)ψ (6,6)(q ′, 1, l′)

+ψ (6,6)∗(q, 1, l)ψ (6,6)(1, q ′, l′) + ψ (6,6)∗(1, q, l)ψ (6,6)(1, q ′, l′)} (B7)

ψ−
lz=2(q, l, q ′, l′) = 0. (B8)

The definitions of ψ (i,j ) are the following:

ψ (1,2)(1, 2, 3) = ψ (1)(1, 2, 3) + i
(
kx

1 k
y
2 − k

y
1 kx

2

)
ψ (2)(1, 2, 3)

ψ (3,4)(1, 2, 3) = k+
1⊥ψ (3)(1, 2, 3) + k+

2⊥ψ (4)(1, 2, 3)
(B9)

ψ (5,5)(1, 2, 3) = −k−
2⊥ψ (5)(1, 2, 3) + k−

3⊥ψ (5)(1, 3, 2)

ψ (6,6)(1, 2, 3) = k+
1⊥(k+

2⊥ψ (6)(1, 3, 2) − k+
3⊥ψ (6)(1, 2, 3)).

On the other hand, the quark distribution functions in (27) are given in terms of Alz (q, 1, 2), which look like the following:

Alz=0(q, 1, 2) = ψ (1,2)∗(q, 1, 2)ψ (1,2)(q, 1, 2) + 2ψ (1,2)∗(1, q, 2)ψ (1,2)(1, q, 2) + ψ (1,2)∗(q, 2, 1)ψ (1,2)(q, 2, 1)

+ψ (1,2)∗(1, 2, q)ψ (1,2)(q, 2, 1) + ψ (1,2)∗(q, 2, 1)ψ (1,2)(1, 2, q) + 2ψ (1,2)∗(1, 2, q)ψ (1,2)(1, 2, q)

+ψ (1,2)∗(1, q, 2)ψ (1,2)(2, q, 1) (B10)

Alz=1(q, 1, 2) = 2ψ (3,4)∗(q, 1, 2)ψ (3,4)(q, 1, 2) + ψ (3,4)∗(1, q, 2)ψ (3,4)(1, q, 2) + ψ (3,4)∗(2, q, 1)ψ (3,4)(2, q, 1)

+ψ (3,4)∗(2, 1, q)ψ (3,4)(2, q, 1) + ψ (3,4)∗(2, q, 1)ψ (3,4)(2, 1, q) + ψ (3,4)∗(2, 1, q)ψ (3,4)(2, 1, q)

+ψ (3,4)∗(1, 2, q)ψ (3,4)(1, 2, q) + ψ (3,4)∗(q, 1, 2)ψ (3,4)(q, 2, 1) (B11)

Alz=−1(q, 1, 2) = ψ (5,5)∗(q, 1, 2)ψ (5,5)(q, 1, 2) + ψ (5,5)∗(1, q, 2)ψ (5,5)(q, 1, 2) + ψ (5,5)∗(q, 1, 2)ψ (5,5)(1, q, 2)

+ψ (5,5)∗(1, q, 2)ψ (5,5)(1, q, 2) + ψ (5,5)∗(1, 2, q)ψ (5,5)(1, 2, q) + ψ (5,5)∗(1, 2, q)ψ (5,5)(2, 1, q) (B12)

Alz=2(q, 1, 2) = ψ (6,6)∗(q, 1, 2)ψ (6,6)(q, 1, 2) + ψ (6,6)∗(1, q, 2)ψ (6,6)(q, 1, 2) + ψ (6,6)∗(q, 1, 2)ψ (6,6)(1, q, 2)

+ψ (6,6)∗(1, q, 2)ψ (6,6)(1, q, 2) + ψ (6,6)∗(1, 2, q)ψ (6,6)(1, 2, q) + ψ (6,6)∗(1, 2, q)ψ (6,6)(2, 1, q) (B13)

with q = (xBp+, �q⊥), x2 = 1 − xB − x1 and �k2⊥ = −�q⊥ − �k1⊥.
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