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First-order phase transitions (PTs) with more than one globally conserved charge, so-called noncongruent PTs,
have characteristic differences compared to congruent PTs (e.g., dimensionality of phase diagrams and location
and properties of critical points and end points). In the present article we investigate the noncongruence of the
nuclear liquid-gas PT at subsaturation densities and the deconfinement PT at high densities and/or temperatures
in Coulombless models, relevant for heavy-ion collisions and neutron stars. For the first PT, we use the FSUgold
relativistic mean-field model and for the second one the relativistic chiral SU(3) model. The chiral SU(3) model is
one of the few models for the deconfinement PT, which contains quarks and hadrons in arbitrary proportions (i.e.,
a “solution”) and gives a continuous transition from pure hadronic to pure quark matter above a critical point. The
study shows the universality of the applied concept of noncongruence for the two PTs with an upper critical point
and illustrates the different typical scales involved. In addition, we find a principle difference between the liquid-
gas and the deconfinement PTs: in contrast to the ordinary Van-der-Waals-like PT, the phase coexistence line of
the deconfinement PT has a negative slope in the pressure-temperature plane. As another qualitative difference we
find that the noncongruent features of the deconfinement PT become vanishingly small around the critical point.

DOI: 10.1103/PhysRevC.88.014906

I. INTRODUCTION

Nuclear matter is expected to undergo two different major
phase transitions (PTs): the liquid-gas phase transition (LGPT)
of nuclear matter at subsaturation densities and moderate
temperatures and the deconfinement and chiral symmetry
restoration PT at high densities and/or temperatures. For
convenience we will call the latter also the quark hadron
phase transition (QHPT) or QCD PT. These two PTs are
actively discussed in the contexts of heavy-ion collisions and
astrophysics. The latter includes the interior of compact stars,
i.e., neutron stars (NS) or so-called hybrid stars which have
quark matter in their core.

Various effective models for nuclear matter which are
constrained by properties of nuclei have shown that the LGPT
of bulk uniform nucleonic matter, i.e., consisting of neutrons
and protons without Coulomb interactions, is of first order (see
Refs. [1,2] for two recent examples of microscopic models).
Furthermore, there is also experimental evidence for this from
intermediate-energy heavy-ion collisions [3-5]. On the other
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hand, for smaller systems the LGPT is also found to have
critical behavior [6,7].

For the QHPT the situation is more uncertain. Ab initio
solutions of QCD exist only for very high densities and/or
temperatures [8—12]. Simulations on the lattice have shown
that the QHPT is a smooth crossover at vanishing density.
Unfortunately their use at finite densities is problematic
because they suffer from the so-called sign problem. It is a
numerical problem found in quantum-mechanical systems of
fermions which comes from the fact that at finite chemical
potential the fermion determinant is complex (see Refs. [13,14]
and references therein for details). As a consequence, effective
models for QCD matter have to be used, resulting in different
varieties of possible QCD phase diagrams [15-32]. Many of
these models predict that the QCD PT at low temperatures
is of first order like the LGPT, but some also predict a
crossover transition in this regime. In the present investigation
we assume that both the LGPT and the QHPT are of first
order and concentrate on the detailed thermodynamic aspects
of the two phase transitions and especially their noncongruent
features.

A noncongruent phase transition (NCPT) naturally occurs
for a first-order PT with more than one globally conserved
charge. In this case it becomes possible that the local con-
centrations of the charges vary during a phase transformation,
i.e., the crossing of a phase-coexistence region. This leads to
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qualitative differences compared to congruent PTs. Consider,
for example, a phase diagram in the temperature-pressure
plane. For a given temperature, a NCPT occurs over a range
of pressure, related to a range of local concentrations of the
charges. For a congruent PT, the equilibrium conditions can
be fulfilled only at a single value of the pressure for each
temperature. As we will show, also other characteristics of
PTs depend on the number of globally conserved charges. It
is the main scope of the present article to identify and discuss
these noncongruent features.

As will be explained below, isospin symmetric matter is
an “azeotrope,” which means that it leads to a congruent PT
even though it consists of more than one globally conserved
charge. Consequently, the noncongruent features only become
visible for an isospin asymmetric system and are, thus,
highly related to the isospin asymmetry. Phase diagrams of
isospin asymmetric matter are of extreme importance for the
complete understanding of QCD and nuclear matter. They are
highly related to the symmetry energy, as explained, e.g., in
Refs. [33-35]. Such studies are also used to analyze the effect
of model parameters on the QCD phase diagram [36-39]. The
effect of different isospin/charge assumptions has been studied
already extensively in the literature for the LGPT [35,40-45],
and also experimentally [46,47], and for the QHPT [36,38,48]
as well. Some authors [43,45,48—-50] have stated that the LGPT
and QHPT changes from first to second order (according to
the Ehrenfest classification) if one goes to an asymmetric
system. This was concluded from the nonstandard behavior
of thermodynamic quantities during an isothermal crossing
of the two-phase region. One of the main statements of the
present paper is that this nonstandard behavior in asymmet-
ric matter is the typical manifestation of a noncongruent
first-order PT.

In the present article, the LGPT and the QHPT are studied
for the scenarios of heavy-ion collisions of symmetric and
asymmetric nuclei. For the QHPT, we are also investigating
the scenario of the interior of a neutron (respectively, hybrid
star). For this purpose we use a relativistic chiral SU(3)
effective model. This model predicts that both the LG and
the QCD PT at low temperatures are of first order. Due to
technical reasons, the chiral SU(3) model is applied only
for the QHPT. For the description of the LGPT we apply
the FSUgold relativistic mean-field model. Even using only
one selected theoretical model for the QHPT and one for
the LGPT, our main conclusions are to some extent model
independent, because the applied thermodynamic concepts are
rather universal.

The structure of this article is as follows: in Sec. II we
discuss various aspects of (non-)congruence of PTs in detail.
In Sec. IIl we describe the effective model used for the
calculations of the LGPT, the FSUgold equation of state
(EOS). In Sec. IV we continue with the description of the
chiral SU(3) model for the QHPT. In Sec. V we specify our
thermodynamic model and setup used for the two PTs and
the different physical systems. In Sec. VI we analyze and
compare in detail the results for the different scenarios, with a
focus on the structure of the resulting phase diagrams and the
noncongruent features. In Sec. VII we summarize our main
findings and draw conclusions.
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II. CONGRUENCE/NONCONGRUENCE
OF PHASE TRANSITIONS

A. Definition of noncongruence

The term “noncongruent” (or “incongruent”) phase tran-
sition (NCPT) denotes the situation of phase coexistence of
two (or more) macroscopic phases with different chemical
compositions (see the IUPAC definition [51] and Ref. [52]).
Such systems are also called “binary,” “ternary,” etc., in
contrast to “unary” systems. NCPTs have been well known
for many years in many terrestrial applications as a particular
type of PT (regardless of the term), e.g., in low-temperature
solution theory (see, e.g., Ref. [53]), in the theory of simple
liquid mixtures of hydrocarbons (see, e.g., Ref. [54]), or in
the theory of crystal-fluid and crystal-crystal phase diagrams
in chemical compounds. NCPTs also have been known in
nuclear physics [42], in heavy-ion physics [55], and also in the
physics of compact stars [56] for quite some time, but the term
“noncongruent” has been introduced to these areas of physics
only recently (see below).

The variants of terrestrial NCPT which are the closest
to LGPTs and QHPTs discussed in the present article are
PTs in high-temperature, chemically reacting, and partially
ionized plasmas—typical products of extremely heated chem-
ical compounds. NCPTs were studied thoroughly for high-
temperature uranium-oxygen systems during hypothetical
“severe accidents” in the framework of nuclear reactor safety
problems [57—-62]. The universal nature of this type of PT and
its applicability for most astrophysical objects was claimed and
illustrated in Ref. [62], using the examples of (hypothetical)
plasma PTs in the interiors of Jupiter and Saturn, brown
dwarfs, and extrasolar planets. The identification that most
PTs in neutron stars are noncongruent, in particular for the
QHPT in hybrid stars, was presented at several conferences
by LL! and then published recently in Ref. [52]. By now, the
term “noncongruent” PT is already used in the astrophysical
literature [49,63]. Our theoretical description of the LGPT and
QHPT as noncongruent phase transitions in the present study
is based essentially on experience from terrestrial applications.

It should be noted that in the above standard terrestrial
definition of NCPTs, different ionized states of atoms or
molecules are not relevant for the possible noncongruence
but only the number of chemical elements. The additional
degree of freedom of ionization does not count in the definition
because one deals with phase coexistence of two electroneutral
macroscopic phases (or a mixture of several electroneutral
macroscopic fragments). For macroscopic phases, Coulomb
interactions automatically lead to local charge neutrality and
thereby suppress this degree of freedom. Conversely, for
all thermodynamic systems in the present paper, including
those corresponding to matter in neutron stars, Coulomb
interactions are not taken into account explicitly, in spite
of the presence of charged species (protons, quarks, lep-
tons, etc.). This is what we call a “Coulombless” model
description. In such a Coulombless approach, positive and

'See, e.g., http://www.triam.kyushu-u.ac.jp/ICPP/program/
download/11-I-w03.pdf
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negative charges (e.g., nuclei and electrons) play the role of
different chemical elements. In nuclear matter the abundance
of chemical elements is typically not conserved but only some
generalized “charges,” like baryon number, electric charge, and
possibly also isospin or strangeness. The generalization of the
definition of noncongruence to first-order PTs in dense nuclear
matter, described as Coulombless systems with more than one
conserved charge, is, thus, obvious: phase coexistence of two
(or more) macroscopic phases with different composition of
the charges, including electric charge.

There is a famous example from the context of neutron
stars which illustrates the definition of noncongruence: in
B-equilibrated, cold neutron stars baryon number and total
net electric charge (which has to be zero) are two conserved
charges. There are two typical choices for the treatment of
charge neutrality for PTs of macroscopic phases within the
Coulombless approximation. In the first case, one assumes
local charge neutrality, with zero net charge in both phases,
and, thus, one obtains a congruent PT of a unary system.
Because here the congruence is enforced by the requirement of
local charge neutrality, we call it, more specifically, a “forced-
congruent” PT, as proposed in Ref. [52]. In astrophysics, this
scenario is usually called the “Maxwell-PT,” which is then
used as a synonym for congruent phase transitions in general.
In the second case one assumes global charge neutrality. In
this case the two coexisting phases will have electric charge
concentrations of opposite sign. Consequently, the system is
binary and the PT is noncongruent [56]. In astrophysics this is
often called the “Gibbs-PT” and again taken as a synonym for
noncongruent PTs in general. The classification with respect to
“Gibbs” or “Maxwell” of matter in supernovae or protoneutron
stars with possibly trapped neutrinos was given in Ref. [64].
Nuclear matter in heavy-ion collisions also has more than
one conserved charge, namely net baryon number, net electric
charge, and also net weak flavor (respectively, isospin), due
to the fast time scales involved. Thus, Coulombless PTs in
heavy-ion collisions will in general also be noncongruent, see
also Ref. [55]. The authors of Ref. [65] address experimental
consequences of the QHPT as a noncongruent PT. The previ-
ous arguments are valid for both PTs, LGPT and QHPT, just
the typical scales involved and the quantitative behavior differ.

B. Coulomb interactions

As mentioned before, it should be stressed that for all
thermodynamic systems in the present paper we are using a
“Coulombless” model description. Also, surface effects are
neglected in our work. As a consequence, the two-phase
mixtures at equilibrium (i.e., not metastable) within the two-
phase regions are always described as coexistence of two
macroscopic phases.

The simplification of Coulombless is to some extent rea-
sonable for the theoretical description of relativistic heavy-ion
collisions, where one has a net electric charge but Coulomb
energies are small compared to the typical collision energies.
Furthermore, the long-range nature of Coulomb forces could
be ignored in view of the small size of the ensemble of
heavy-ion collisions products. However, for the same reason,
it is questionable whether the thermodynamic limit is fulfilled
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[66]. On the other hand, for the description of nuclear clusters
appearing in the nuclear liquid-gas PT of low-energy heavy-ion
collsions, Coulomb and surface energies are in fact crucial.
Nevertheless, the bulk Coulombless treatment gives useful
insight into the main characteristics of the PT.

Matter in neutron stars has to be overall charge neutral
in order to be gravitationally bound. In this case, Coulomb
interactions and corresponding surface effects can be included
in a more detailed mesoscopic description, leading to struc-
tured mixed phases. Usually these phases with finite-size
substructures are called the “pasta phases” [67-72] or “pasta
plasma” [52]. The classification with respect to noncongruence
of these scenarios is somewhat still an open question [52].
In a strict thermodynamic sense, the state of matter in such
mesoscopic calculations should not be seen as the two-phase
coexistence of a first-order PT but rather as a sequence of
single phases with nonuniform substructure.

A very low surface tension between the two phases (see
Refs. [32,73] for possible calculations of the surface tension)
would lead to a highly dispersed charged and nonsoluble
mixture of microfragments of one phase into the other, a mixed
phase, which also could be called a charged “emulsion.”> We
note that very often in the astrophysical literature, matter in
the two-phase coexistence region of any PT, including those
in neutral systems, is generally said to be in a “mixed phase.”
We think it is more accurate to denote this as a “two-phase
mixture” and to reserve the term “mixed phase” only for the
state of matter obtained in the mesoscopic description of PTs
in Coulomb systems with a low surface tension, as described
above.

Without a detailed mesoscopic treatment, the effect of
Coulomb interactions in NSs can be estimated by different
assumptions for charge neutrality [74-77], which we will
use in the present study. The assumption of local charge
neutrality, used in the “Maxwell-PT,” which was already
introduced above, corresponds to the limit of an infinitely
high surface tension between the two phases. In terrestrial
plasmas, phase equilibrium of locally charge neutral phases
with Coulomb forces is denoted more accurately as the
Gibbs-Guggenheim conditions for phase equilibrium, see, e.g.,
Ref. [52]. Conversely, the usage of global charge neutrality
(GCN) for macroscopic phases in a Coulombless approach
can be seen as an approximation for the case of a vanishing
surface tension in the mesoscopic description. In astrophysics,
this is typically called the “Gibbs-PT” [56].

C. Characteristics of noncongruent PT

It was shown in Refs. [42,43,52,55-62] and many oth-
ers, and it will also be shown below, that noncongruency
significantly changes the properties of all PTs, namely
(a) there is a significant impact on the phase transformation
dynamics, i.e., a strong dependence of the PT parameters on
the rapidity of the transition [60]. (b) The thermodynamics of

9

2 Another term (a culinary one, like “pasta,” “spaghetti,” etc.) was
proposed for this emulsion-like mixture: “milk phase” i.e., a highly
dispersed mixture of oil microdrops in water [52].
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PTs becomes more complicated. The essential changes include
(1) a significant change in the properties of the singular points
(critical point in particular) and a separation of the critical
point and end points, such as the temperature end point,
pressure end point, etc., and (ii) a significant change in the
scale of two-phase boundaries in extensive thermodynamic
variables (say P-V, V-T, H-T, etc.) and even in the topology
of all two-phase boundaries in the space of all intensive
thermodynamic variables, i.e., pressure, temperature, specific
Gibbs free energy, and so on. Note that this is valid for both
types of PTs: with and without a critical point (e.g., gas-liquid-
like PT and crystal-fluid-like PT, correspondingly). One of
the most remarkable consequences of the noncongruence in
the NCPT is the appearance of a two-dimensional “banana-
like” region instead of the well-known one-dimensional P-T
saturation curve for ordinary (congruent) PTs (see Fig. 1 in
Ref. [52]). The same should be expected in the plane of the
widely used pair of variables: temperature-baryon chemical
potential (see below). (iii) Closely connected to this is the
significant change of the behavior in the two-phase region:
i.e., isothermal and isobaric crossings of the two-phase region
no longer coincide. The isothermal NCPT starts and finishes
at different pressures, while the isobaric NCPT starts and
finishes at different temperatures. Basically, the pressure on
an isotherm monotonically increases with density.

Aspect (iii) of NCPTs is well studied in the context of
neutron stars [56]. Inside a neutron star, the pressure has
to decrease monotonically with the radius. A congruent PT
leads, therefore, to a spatial separation of the two coexisting
phases, with a discontinuous jump in density and all extensive
thermodynamic variables at the transition radius inside the
neutron star. Conversely, for a NCPT, a spatially extended
two-phase coexistence region is present, with a continuous
change of total density, total energy density, etc., throughout.
We remark that for the LGPT there exist several works which
also have discussed the other characteristic features of NCPTs
and only used a partially different terminology, see, e.g.,
Refs. [42,43,45]. For the QHPT, the possible noncongruence
has not been discussed in such detail as is done here.

Furthermore, there are still publications that do not treat
the thermodynamic aspects of nonunary phase transitions, i.e.,
the noncongruent features, in a proper way. For example,
aspect (iii) sometimes led to the conclusion that one has a
second-order PT according to the Ehrenfest classification,
as, e.g., in Refs. [43,45,48-50]. However, the two coexist-
ing phases have different order parameters, like densities,
entropies, asymmetries, etc., and, most importantly for our
purposes, different generalized “chemical” compositions. At
the interface between the two macroscopic phases there is a
discontinuous jump of the order parameter and, thus, the PT is
still of first order. Moreover, the first two aspects of (b) from
above are sometimes overseen or neglected in the literature,
which means that the noncongruence is not fully taken into
account (compare, e.g., with Ref. [1]).

D. Isospin symmetry, azeotrope

The isospin symmetry of strong forces plays an important
role for the possible noncongruence of the LGPT and the
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QHPT. Independently of density and temperature, isospin
symmetric nuclear matter always represents the state with the
lowest thermodynamic potential (neglecting Coulomb inter-
actions and assuming equal masses of protons and neutrons).
Thus, the isospin chemical potential is zero for symmetric
nuclear matter. As a consequence, isospin does not appear as
a relevant charge for symmetric nuclear matter because this
degree of freedom is not explored, i.e., even in a first-order
PT the involved phases remain symmetric. Therefore, the
LG and QH PTs remain congruent if the system is exactly
symmetric and if no other globally conserved charge than
baryon number is involved (see also Appendix B). This is
called “azeotropic” behavior, denoted for a system with more
than one conserved charge whose charge ratios cannot be
changed by distillation for a certain azeotropic composition.
The ensemble of such azeotropic points in the parameter
space, e.g., for all temperatures, is called an azeotropic curve.
Note that the isospin asymmetry of the hot state of matter
in a heavy-ion collision experiment is mainly set by the
initial charge-to-mass ratio Z/A of the colliding nuclei, e.g.,
Z/A ~ 0.4 in Au+ Au collisions.

E. Unified equation of state

As mentioned in point (i) in Sec. I C, another consequence
of noncongruent phase transitions is the possible emergence
of critical points, which differ from the points of maximum
temperature, pressure, or extremal chemical potential. To
obtain such critical points and end points at all, it is necessary
that both of the two involved phases are calculated with the
same theoretical model (“unified” or “single” EOS approach).
In other words, one has to use only one underlying many-
body Hamilton operator. This is in contrast to a “two-EOS”
approach, where two different EOS models are applied for the
two phases in coexistence. Such a “two-EOS” description can
have several shortcomings, as it cannot contain critical points
and end points (see Appendix A and the standard literature,
e.g., Ref. [53]) and it does not give a consistent description
of metastable or unstable matter in the binodal (respectively,
spinodal regions), e.g., for a liquid-gas type PT. In summary,
in the “unified” EOS approach both coexisting phases are
presumed as isostructural (like gas and liquid) with a possible
continuous transition from one phase into another, while in the
two-EOS approach this is impossible.

Almost all studies of the LGPT are based on the unified EOS
approach. This also applies for our investigation of the LGPT
with the FSUgold relativistic mean-field model. Unified EOS
approaches for the QHPT are usually built with either only
hadrons or only quarks. Thus, they do not give the expected
degrees of freedoms for one of the two phases. Alternatively,
often the two-EOS approach is applied for the QHPT (see,
e.g., Ref. [48]) to have the right degrees of freedom. On
the other hand, this approach cannot contain all possible
noncongruent features of the singular points, as explained
above. The chiral SU(3) model used in the present study is
one of the few unified-EOS approaches for the QHPT that
contains hadronic as well as quark degrees of freedom. These
can appear, in principle, in arbitrary proportions (solution-like
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mixture®) with the interactions leading to the correct behavior
for low (respectively high) densities and temperatures. See
Refs. [23,78] for another unified-EOS model that also contains
hadronic and quark degrees of freedom. Another exception
of a unified-EOS approach for the QHPT with the correct
degrees of freedom is the EOS of Ref. [79], where the two-EOS
approach is transformed into a one-EOS version with the use
of a special spline-based interpolation procedure.

III. FSUGOLD RMF MODEL

For the LGPT of nucleonic matter we apply a relativistic
mean-field (RMF) model. In principle, the chiral model also
could be used for this, as it also contains the LGPT [80].
However, due to the different characteristic scales involved
and for numerical reasons, we use a dedicated model for the
LGPT which occurs at subsaturation densities. We choose the
FSUgold RMF parametrization [81] because of its excellent
description of matter around and below saturation density
and because its neutron matter EOS is in agreement with
recent experimental and observational constraints (see, e.g.,
Ref. [82]). Its Lagrangian is based on the exchange of the
isoscalar-scalar o, the isoscalar-vector w, and the isovector-
vector p mesons between nucleons. Particularly for FSUgold,
the coupling between the w and the p meson is also included.
This leads to a better description of nuclear collective modes,
the EOS of asymmetric nuclear matter, and a different density
dependence of the symmetry energy [83]. The free parameters
of the Lagrangian, the meson masses and their coupling
constants, are determined by fits to experimental data, more
specifically to binding energies and charge radii of a selection
of magic nuclei.

The only baryonic degrees of freedom in FSUgold are neu-
trons and protons. For the typical densities and temperatures
of the LGPT, hyperonic or quark degrees of freedom are not
relevant. Because FSUgold considers only the “elementary”
particles of the LGPT but not any compound objects (respec-
tively, bound complexes like light or heavy nuclei), it belongs
to the class of so-called physical descriptions of PTs. In this
description, all effects of bound complexes are presumed to be
taken into account by the interactions (“nonideality”) of the
“elementary” particles (see, e.g., Ref. [84]). However, for a
more detailed description of the nuclear EOS like, e.g., used
in simulations of core-collapse supernovae, the formation of
nuclei and nuclear clusters has to be incorporated explicitly,
see, e.g., Refs. [71,85-91]. For high temperatures, light nuclei
like the deuteron or « particle are most important, whereas at
low temperatures, heavy and also superheavy nuclei give the
dominant contribution. If all possible compound objects (i.e.,
nuclei) were included as a chemical mixture, one would obtain
a quasichemical representation, as, e.g., done in Ref. [88].
This can cause substantial changes and even to a quenching
of the liquid-gas phase transition as a first-order PT, see
also Ref. [92]. However, even in this case one can use the
analogy between the characteristic changes of the nuclear
composition and the behavior of the gas and the liquid phases

3 Another term was proposed for this solution-like mixture: “vodka
phase,” i.e., a solution of spirit in water with arbitrary proportion [52].
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in a pure thermodynamic treatment, see, e.g., Refs. [87,93].
It has been confirmed in many studies that the mean-field
without clusterization overestimates the region of instability,
see, e.g., Refs. [86,94]. Because Coulomb interactions and
clusterization are more important in the cold catalyzed matter
of neutron stars than in the hot plasma of heavy-ion collisions,
we discuss the LGPT only in the latter scenario.

IV. CHIRAL SU(3) MODEL

The nonlinear realization of the o model [95,96] is built on
the original linear o model [97,98], including the pseudoscalar
mesons as the angular parameters for the chiral transformation,
to be in better agreement with nuclear physics results. It is an
effective quantum relativistic model that describes hadrons
interacting via meson exchange, similarly to the FSUgold
RMF interactions. However, the model is constructed in a
chirally invariant manner as the particle masses originate from
interactions with the medium and, therefore, go to zero at high
densities/temperatures.

The Lagrangian density of the model in the mean-field
approximation (all particles contribute to the global mean-field
interactions and are in turn affected by them), constrained
further by astrophysical data, can be found in Refs. [99-101].
In this work, we are going to use an extension of this model
called the chiral SU(3) model, that also includes quarks [80].
The Lagrangian density in mean-field approximation reads as
follows:

L = Lxin + Lint + Lserr + Lsg — U, (1
where, besides the kinetic energy term Lgjj,, the terms
Lin ==Y iln(8io® + gis® + &ipT30) + M1, (2)

1

Lsp = m}, fro + (ﬁmifk - ﬁmifn>;, (3)
represent the interactions between baryons (and quarks) and
vector and scalar mesons and an explicit chiral symmetry
breaking term, responsible for producing the masses of the
pseudoscalar mesons. Lgef contains the self-interactions of
scalar and vector mesons, where we refer to Refs. [80,99] for
details.

Up, down, and strange quarks and the whole baryon octet
are always considered in the above sum over i, in the entire
phase diagram. However, the degrees of freedom which are
actually populated change from hadrons to quarks and vice
versa through the introduction of an extra field ® in the
effective masses of the baryons and quarks. The scalar field ®
is named in analogy to the Polyakov loop [102] since it also
works as the order parameter for deconfinement. The potential
for @ reads as follows:

U= (a0T4 + 111#‘11; + aszu%)Cbz
+a3Ty In(1 — 6@% + 8d* — 3d*%). 4)
It was modified from its original form in the PNJL model
[103,104] in order to also be used to study low-temperature

and high-density environments (besides high-temperature and
low-density environments). It is a simple form to extend
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the original potential to be able to reproduce the physics of
the whole phase diagram. Because U now also depends on
the baryon chemical potential wpg, it will provide an extra
contribution to the total baryon density. It was shown in
Refs. [24,25,105] that our choice for the potential U(®) can
also be used in the PNJL model, successfully reproducing
QCD features. Note that our finite-temperature calculations
include the heat bath of hadronic and quark quasiparticles and
their antiparticles within the grand canonical potential of the
system. Free pions and kaons are included originally in the
model but neglected here for simplicity. Further comments
about their role in the scenarios which we consider are given
below in Sec. VB.

With the Lagrangian above, the particle masses are gener-
ated by the scalar mesons whose mean-field values correspond
to the isoscalar-scalar (o) and isovector-scalar (§) light quark-
antiquark condensates as well as the strange quark-antiquark
condensate (¢). In addition, there is a small explicit mass term
My and the term containing ®,

M}y = gBo0 + 885738 + g8:C + Mo, + go®?, 6))
M; = 8qo0 + quTS(S + gq{é- + MOq + gqcb(l —P). (6)

We note that for FSUgold only the term with the ¢ field (with
a minus sign) and a large explicit mass term My, equal to
the nucleon vacuum mass, would be present in Eq. (5). For
FSUgold, the contribution of the o field is zero in the vacuum
and decreases the effective mass for finite density. In the chiral
SU(3) model, the explicit mass term is much smaller, and
the nucleon mass in the vacuum is generated mainly by the
o field (nonstrange chiral condensate). With the increase of
density/temperature, the o field (nonstrange chiral condensate)
decreases from its high value at zero density, causing the
effective masses of the particles to decrease towards chiral
symmetry restoration.

The coupling constants of Egs. (1)—(6) can be found in
Refs. [80,99]. They were chosen to reproduce the vacuum
masses of baryons and mesons, nuclear saturation properties,
symmetry energy, hyperon optical potentials, and lattice data
as well as information about the QCD phase diagram from
Refs. [103,104,106,107]. The model reproduces a realistic
QCD phase diagram where at the critical end point a first-order
PT line begins. The line is calibrated to terminate on the
zero temperature axis at 4 times saturation density for charge-
neutral B-equilibrated matter. In this way we can reproduce a
hybrid star containing a quark core. The behavior of the order
parameters and the resulting phase diagrams will be discussed
in Sec. VL.

The most important aspect of the chiral SU(3) model
is that hadrons are included as quasiparticle degrees of
freedom in a chemical equilibrium mixture with quarks.
Therefore, the model gives a quasichemical representation of
the deconfinement PT (a so-called chemical picture in terms
of electromagnetic nonideal plasmas; see, e.g., Ref. [108]). As
explained in Sec. 11, it is very important for our study that this
model contains the right degrees of freedom of low and high
densities (namely hadrons and, respectively, quarks) in arbi-
trary proportions and gives at the same time the deconfinement
PT in a “unified EOS” or “single EOS” description.
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The assumed full miscibility of hadrons and quarks is,
e.g., in contrast to the underlying picture of simple quark-bag
models. At sufficiently high temperature, this will also lead
to the appearance of quarks soluted in the “hadronic sea,”
i.e., inside what we call the hadronic (respectively, confined)
phase. On the other hand, it is also possible that some hadrons
survive being soluted in the “quark sea,” i.e., in the quark or
deconfined phase. Nevertheless, quarks will always give the
dominant contribution in the quark phase and hadrons in the
hadronic phase. This is achieved via the field @, which assumes
nonzero values with the increase of temperature/density and,
due toits presence in the baryons’ effective masses, suppresses
their appearance. On the other hand, the presence of the &
field in the effective mass of the quarks, included with a
negative sign, ensures that they will not be present at low
temperatures/densities. The hadronic and the quark phase are
characterized and distinguished from each other by their order
parameters, whereas ® is one of them, but also the baryon
number density or the asymmetry, as we will show later.
The identification of the two phases via order parameters
can always be done in an unambiguous way whenever one
has phase coexistence. We assume that the interpenetration
of quarks and hadrons in the two phases is physical, and it
is required to obtain the crossover transition at low baryon
chemical potential.

V. THERMODYNAMIC SETUP

A. Definitions

For the (Coulombless) scenarios we are interested in, the
following three quantum numbers of each particle species i
are relevant: baryon number b;, electric charge number g;,
and strangeness s;. The corresponding values can be found
in standard textbooks, or, e.g., in Ref. [109]. The quantum
numbers of each particle species i also set the total net quantum
numbers or total net charges of the thermodynamic system if
the total net numbers of particles N; of each species i are
known. The total net number N; is the difference between the
number of particles and the number of corresponding antipar-
ticles of the whole system. The possibly conserved total net
quantum numbers (which are extensive) are listed in Table I.
Very often, instead of the electric charge number Q, the
intensive charge-to-baryon ratio is used, which is defined in
the last row of the table. For each of the extensive quantum
numbers a corresponding chemical potential can be defined.

TABLE 1. Definitions of total net quantum numbers or total
net charges which are possibly conserved, depending on the sce-
nario considered, and the corresponding chemical potentials. F =
F(T,V, B, S, Q) denotes the total free energy which is a function of
temperature 7', volume V, and the total net charges B, S, and Q.

Quantity Definition Chem. Potential
Baryon number B =Y, Nb me = lrv.s.o
Strangeness S=3, N ps = 3E|rv.8.0
Electric charge 0=Y,Ng o = %h,v,&s
Electric charge fraction Yo=0/B Not used
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TABLEII. Definitions of net quantum numbers or net charges and
corresponding chemical potentials of the individual phases inside the
phase coexistence region. The free energy F' of phase I is understood
as F' = FY(T", V', B', ', Q") (analogous definitions for phase II).

Quantity Definition Chem. pot.
ol
Baryon number B'=Y".N!b wy =57 visign
arl
Strangeness St=Y", Nl ws =S5l vip g

Electric charge 0'=Y%" Nlg Wy = %H,vl,sl‘sl

Electric charge fraction Y, = Q'/B' Not used

These are listed in the third column of Table 1. Later we will

also use the following chemical potential fi:

oF

P, 3 (7)
0B T,V.5.Yy

= us + Yoo, ®)

which is equal to the Gibbs free energy per baryon (see
Appendix D).

For a state which is inside the two-phase coexistence region,
two spatially separated macroscopic phases are present. Each
phase has its own set of extensive thermodynamic variables
and chemical potentials, listed in Table II. The total extensive
quantities F, V, B, §, O, N; are given as the linear sums of
corresponding quantities of the coexisting phases. Particle
numbers are connected to particle number densities through
the volumes of each phase,

ol = NU/VI, ol = NI/VI. ©

B. Scenarios and constraints

Next we are going to define the different cases of the two
PTs studied in different physical scenarios. An overview of
these scenarios is given in Table III. We consider PTs in three
different physical systems: the liquid-gas phase transition of
nuclear matter (LG), e.g., in low energy heavy-ion collisions,
the deconfinement phase transition in high energy heavy-ion
collisions (HI), and the deconfinement phase transition in
NS. For the first two scenarios LG and HI we investigate
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symmetric (S) nuclear matter with Y, = 0.5 and asymmetric
(AS) nuclear matter with Y, = 0.3. The two different electric
charge fractions correspond to heavy-ion reactions of nuclei
with different charge-to-mass ratios, Z/A. For '’ Au, which is
commonly used in heavy-ion experiments, one has Z/A ~
0.4. However, for peripheral collisions Yy ~ 0.35 can be
reached at certain stages of the evolution, as discussed in
Ref. [65]. For all of the asymmetric configurations we also
include a forced-congruent (fc) variant of phase equilibrium
[52,57,64], where the composition of all conserved charges
is forced to be equal in the coexisting phases in frames
of Maxwell conditions. In particular, the charge fraction is
constrained locally. For the (Coulombless) scenarios of NSs,
we investigate the effect of local (NSLCN) and global charge
neutrality (NSGCN). Next, we explain the physical meaning
of all of the constraints in more detail.

We remark again that we consider only coexistence of
macroscopic phases and that we do not consider any Coulomb
interactions despite the significant participation of electrically
charged particles, as discussed in Sec. II. Nevertheless, the
electric charge is an important quantity for our investigations
because it is one of the conserved charges which determine
the possible noncongruence. Furthermore, the electric charge
is also related to isospin. Let us assume that also the total
net baryon number B and the total net strangeness S are
kept constant, just like in all scenarios of LG and HI. The
quantum numbers of the baryons are directly given by the
sum of the quantum numbers of their constituent quarks.
Therefore, the total net numbers of u, d, and s quarks (free or
bound in baryons) are fixed by the total net baryon number B,
strangeness S, and electric charge number Q. If the latter three
quantities are kept constant, the total quark content does not
change, i.e., flavor is conserved. This means no weak reactions
occur and also the total isospin of the system is conserved.

In heavy-ion collisions, the typical time scales are on the
order of 1073 s, which is much less than weak reaction
time scales. Therefore we do not allow for weak reactions
in the cases of LG and HI. This is implemented via a
fixed value of Yy, conservation of baryon number B and
conserved total net strangeness S = 0. In addition to global
conservation of the electric charge in LGS, LGAS, HIS, and
HIAS, we also consider locally constrained charge fractions

TABLE III. Constraints and particles used in the six different scenarios. For each particle also the corresponding antiparticle is included. If
a quantity of Table II is not listed, its value is not constrained additionally. Note that the combined conservation of B, S, and Y, is equivalent

to the conservation of baryon number, strangeness, and isospin.

Case Constraints Considered particles
LGS B = const. St=8"1=0 Yo =05 Neutrons, protons

LGAS B = const. St=81=0 Yo =03 Neutrons, protons

LGAS_fc B = const. St=81=0 Y'Q = Y'QI =0.3 Neutrons, protons

HIS B = const. Sl=8"=0 Yo =0.5 Baryon octet, quarks

HIAS B = const. St=8"=0 Yo =03 Baryon octet, quarks
HIAS_fc B = const. St=8"T=0 Y,=Y5=03 Baryon octet, quarks
NSLCN B = const. - Y,=Y5=0 Baryon octet, quarks, leptons
NSGCN B = const. - Yo=0 Baryon octet, quarks, leptons
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in the forced-congruent cases of LGAS_fc and HIAS_fc. S is
set to zero, because initially there is no strangeness in the two
colliding nuclei. In principle, there is still the possibility that
one has net strangeness in the two phases with S' = —SU
which is known as strangeness distillation [55]. Here we
suppress this degree of freedom to avoid a ternary PT* and set
ST = S™ = 0 for simplicity. For HIS, HIAS, and HIAS_fc this
means that the total number of strange quarks (free or bound in
baryons) is equal to the number of antistrange quarks locally
and that there is a nonzero strange chemical potential, with
two different values in the two phases. For LGS, LGAS, and
LGAS_fc strangeness is not relevant at all, because no strange
particles are considered but only neutrons and protons. This
is appropriate for the typical low energies where the nuclear
LGPT isrelevant. We do not consider leptons in the cases of LG
and HI, because they are not present in the initial configuration
and their plasma in the later evolution with equal amounts of
particles and antiparticles would not affect the equilibrium
conditions between baryons and quarks.

At high temperature, the inclusion of light real mesons, like
pions and kaons, is important for some of the thermodynamic
quantities (e.g., pressure), since light particles dominate in
such regime. However, if their interactions with the baryons
are negligible, we do not expect a major influence on the
topology of baryonic phase diagrams (e.g., in the temperature-
baryon chemical potential plane). In some of the scenarios
considered, the meson contribution from the two coexisting
phases would cancel exactly or be at least very similar. In this
case the inclusion of free mesons would correspond only to a
redefinition or shift of some of the thermodynamic quantities.
Here we are concentrating on the baryonic component and a
more detailed treatment of mesons is postponed to future work.

In cold neutron stars one typically assumes that all possible
reactions have reached full equilibrium. Weak reactions do
not conserve strangeness and, therefore, it is not listed as a
conserved quantity in Table III for the two cases of neutron
stars, NSLCN and NSGCN. In principle, weak reactions
conserve lepton numbers but in cold neutron stars neutrinos
can escape freely and, therefore, the interior lepton numbers
are also not conserved.

Finally, electrically charged matter cannot exist in neutron
stars on a macroscopic scale, because, otherwise, they would
explode, as Coulomb interactions are many orders of magni-
tude stronger than gravity. Thus, we also include the lepton
contribution in form of electrons and muons, which is done
easily as they are well described as ideal Fermi-Dirac gases. We
implement electric charge neutrality in two different ways, as
discussed in the introduction. This is done either via enforced
local charge neutrality (NSLCN), where both macroscopic
phases are charge neutral and Coulomb forces are absent,
or via global charge neutrality (NSGCN) in a Coulombless
description, where each of the two phases carries a net electric
charge which sum to zero.

We note that the scenarios LG and HI described above could
also be taken as simplified examples of supernova matter,

“With “ternary” we mean that one had three globally conserved
charges with three chemical equilibrium conditions.
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for which one has similar values of Y. On the other hand,
supernova matter has to be charge neutral, like matter in
neutron stars, and, therefore, negatively charged leptons have
to be included. For GCN and the Coulombless approximation,
charged leptons would not influence the behavior of the PTs
in cases of HI and LG. However, for a realistic description of
the LGPT in supernovae the Coulombless bulk treatment is
not sufficient, and the formation of nuclei and nuclear clusters
has to be taken into account, as noted before.

C. Phase and chemical equilibrium conditions

Based on the previous constraints, the equilibrium condi-
tions can be derived. First, we consider the system outside of
the phase coexistence region. If there are more particle species
than conserved charges, conditions for chemical equilibrium
are necessary. The chemical potential u; of particle i is related
to the chemical potentials of the total charges as follows:

Wi =bjup +sipns +qipg, (10)

which allows us to calculate the abundances of all particles,
if the values of the total charges are known. Note that pg is
the chemical potential for strangeness as defined in Table I,
which differs from the chemical potential of the strange quark.
For NSLCN and NSGCN, the nonconservation of strangeness
leads to ug = 0, which is nothing but the minimization of the
thermodynamic potential with respect to strangeness.

We remark that it is also possible to formulate the
equilibrium conditions of Eq. (10) by using chemical potentials
of three selected particles instead of the chemical potentials
ue, o, and pus. We want to give an example for this
alternative formulation. Taking the chemical potentials of
neutrons, protons and lambdas as the basic units, one obtains
from Eq. (10)

i = bity + 5i(n — pa) + qi(p — py). (11)

This sets the chemical potentials of all particles, if w,, u,, and
ua are determined according to the external constraints (see
Table III). For example, this would lead to

o = 5Qup = tn),  pz- =2un =y (12)
For NSs, where leptons are considered, one would also get
MHe = Uy = Un — Kp, (13)

because of the assumption of nonconservation of the lepton
numbers.

Inside the phase coexistence region one has to consider
equilibrium conditions between the two phases. Thermal and
mechanical equilibrium are given by

P=P =P (14)
T=T7'=T1" (15)

Inside each phase, one still has relations analogous to Eq. (10).
They give the chemical potential of particle i in phase I
(respectively II), expressed by the local chemical potentials
of the charges
[y = biply + sijts + qifny.,
1 1 1 1 (16)
Wi =bipg +sits + qittg.
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Next, one has the chemical equilibrium conditions between
the two phases. In Coulombless sytems, which are equivalent
to terrestrial chemically reacting systems (e.g., Ref. [52]), the
local chemical potentials of all species in coexisting phases
must be equal, i.e., /,LII- = /LIH, if no local constraints are applied,
according to the traditional laws of chemical thermodynamics.
In this case, p1j = yj' would also follow from iy = g, pufy =
g, and s = g and Egs. (16). However, due to the local
constraints applied (see Table III), the interphase chemical
equilibrium conditions depend on the scenario considered and
have to be derived, e.g., by means of Lagrange multipliers
(see also Ref. [64]). In the following, we list the interphase
chemical equilibrium conditions for the different cases.

LGS, LGAS, HIS, and HIAS

W = I, a7
o = M- (18)
Note that p§ # u§ in order to have S'= S"=0. In the

alternative formulation from above, Eqgs. (17) and (18) would
be equivalent to

1y = ), (19)
[ = . (20)
NSLCN
Iy = W, @
s = py =0. (22)

The latter relation comes from the nonconservation of
strangeness and implies that there is a net strangeness in both
of the two phases. Note that

Ho # - (23)

This means, for example,
Wy # Iy, 24)
£l ©3)

We note that according to the Gibbs-Guggenheim conditions
(see, for example, Ref. [52]), for a macroscopic equilibrium
Coulomb system one should introduce the electro-chemical
potential [110] ) = 1l + VGawani = gy = p' (relative to
an arbitrary constant in uniform Coulomb systems). With
this description, the generalized electrochemical potentials of
all charged particles would be equal in the two coexisting
macroscopic phases, but this is not used here.

NSGCN
Wp = M, (26)
Wy =g =0, @n
o = Io- (28)
So here we have
My = My (29)
py =l (30)

LGAS fc and HIAS fc. Next, we give the equilibrium
conditions if the local charge fractions are constrained to have
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the same value, Y IQ =Y IQI (= Yg). Because in the considered
cases only baryon number remains as a globally conserved
charge, the Maxwell construction for a congruent PT can be
used. It is well known that for the “Maxwell” phase transition
in a neutron star with local charge neutrality and 8 equilibrium
the baryon chemical potential, which in this case is equivalent
to the neutron chemical potential, has to be equal in the
two phases, see Eq. (21). For HIAS one obtains instead the
following interphase chemical equilibrium condition [64]:

pl= 31
& Wy + Yoy =y + Youy, (32)
with the local Gibbs free energy per baryon,
., OF!
o m T,vl,sl,y(i,’ &9
= pp + Yoy, (34)

and the analogous expression for ji'! of phase II. Equation (31)
expresses the equality of the specific Gibbs free energy of the
two phases, respectively the Gibbs free energy per baryon used
here (see Appendix D). This is merely the standard Maxwell
construction for a congruent PT, which is also applicable for
the forced-congruent case.

In general, the baryon and charge chemical potentials will
not be the same for the two phases in the phase coexistence
region, because Eq. (32) is the only chemical equilibrium
condition for the cases LGAS_fc and HIAS_fc. For a better
comparison with the noncongruent variants LGAS and HIAS,
we will show the phase diagrams of LGAS, LGAS_fc, HIAS,
and HIAS_fc not only as a function of y g but also as a function
of fi.

Total chemical potentials inside the two-phase mixture. The
equilibrium conditions given above allow one to determine
the phase boundaries and fully specify the properties of
the two phases in equilibrium. However, the nonequality of
local chemical potentials due to local constraints leads to the
following complication: in this case, it is not obvious how
the total chemical potentials of the charges in the two-phase
mixture (defined analogously to the ones in Table I, with the
local constraints of Table III in addition) are related to the local
chemical potentials of Table II, which can have different values
in the two phases. These relations are derived in Appendix C.
We are not aware that these expressions have been published
in the literature before.

VI. RESULTS OF CALCULATIONS

In this section we are showing the results for the phase
diagrams of each case studied, whereas we begin with the
LGPT and continue with the QHPT.

A. Nuclear liquid-gas phase transition

Figure 1 shows the phase diagram of the case of LGS, i.e.,
for the liquid-gas phase transition of symmetric nucleonic mat-
ter. In principle, symmetric nuclear matter is a two-component,
binary system of protons and neutrons (respectively, baryon
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FIG. 1. Phase diagram in the temperature-baryon chemical po-
tential plane for the case of LGS (Y = 0.5). The saturation curve
(SC) coincides with the boiling curve (BC). The black dot marks the
ordinary VdW-like critical point (CP).

number and isospin). However, the nuclear interactions and
isospin symmetry lead to azeotropic behavior, i.e., the ratio of
protons to neutrons does not change during phase coexistence
and the two coexisting phases remain symmetric. The electric
charge chemical potential ©y of symmetric nuclear matter is
zero, independently of density and temperature. Therefore, no
isospin distillation occurs, i.e., there is no transfer of isospin
per baryon, respectively, Y, between the two phases. Since
o = 0, the relation of chemical equilibrium with respect
to changes of Yy, Eq. (18), is automatically fulfilled, and
only Eq. (17) carries relevant information. Consequently,
symmetric nuclear matter behaves like a unary system and
the PT is of congruent type with a phase-coexistence line in
the T-up plane, shown in Fig. 1. This line can be obtained
with a Maxwell construction by the corresponding constraints
of Sec. VC. Note that the saturation curve (SC) (which is
also called “dew-point line”) and the boiling curve (BC)
(which is also called “bubble-point line”) coincide in the
case of congruent PTs or azeotropic compositions and are
split into separate boundaries in the general case of NCPT.
The critical point (CP) marked by the black dot, which is
also a (critical) end point here, is located at a temperature
of 14.75 MeV and baryon chemical potential of 912.4 MeV
(further values are given in Table IV). It is known from other
studies that the CP of LGS is usually also the global maximum

TABLE IV. Approximate location of the critical and pseudocriti-
cal points of the different scenarios.

Case T MeV) pp(fm™3) puz MeV) p MeV/fm?)
LGS 14.75 0.046 912.4 0.205
LGAS 13.99 0.049 927.4 0.241
LGAS_fc 12.68 0.044 928.3 0.171
HIS 165.5 0.24 383 73.1
HIAS 165.3 0.22 381 68.6
HIAS_fc 156.5 0.44 611 95.8
NSLCN 168.6 0.16 247 162.8
NSGCN 168.9 0.14 224 161.1
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FIG. 2. Phase diagram in the temperature-pressure plane for the
case of LGS; otherwise, the same notation and depiction as in Fig. 1
is used.

of the phase transition temperature, i.e., for all possible values
of YQ.

In Fig. 2 we show the pressure-temperature phase diagram,
where we also obtain a phase transition line. Note that the
pressure on the coexistence line goes to zero in the zero-
temperature limit. For a congruent PT the Clapeyron equation
is valid,

dP st — sH

dT — 1/py —1/py’ )
with s' = ST/B" and s = S"/B" denoting the entropy per
baryon of the two phases. The Clapeyron equation describes
how the slope of the pressure-temperature phase transition
line is related to the difference in baryon number density and
entropy per baryon of the two phases. In our investigation,
we always have p}g < pg, i.e., the first phase is assumed to
have lower density. In Fig. 2 we see that dP/dT > 0, and,
thus, s¢ > s (where we have replaced “I” with “G” and “II”
with “L”). The gas phase has a higher entropy per baryon
and is always less dense than the liquid phase, which is a
characteristic of the LGPT.

In Fig. 3 the binodal region is shown in the temperature-
density plane. The gray line to the left of the critical point
depicts the SC, where droplets of liquid form within the
nucleon gas. The black line is the BC, where bubbles of gas
form inside the liquid. The region enclosed by the two lines is
the phase coexistence region, where a two-phase mixture of gas
and liquid is present. Here, and also in all following plots, filled
areas correspond to states of such a two-phase coexistence.
Due to the congruent behavior of LGS, for each point inside
the binodal or phase coexistence region, the gas state on the
SC is in coexistence with the liquid state on the BC at the
same common temperature. Thus, the gas and the liquid are
distinguished from each other by density, whereas the liquid
is always more dense. At the critical point the two phases
are identical. Inside the phase coexistence region, the volume
fraction of the liquid phase o = V%/V and the gas phase
(1 — «) are set by the total baryon number density pg = B/V
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FIG. 3. The binodal line which encloses the coexistence region
(filled with gray) in the T-pp plane for the case of LGS. The black
dot marks the critical point (CP). The gray line to the left of the CP is
the saturation curve (SC), and the black line to the right is the boiling
curve (BC).

through
ps = pG(1 —a) + phe. (36)

Obviously, one has ¢ = 0 on the SC and & = 1 on the BC.
For asymmetric nuclear matter in the case of LGAS one
obtains a noncongruent phase transition, which can be seen
in Fig. 4, depicted by the orange (light gray) and blue (dark
gray) thick lines. For the nontrivial solution of the equilibrium
conditions in the noncongruent case we have used the method
described in Ref. [44]. The gray and black thin lines show the
forced congruent variant LGAS_fc which will be discussed
later. For LGAS one has a phase coexistence region in T-up,
enclosed by the orange (light gray) and blue (dark gray) thick

L 141 T T -
14 TEP
o[ 140 -/E\CP- i

13.9 L

= 10 - 926 928
() 8 4
=,
- 6 )
4t — LGAS SC |
LGAS BC
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0 1 A 1 " 1 N 1 1
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FIG. 4. (Color online) Phase diagram in the temperature-baryon
chemical potential plane for the two asymmetric systems LGAS
and LGAS_fc with Y, = 0.3. The gray and black thin lines show
the forced-congruent variant LGAS_fc, and the corresponding small
black dot is the pseudocritical point. The colored thick lines depict the
case of LGAS, where Y, is not constrained locally. The corresponding
black dot is the critical point and the open square the temperature end
point. The inlay shows a close-up to the region around the critical
point (CP) and temperature end point (TEP) of the noncongruent case
of LGAS. The filled areas are the coexistence regions.
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lines, instead of a single line as in Fig. 1 for LGS. Also, in
all following plots, we will use colored thick lines for NCPTs.
Thus, one can also distinguish between the branch belonging to
the SC and the branch belonging to the BC by different colors.

As was stressed in Refs. [52,61], in noncongruent VdW-like
phase transitions of gas-liquid type there is no longer a unique
“critical end point.” Instead, three separate end points exist:
maximal temperature (cricondentherm),’ maximal pressure
(cricondenbar),® and point of extremal chemical potential.” In
NCPT, these three “topological” end points are separated from
the singular thermodynamic object—the true noncongruent
critical point.® Note also that the critical point of a congruent
phase transition is determined by

oP|  3’P
95 |1 31012;

In contrast, for a NCPT this criteria is not applicable, and the
critical point does not fulfill it in general.

The inlay of Fig. 4 shows that the temperature end point
differs from the critical point. For LGAS, the critical point is
found at T = 13.99 MeV (lower than in LGS) and u§f =
927.4 MeV. It is very interesting that this reduction of the
critical temperature agrees very well with the experimental
results of Refs. [47]. The further properties of the critical point
are given in Table IV. The temperature end point is located at
TTEP = 14.03 MeV and p3* = 926.6 MeV. We remark that
for LGAS the temperature end point is located on the saturation
curve [blue (dark gray) thick line], which, in principle, could
also be located on the boiling curve [orange (light gray) thick
line]. This topology (i.e., location of the temperature end point
on the two-phase boundary relative to the critical point) is the
same as for the gas-liquid NCPT in uranium-oxygen plasma
[57-62], which is taken as the prototype of NCPT for the
present study of LGAS (compare Figs. 5 and 6 with Fig. 1 of
Ref. [52]).

In LGAS_fc the two phases are constrained locally to have
the same charge fraction Yg =Y é = 0.3. The results are
depicted by the gray and black thin lines in Fig. 4. The two lines
also enclose a phase coexistence region, which illustrates the
nonequality of pp of the two phases in the phase coexistence
region, due to the locally constrained charge fraction (see also
the discussion in Sec. V C and Appendix C 1). The Gibbs free

=0. 37
T

>The temperature end point (TEP) or point of maximal temperature,
which is also called the “cricondentherm” [54,111], is defined as
the point with the highest temperature where phase coexistence is
possible.

%The pressure end point, also called the “cricondenbar” [54,111],
is defined as the point on the binodal where the maximal pressure is
obtained.

"The chemical potential end point or point of extremal chemical
potential is defined as the point where the chemical potential of the
binodal surface is extremal with respect to temperature.

8The critical point is defined as the point on the binodal surface
where the two phases are identical. Because it is located on the
binodal, an infinitesimal change of the state can lead to phase
separation into two phases which can be distinguished from each
other by an order parameter.
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FIG. 5. (Color online) Phase diagram in the plane of temperature
and Gibbs free energy per baryon ji for the cases of LGAS and
LGAS_fc (Y, = 0.3). Otherwise, the same notation and depiction as
in Fig. 4 are used.

energy per baryon ji is the only chemical potential which is
equal in the two phases. Furthermore, for isothermal phase
transitions it is a constant, because the properties of the two
phases do not change. In contrast to the noncongruent phase
transition LGAS, for the forced-congruent phase transition
LGAS_fc up is dependent on the baryon number density pp
and given by

oy o5
pp = pg (1 —a)+ pp—La, (38)
PB PB

which is derived in Appendix C 1.

The phase diagrams as a function of the Gibbs free
energy per baryon fi are shown in Fig. 5 for the cases of
LGAS and LGAS_fc. The banana-shaped region of LGAS
is typical for noncongruent liquid-gas-like phase transitions,
see Refs. [57-62]. In Fig. 5 the congruence of LGAS_fc
becomes obvious. Comparing LGAS and LGAS_fc, the
phase coexistence region turns into a phase coexistence line,
when enforcing the local constraint for the charge fraction.
Furthermore, for LGAS_fc the pseudocritical point (properties
listed in Table IV) coincides with the temperature and chemical
potential end points. Note that the pseudocritical point of
a forced-congruent phase transition obeys Eq. (37). We
remark that the phase transition line of the forced-congruent
variant must lie strictly inside the two-phase region of the
noncongruent phase transition [57-62], which also can be seen
as a consequence of Le Chatelier’s principle. As an exception,
both objects could touch each other in azeotropic points of the
parameter space, as seen for LGS.

Note that for the case of LGS, up = fi, since ug =0.
Thus, the phase-coexistence line of LGAS_fc in Fig. 5 can be
directly compared with the one of LGS in Fig. 1 and it is found
that their shape is very similar. However, states on the phase
coexistence line of LGAS_fc in Fig. 5 belong to two different
values of the baryon chemical potential, shown by the two gray
and black thin lines in Fig. 4. If i in LGAS_fc were changed
in a continuous way and the phase transition line in Fig. 5 is
crossed, up jumps from the value of the gas phase to the value
of the liquid phase in Fig. 4. This can be seen as a sign of the
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FIG. 6. (Color online) Phase diagram in the plane of temperature
and pressure for the cases of LGAS and LGAS_fc (Y, = 0.3). In
addition to the critical point (black dot), the temperature (open square)
and pressure end points (open diamond) are shown in the inlay.
Otherwise, the same notation and depiction as in Fig. 4 are used.

enforced congruence, in contrast to the azeotropic congruent
phase transition LGS.

Figure 6 shows the same scenarios as in the previous figures
but gives the phase diagrams in the temperature-pressure plane.
Here it is clear that the phase transition in the forced congruent
variant LGAS_fc occurs only at a single value of the pressure,
which is the same behavior as in Fig. 2 for LGS. In contrast, for
a given temperature in LGAS, there is an extended coexistence
range in pressure, which is enclosed by the SC and BC. The
names “SC” and “BC” are widely accepted for noncongruent
evaporation in chemically reacting plasmas [57-61] where
their meaning is obvious. They are also most intuitive for
LGAS for this kind of phase diagram: For a fixed pressure
of, e.g., 1072 MeV/fm? and starting from 7 = 0, by heating
the system one will reach the boiling curve, where bubbles
of gas appear inside the liquid. Conversely, if one starts at
high temperatures and cools the system isobarically, droplets
of liquid will form within the gas when the saturation curve
is reached. In this figure we can also identify the pressure
end point which is located on the BC of LGAS. In the
gas-liquid NCPT in uranium-oxygen plasma [57-62], which
is the prototype for our present study of NCPT in LGAS, one
has the same topology that the pressure end point is located
on the BC, despite differences in the thermodynamic variables
by many orders of magnitude (compare Fig. 6 with Fig. 1 in
Ref. [52]). For LGAS_fc, all three end points coincide with
the critical point defined by Eq. (37) (see Fig. 1 in Ref. [52]).

In spite of the similarity of the NCPT in LGAS with its
terrestrial prototypes [57—-62], the significant difference in the
topology of P-T diagrams should be stressed (compare Fig. 6
above with Fig. 1 in Ref. [52]). While the pressure on both
boundaries of the noncongruent PT in the uranium-oxygen
system [S7-62]—boiling and saturation curves—tends to zero
for the limit 7 — 0, the pressure on the boiling curve in NCPT
in asymmetric (Yo = 0.3) LGPT does not tend to zero when
T — 0 in our case (see Fig. 6). The same feature was noted
already for the NCPT of asymmetric nuclear matter calculated
with a different EOS (Fig. 3 in Ref. [112]). The reason for
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FIG. 7. (Color online) The binodal line enclosing the coexistence
region in the T-pp plane for LGAS and LGAS_fc (Y, =0.3).
Otherwise, the same notation and depiction as in Fig. 4 are used.

this feature is the difference in the physical nature of the
involved forces which are relevant for the noncongruence in
a chemically reacting uranium-oxygen plasma [57-62] and in
asymmetric nuclear matter and the use of Fermi-Dirac statistics
for the latter.

In Fig. 7 we show the binodal or phase coexistence regions
for LGAS and LGAS_fc in the temperature-density plane,
similarly as in Fig. 3 for LGS. Again, the noncongruent
behavior of LGAS can be identified by the nonequivalence
of the temperature end point and the critical point. Conversely,
for LGAS_fc the end points and the (pseudo-) critical point
coincide. Furthermore, for isothermal processes of LGAS
at temperatures T" < T < TTEP so-called retrograde con-
densation occurs (see also Refs. [42,43]): Imagine, e.g., an
isothermal compression at T = 14 MeV. First, one hits the
saturation curve from the left, and a liquid with a larger Y
and a larger pp appears inside the gas phase. With increasing
density, the volume fraction of the liquid will, first, increase.
But for retrograde condensation, for densities larger than a
certain density, the volume fraction will decrease again, until
it returns to zero at the right side of the saturation curve. The
liquid has disappeared again after the phase coexistence region
has been crossed.

The noncongruent behavior of LGAS is further analyzed
in the following plots of local “chemical” composition and
density. Figure 8 shows the charge fractions of the two phases
which are in coexistence, if one moves along the liquid and
vapor binodal lines of Fig. 7. The blue (dark gray) dotted line
“SC gas” in Fig. 8 depicts the charge fraction of the gas phase
Y g for the states on the saturation curve shown in Fig. 7. On the
saturation curve, the gas phase is in coexistence with a liquid
phase which has a different charge fraction Y%, shown by the
dashed blue (dark gray) line. Moreover, for the conditions of
the boiling curve of Fig. 7, we always have coexistence of a
gas phase [orange (light gray) dotted line in Fig. 8] with a
liquid phase [orange (light gray) dashed line in Fig. 8], which
have different charge fractions.

In all previous plots, the depicted quantities correspond to
total thermodynamic quantities, i.e., of the system as a whole.
In contrast, in Figs. 8—10 we are showing individual properties
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FIG. 8. (Color online) The charge fraction of the liquid (dashed
lines) and the gas phase (dotted lines) for the case of LGAS as
a function of the coexistence density pp along the binodal line of
Fig. 7. The blue (dark gray) lines show the charge fractions of the
two coexisting phases for states on the saturation curve presented in
previous figures, the orange (light gray) lines for states on the boiling
curve.

of the two coexisting phases. Now and in the following we are
using dashed and dotted lines in such plots to illustrate this
difference. The color coding helps to identify the same states
in the different diagrams. For example, in Fig. 8, the ends of
the orange (light gray) curves, which correspond to 7 = 0, are
given by the highest density of coexistence of LGAS in Fig. 7,
which is on the orange (light gray) solid line.

In Fig. 8, one of the two phases always must have Yy =
0.3, whereas the charge fraction of the second phase is not
constrained, because its volume fraction is still zero on the
binodal line. For states on the saturation curve one is still
in the gas phase, i.e., @ = 0, thus, Yg = 0.3. For states on
the boiling curve one is still in the liquid phase, « = 1, and
Yé = 0.3. The charge fraction is an order parameter for LGAS
and, thus, it can be used to characterize the two phases, with
the identification that the gas phase always has a lower charge
fraction than the liquid, i.e., Y, QG <Y 5 Only at the critical
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FIG. 9. (Color online) As shown in Fig. 8 but now in dependence
of the coexistence temperature of the binodal line of Fig. 7. The inlay
shows a close-up of the region around the critical point, including the
region of so-called retrograde condensation at T > TF.
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FIG. 10. (Color online) The baryon number density of the liquid
(dashed lines) and the gas phase (dotted lines) for the case of LGAS
as a function of the coexistence temperature on the binodal line of
Fig. 7. Otherwise, the same notation and depiction as in Fig. 9 are
used.

point is equality established, Yg =Y é It is interesting to note
that the charge fraction of the phase with Yy # 0.3 shows the
same dependence on density before and after the critical point.

In Fig. 9 we also show the charge fractions of the two
phases along the binodal line but now as a function of the
coexistence temperature. By comparison with Figs. 4-7, it is
obvious that for each coexistence temperature there are always
two points on the binodal line, corresponding to two different
halves of the binodal line which are separated from each other
by the temperature end point. For each half, two phases with
different values of Y, are in coexistence. Consequently, in
Fig. 9, for each temperature there are always four values of
Yo. For T < T, one has Y§ = 0.3 and Y} > 0.3 on the

saturation curve and YS < 0.3 and Y5 = 0.3 on the boiling
curve. Note that the two lines with Yy = 0.3 are on top of
each other. For T®* < T < TTEP both halves belong to the
saturation curve, and, thus, Y g = 0.3 for both halves, each
being in coexistence with a different configuration of the liquid
with Y é > 0.3.

The previous two figures can be used to identify the high
degree of isospin distillation of LGAS in the limit 7 — 0.
Let us consider a decompression at 7 ~ 0 of the asymmetric
system with Yy = 0.3. Once the boiling curve is reached,
vapor bubbles appear which in this case consist of pure neutron
gas, Y, QG — 0. Obviously, this leads to the distillation of a
symmetric liquid by evaporation of pure neutron bubbles
from a boiling asymmetric liquid phase. On the other hand,
for saturation conditions (“dew point”) at 7 ~ 0, liquid
microdrops tend to the exactly symmetric composition, Y é —
0.5. These features of the NCPT of the case of LGAS differ
significantly from the behavior of the chemical composition
(O/U ratio) in NCPTs of uranium-oxygen systems (compare
Fig. 9 with Fig. 2 of Ref. [57] and Fig. 3 of Ref. [58]).

In a similar way as in Fig. 9, in Fig. 10 we show the baryon
number densities of the two phases for each of the two halves
of the binodal line as a function of the coexistence temperature.
Presented in this way, one sees that the density is also an order
parameter of LGAS, whereas the liquid is the phase with the
higher density. At the critical point, the liquid and the gas have
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FIG. 11. (Color online) Order parameter for chiral symmetry
restoration/breaking o normalized by the vacuum value oy and order
parameter for deconfinement/confinement & versus temperature at
zero baryon chemical potential for symmetric matter of the case of
HIS (Y, = 0.5).

the same density and charge fraction and, thus, can no longer
be distinguished from each other. The discussion of this figure
is similar to that for Fig. 9: For T < T*? there are the pp
curves from the liquid [blue (dark gray) dashed line] and the
gas [blue (dark gray) dotted line] on the saturation curve and
another pair of pg curves from the liquid [orange (light gray)
dashed line] and the gas [orange (light gray) dotted line] on
the boiling curve. For T* < T < TP there are still the four
different values of pg. However, now all points belong to the
saturation curve.

B. Deconfinement phase transition

For the LGPT we used the baryon number density and
charge fraction as order parameters. For the deconfinement
and chiral symmetry PTs, typically the Polyakov loop ® and
the chiral condensate o are used, as already discussed in
Sec. IV. The field o characterizes chiral symmetry restoration,
whereas & can be taken as a measure for deconfinement. At
finite temperature and pp = 0 (respectively pp = 0),’ there
is no first-order PT but a smooth crossover between the
hadronic (confined, chiral symmetry broken) and the quark
phase (deconfined, chiral symmetry partly restored) [106].
This is shown in Fig. 11 for HIS, where the ratio o/oy
decreases from one to lower values and & goes from zero
to a value close to one in a smooth fashion. We remark that we
define the crossover temperature 7°°° as the peak of the change
of the chiral condensate and ® with T, yielding a value of
T = 171 MeV, in accordance with lattice QCD results [107].
This behavior of the order parameters corresponds to the

9We remind the reader that we include antiparticles, therefore if 7 >
0, we have equivalence between pp = 0 and pp = 0. Furthermore,
for T > 0, up < 0 corresponds to net antimatter with pp < 0, which
is not relevant here. For T = 0 the situation is a bit more complicated,
because of the LGPT which extends down to pg = 0 at a constant
finite value of wp.
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FIG. 12. Phase diagram in the temperature-baryon chemical
potential plane for the case of HIS (Y, = 0.5), for which the
deconfinement curve (DC) coincides with the confinement curve
(CC). The black dot marks the critical point. The thick gray line
along the ordinate shows part of the example trajectory belonging to
Fig. 11.

example trajectory through the phase diagram of HIS shown
in Fig. 12.

For high-enough baryon number densities, the QHPT turns
into a first-order phase transition. This can be seen in Fig. 12,
where we show the first-order phase transition line for the
case of HIS, i.e., for heavy-ion collisions of symmetric nuclei.
The critical point is located at T" = 165.5 MeV and Mgp =
383 MeV, again, in accordance with lattice QCD results [107].
Its further properties are listed in Table IV. The topology of
this PT is the same as in LGS, see Fig. 1, only the typical scales
differ. For example, the critical point of HIS is at a roughly 10
times higher temperature. For the QHPT, we will use the terms
“deconfinement curve” (DC) instead of ““saturation curve” and
“confinement curve” (CC) instead of “boiling curve,” which
we think is more meaningful. If coming from low densities
and temperatures, first, droplets of denser deconfined quark
matter will appear when the DC is reached. Conversely, if
coming from high densities and temperatures, when the CC is
reached, the first quarks will start to be confined into bubbles of
less dense hadronic matter. There is an interesting analogy to
the “ionization boundary curve” and “recombination boundary
curve” of the hypothetical ionization-driven plasma phase
transition in dense hydrogen at the megabar pressure range
(see, e.g., Refs. [113-115]). This first-order PT in weakly
ionized hydrogen (predominantly H and H, and small amount
of p and e) is driven by a jumplike ionization (deconfinment)
into highly ionized hydrogen (predominantly p and e and small
amount of H and H,). We want to point out the similarity
between the hydrogen plasma which is an arbitrary solution of
H, H, p, and e and the chiral SU(3) model in which quarks and
hadrons can in principle also be mixed in arbitrary proportions
(nevertheless, a clear distinction of the two phases is always
possible, see Sec. IV).

HIS is, in principle, a binary system, with baryon number
and electric charge (respectively isospin) as two globally con-
served charges (see Table IIT). But the PT in HIS is azeotropic,
meaning it is congruent and the Maxwell construction can be
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FIG. 13. Phase diagram in the temperature-pressure plane for the
case of HIS. Otherwise, the notation and depiction are as in Fig. 12.

used, just like symmetric nucleonic matter in LGS. It is not so
obvious as for LGS that matter in HIS is an azeotrope, because
a whole set of particles, including strange ones, is considered
(see Table III). However, strange quarks and hyperons do
not invalidate the relation between isospin symmetry and
azeotropic behavior, if strangeness is set locally to zero, as
is done here. In this case, the total density of strange quarks,
i.e., in form of unbound strange quarks or bound in hyperons,
is equal to the total density of antistrange quarks. A more
detailed explanation of the matter is given in Appendix B.

In Fig. 13 the phase diagram in the pressure-temperature
plane is depicted. Comparing with Fig. 2 one realizes an
important difference between the QHPT and the LGPT: The
slope of the phase transition line is negative. Therefore, the
QHPT is not of liquid-gas type. With the Clapeyron equation
(35) one finds that this is due to the fact that the hadronic phase,
which is less dense, has a lower entropy per baryon than the
quark phase, s¥ < s2 (where we have replaced “I” with “H”
and “II” with “Q”), which is opposite to the behavior in the
LGPT. The negative slope of the p-T phase diagram makes
the QHPT fundamentally different from the LGPT. This fact
(negative slope of the p-T boundary for QHPT in a symmetric
system) is not absolutely new (e.g., presentations by LI. at
several conferences!” and discussion in Ref. [115]; L. Satarov,
private communication (2010), based on calculations via EOS
model described in Ref. [116]; J. Randrup, presentations at
several conferences'! and Ref. [117] and Ref. [118]) but is
not well recognized yet. Further investigation and analysis of
this fundamental difference between the LGPT and QHPT is
in preparation [119]. Figure 14 shows the coexistence region
in the temperature-baryon number density plane, in a similar
way to Fig. 3 for the LGPT. Note that the shape of the phase
coexistence region of HIS differs from that of LGS. This
is, once more, a manifestation (and not the last one) of the
fundamental difference between the LGPT and QHPT.

In the case of heavy-ion collisions with asymmetric
Coulombless matter (HIAS), one has a true binary system.

10See, e.g., http://theor.jinr.ru/~cpod/Talks/240810/Iosilevskiy.pdf.
See, e.g., http://theor.jinr.ru/~cpod/Talks/2608 10/Randrup.pdf.
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FIG. 14. Phase diagram in the temperature-baryon number den-
sity plane for the case of HIS. The deconfinement curve (DC) is to the
left of the confinement curve (CC). The gray area shows the two-phase
coexistience region. Otherwise, notation and depiction as in Fig. 12.

The PT is noncongruent and the Gibbs construction must
be used. This is visible in Fig. 15, where one obtains a
phase-coexistence region instead of a phase-transition line as
in HIS before. We can compare HIAS with LGAS of Fig. 4.
Obviously, the phase-coexistence region is much narrower
than for LGAS if we compare the width in @ p relative to the
extension in temperature. HIAS_fc is the forced congruent
variant, where the charge fraction is constrained locally,
YH =y9 = 0.3, so the Maxwell construction can be used.
The gray thin line is the corresponding DC, and the black
thin line the CC, which partly covers the CC of HIAS. Very
interestingly, the DC and CC changed order for HIAS_fc
compared to HIAS. We will explain this interesting result in
detail later.

The phase diagrams as a function of the Gibbs free energy
per baryon fi are shown in Fig. 16 and as a function of pressure

200 T T T T T T T T T T T T T T
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S
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FIG. 15. (Color online) Phase diagram in the temperature-baryon
chemical potential plane for the cases of HIAS and HIAS_fc (Y, =
0.3). The colored thick lines belong to HIAS, the gray and black
thin ones to HIAS_fc. The large black dot marks the critical point of
HIAS and the small black dot the pseudocritical point of HIAS_fc.
The filled areas show the coexistence regions. Note that for HIAS_fc
the confinement curve (CC) is to the left of the deconfinement curve
(DC).
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FIG. 16. (Color online) Phase diagram in the plane of temperature
and Gibbs free energy per baryon fi for the cases of HIAS and
HIAS_fc (Yo = 0.3). The thick gray line gives an example for a
trajectory through the phase diagram for which we show the order
parameters in Fig. 21. Otherwise, the same depiction and notation as
in Fig. 15 are used. Note that the phase transition line of HIAS_fc is
very close to the confinement curve (CC) of HIAS.

in Fig. 17. Here one sees that HIAS_fc is a congruent PT,
because the DC and CC are identical. Furthermore, the phase
transition line of HIAS_fc is inside the phase coexistence
region of HIAS, as it has to be. Comparing Fig. 16 with Fig. 5
of LGAS, again one sees that the shape of the coexistence
region of HIAS is much narrower. This could be described as
a weaker noncongruence of the phase transition HIAS.

Note that in our calculations for HIAS we could not resolve
the differences between the temperature and pressure end
points and the critical point. In principle, around the critical
point a similar structure as for LGAS has to occur. We predict
that the phase coexistence regions of HIAS around the critical
point are smooth and two-dimensional, as for LGAS in the
inlays of Figs. 47, whereas the temperature end point and
critical point could also have their orders reversed. To be more
precise, we expect a rounded, “banana-shaped,” region (see,
e.g., Fig. 1 in Ref. [52]). However, due to the fact that for
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FIG. 17. (Color online) Phase diagram in the temperature-

pressure plane for HIAS and HIAS_fc (Yo = 0.3). The same
depiction as in Fig. 15 is used.
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FIG. 18. (Color online) Phase diagram in the plane of temperature
and baryon number density for the cases of HIAS and HIAS_fc
(Yo = 0.3). Otherwise, the same depiction and notation as in Fig. 15
are used. The deconfinement curve (DC) of HIAS_fc is now to the
left of the confinement curve (CC).

lower chemical potentials or baryon densities the first-order
phase transitions HIS and HIAS become rather weak, i.e.,
the phases on both sides of the transition become extremely
similar, this structure is no longer as easily observed as it is in
the LGPT of nuclear matter (shown in the previous subsection)
and in chemically reacting plasmas [57-62]. The highest
temperature, for which we still could solve the equilibrium
conditions was at T = 165.3 MeV for up =381 MeV
(respectively, i =371 MeV), where we used a resolution
of roughly 0.1 MeV in temperature. Because this resolution
cannot be resolved on the scale of Fig. 15, we take these
values of T, up, and fi as the approximate temperature and
chemical potentials of the critical point, which are also listed
in Table IV. The very narrow phase coexistence region shows
that the two phases are in an extremely similar thermodynamic
state. For even higher temperatures, the differences between
the two phases become smaller than our numerical accuracy,
preventing us from finding a more precise solution.

This aspect is also very pronounced in Fig. 18, where
the phase diagrams of HIAS and HIAS_fc are shown as a
function of baryon number density. At T = 0, the DC and the
CC have very different densities. Conversely, for increasing
temperatures, the extension of the coexistence region in density
becomes extremely narrow. Note that the coexistence region
of HIAS_fc is within HIAS, as it must be.

There is one further important aspect. If we compare the
phase diagram of the asymmetric system, e.g., Fig. 15, with the
symmetric system in Fig. 12, and the corresponding numbers
in Table IV, one finds that the critical points are practically
unaffected by the change of the asymmetry. 7 and up of
HIS and HIAS differ by less than 0.5%. In the LGPT, a
stronger dependence on the asymmetry is observed. For LGS
and LGAS the change from Yy = 0.5 to Yy = 0.3 leads to
a significant shift of the critical point, e.g., on the order of
6% in temperature. This is naturally explained by the high
temperatures of order 160 MeV around the critical point of HI.
The effect of the asymmetry becomes extremely weak, because
the EOS in this regime is dominated by thermal contributions.
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Obviously, for ug —> 0 the EOS would be completely
independent of the asymmetry. We conclude that even though
HIAS is, in principle, a noncongruent PT, in our calculations
with the chiral SU(3) EOS model this noncongruence is almost
negligible close to the critical point. This is also visible in
Figs. 15 and 16, where the width of the coexistence region is
smaller than the line thickness of the curves.

Let us now come back to the explanation of the inverted
ordering of DC and CC in HIAS_fc in Fig. 15. For an
isothermal compression, corresponding to a horizontal line
through Fig. 18, ji and pp will increase monotonically, until
the deconfinement curve is reached at a certain density, pp =
pg’ . This state corresponds to the value of ug = ,ug’ in the
hadronic phase on the deconfinement curve, i.e., the black thin
line most to the right in Fig. 15. For an isothermal compression,
the corresponding value of i will remain constant through-
out the phase transformation and i = " = j1¢. However,
inside the coexistence region pupg will change with density
because it is given by

ol 0Ps
iy = w2 (1 — )+ @2, (39)
PB PB

with the volume fraction of the quark phase o (see Appendix
C 1). For HIAS_fc, the hadronic phase has a higher baryon
chemical potential than the quark phase, 1 > /Lg. Therefore,
an increase of the baryon number density inside the phase
coexistence region will lead to a decrease of up. For o = 1,
ie., pp = pg, the CC in Fig. 15 is reached. For even higher
densities pp will increase again.

Figures 19 and 20 show the charge fraction of each phase
(hadronic and quark) as a function of the temperature and
the baryon density along the phase boundaries. For clarity,
we again distinguish states on the deconfinement curve by
blue (dark gray) and states on the confinement curve by orange
(light gray). In Figs. 19 and 20 one sees that the charge fraction
in the quark phase is always less than or equal to the charge
fraction in the hadronic phase. This shows that the charge
fraction is also an order parameter of the QHPT. Note that

0-6 T T T
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04 .
02| " -
/”
I o00f s .
3 v
o /
> -02F S -
S e DC hadrons
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J --- DC quarks
06F 7 CC hadrons -
= CC quarks
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FIG. 19. (Color online) The charge fractions of the hadronic (Y2,

dotted lines) and the quark phase (Y, 9 dashed lines) as a function of
the coexistence temperature along the phase boundary for the case of
HIAS. The blue (dark gray) lines show states on the deconfinement
curve DC and the orange (light gray) on the confinement curve CC.
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FIG. 20. (Color online) As Fig. 19 but as a function of the
coexistence baryon density.

Yg < Yg shows the opposite behavior compared to the liquid-
gas PT, in which the denser phase is more symmetric.

Note also that Y can, in principle, take negative values for
both the hadronic and the quark phases, due to negatively
charged hyperons (respectively, down and strange quarks).
In the LGPT we only considered neutrons and protons, so
0 < Yp < L. For HIAS we have —1 < Yy < 1. Indeed, we

observe in Fig. 19 that Y, QQ < 0 on the DC for coexistence
temperatures below approximately 100 MeV. This means that
the first quark matter droplets which would appear at the
deconfinement phase boundary of the hadronic phase (DC)
are negatively charged for such temperatures. Remember that
on the DC only Yg is constrained to the value 0.3, and Y, QQ
is set by the equilibrium conditions. Conversely, if the PT is
crossed coming from the high density side we have Y, 2-03
on the CC. The hadronic phase on the CC shows the opposite
tendency from that of quark matter. For low temperatures it
approaches a rather symmetric configuration with Yy close to
0.5. Similar features have been discussed, e.g., in Ref. [120] for
a simple quark-bag model. Figure 20 appears quite complex
and differs in appearance from the equivalent Fig. 8 of LGAS.
This can be explained by the nonmonotonous behavior of the
density as a function of the coexistence temperature in the case
of HIAS, visible in Fig. 18.

The two figures 19 and 20 also show how the charge fraction
in both phases goes to 0.3 when approaching the critical point.
At the critical point, the two phases are identical, i.e., have the
same charge fraction, density, scalar field ®, chiral condensate,
and so on. To better understand the dynamics of such a NCPT,
in Fig. 16 we included an example for a trajectory through
the phase diagram for which we show the order parameters
in Fig. 21. The trajectory was chosen to follow 7T = 0.15/
so the phase coexistence region is crossed at temperatures
around 900 MeV and fi ~ 130 MeV. This trajectory could, for
example, be realized during the decompression of the quark-
gluon plasma in a heavy-ion collision. We show the behavior of
the order parameters for HIAS and HIAS_fc to illustrate the
differences between a noncongruent and congruent PT. For
HIAS_fc, when the phase transition line is crossed, there are
jumps in ¢ and P, as expected for a first-order PT (compare
also with Fig. 11). The quark phase is characterized by having
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FIG. 21. (Color online) Normalized order parameter for chiral
symmetry restoration/breaking o (black thin lines) and order pa-
rameter for deconfinement/confinement ® (red thick lines) versus
the Gibbs free energy per baryon ji for the case of HIAS. Inside
the phase coexistence region, the values of the order parameters
in the quark phase (dashed lines) differ from the ones in the
hadronic phase (dotted) and change during the phase transformation.
HIAS_fc is the forced congruent variant, shown by solid lines. All
order parameters are calculated for the trajectory through the phase
diagrams shown in Fig. 16 with 7 = 0.15/i.

a larger value of @, showing that it represents the deconfined
state. As can be seen from Eqgs. (5) and (6), this increases the
effective mass of baryons but decreases the effective mass of
quarks. Note that o, which is decreasing with increasing i in
both of the two phases, locally increases at the PT (going from
left to right), because the value of o is higher in the quark
phase. This is in contrast to the typical expectation of other
models, which give partial chiral symmetry restoration, i.e.,
a lower value of ¢ in the quark phase. This effect found in
our calculations comes from the fact that in the chiral SU(3)
model both order parameters o and & are connected through
the effective masses of the particles. Also the baryonic density
of the quarks (not counting the contribution from U) is less
than the one of the hadrons. This leads to a decrease of the
scalar field across the phase transition.

In Fig. 21 it can be seen that in the noncongruent phase
transition HIAS the behavior of the order parameters is more
complex. Within the phase coexistence region, i.e., within the
DC and CC shown in Fig. 16, the hadronic and the quark phases
are in coexistence. The two phases are spatially separated and
in each of the two phases one has different values of the order
parameters. At the onset of the PT at the confinement curve one
has @ = 1, i.e., the volume fraction of the quark phase is still
1 and the volume fraction of the hadronic phase is 0. Inside
the phase coexistence region, the quark phase has a larger
value of ® but also a slightly increased chiral condensate o,
as observed for HIAS_fc before. With decreasing fi, not only
the volume fraction of the quark phase decreases, but also
the properties of the two phases change. One clearly sees that
chiral symmetry breaking proceeds in both of the two phases
with decreasing density. On the other hand, ®# is decreasing,
and @2 is slightly increasing. When the deconfinement curve
isreached, @ = 0 and only the hadronic phase is left. After this
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FIG. 22. (Color online) Phase diagram in the temperature-baryon
chemical potential plane for neutron stars with local (NSLCN) and
global charge neutrality (NSGCN). The horizontal thick gray line at
T = 01is a trajectory through the phase diagram, for which we show
the order parameters in Fig. 23. The large black dot is the critical point
of NSGCN, and the small one the pseudocritical point of NSLCN.

in Fig. 21 one sees that ® and 0¥ become equal to values
obtained for HIAS_fc.

Finally, we discuss results for the quark-hadron phase
transition in neutron stars shown in Fig. 22. Let us reiterate that
in this paper we consider the quark-hadron PT in multicompo-
nent matter of neutron stars of macroscopic coexisting phases
(1) with local charge neutrality and (ii) in the variant of global
charge neutrality within the Coulombless approximation. It is
just the Coulombless approximation which justifies the use
of Gibbs conditions instead of Gibbs-Guggenheim conditions,
which are valid for true macroscopic Coulomb systems (e.g.,
Ref. [52]). Local and global charge neutrality constraints lead
to forced-congruent (“Maxwell”’) and noncongruent (“Gibbs”)
PTs. As discussed in Sec. II B, the choice between local or
global charge neutrality can be associated with the unknown
surface tension between the two phases.

The phase diagram of neutron stars looks similar to the one
shown in Fig. 16. In contrast, the dimensionality of HIAS_fc
in Fig. 15 differs from the one of NSLCN in Fig. 22. This
is easy to understand, because Mg = !t is valid for NSLCN
and NSGCN and for HIAS but not for HIAS_fc. The critical
points of the neutron star cases are at lower up and slightly
higher T than in the cases of HIAS and HIS, i.e., the phase
transition regions extend to higher temperatures. Asymmetry
and charge neutrality do not seem to have a major effect at such
high temperatures. Therefore, we relate this difference to the
treatment of strangeness (see Table III). At 7 = 0 the width
of the phase coexistence region of HIAS is 52 MeV, and for
NSGCNitis 70.2 MeV. With the chiral SU(3) model used here,
the hadron-quark PT and the noncongruent features at 7 = 0
seem to be stronger for neutron star matter than for matter in
heavy-ion collisions. This is a result of the larger asymmetries
obtained in B equilibrium due to the large degeneracy of
electrons and also because of the different constraints used
for strangeness.

The critical point of NSGCN is at approximately T¢F =
168.9 MeV and /,L%P = 224 MeV, and that of NSLCN is at
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TP = 168.6 MeV and 1§° = 247 MeV (see also Table IV).
Interestingly, they differ only slightly. It shows that the
treatment of electric charge neutrality plays only a minor role
for the location of critical points of the QHPT at the typical
high temperatures. The local constraint applied in HIAS_fc
which does not allow isospin diffusion has a slightly larger
effect at high temperatures.

The phase transition line for NSLCN with enforced local
charge neutrality must lie strictly within the phase coexistence
region of NSGCN, in accordance with general rules for NCPTs
(e.g., Refs. [57-62]). Both boundaries can touch each other in
points of azeotropic composition. Here this would mean that
the two phases were charge neutral a priori. Actually, this
is not the case, but they only touch because of the thickness
of the lines in the figure. For NSLCN, po will not behave
continuously when the phase transition line is crossed, as
already discussed at the end of Sec. V C, because ,ug differs

from p g This is in accordance with general properties of phase
coexistence of charge neutral, macroscopic phases in Coulomb
systems (see, e.g., Refs. [52,61,121,122]): Any phase-interface
in macroscopic equilibrium Coulomb systems is accompanied
by a finite difference in the average electrostatic potentials of
both coexisting phases (Galvani potential), see also Sec. II B
and compare also with Ref. [123]. However, the total charge
chemical potential 1 still can be related to the local chemical
potentials ,ug and ,u,g if it is seen as a function of baryon
number density. Based on two different assumptions about the
implementation of local charge neutrality, in Appendix C 3 we
derive the following expressions:

. (1 — o)l +aul, for
0= H 0

_ y\PB  H rg ,,Q H _
(1 oz)pB mo +aZig, for Y, =Y.
It would be more intuitive to assume the first of the two
conditions. These expressions can be used to determine the
total chemical potential of charged particles inside the two-
phase mixture.

Figure 22 also includes an example trajectory through
the phase transition region at 7 = 0. This trajectory could
correspond, for example, to the spatial structure inside a
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FIG. 23. (Color online) As shown in Fig. 21 but for the cases of
NSLCN and NSGCN of the example trajectory at 7 = 0.
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neutron star, or better called a hybrid star. In Fig. 23 we
show the behavior of the order parameters for the cases of
NSLCN and NSGCN along the trajectory. For T =0, we
find ®¥ = 0, i.e., the hadronic phase is completely confined.
For finite temperatures this is not the case, as can be seen in
Figs. 11 and 21, where one has some sequential deconfinement
already in the hadronic phase. Otherwise, similar features are
observed as in Fig. 21. The obtained jumps show that we have
a first-order PT. The different values of the order parameters
distinguish the two spatially separated phases. If the PT is
noncongruent, one obtains a phase coexistence region, and the
phases change their properties, including the order parameters,
during the phase transformation.

VII. SUMMARY AND CONCLUSIONS

In this article we investigated the liquid-gas phase transition
(LGPT) described by the FSUgold relativistic mean-field
model and the quark-hadron (QH) or deconfinement phase
transition with the chiral SU(3) model. We did not take
into account any explicit Coulomb interactions or other
finite-size effects but always considered phase coexistence
of macroscopic phases. Different physical systems were
investigated: heavy-ion collisions of symmetric nuclei at low
(LGS) and high collision energies (HIS) and of asymmetric
nuclei with Z/A = 0.3 at low (LGAS) and high collision
energies (HIAS). Furthermore, we also studied the QHPT
in NS. The main goal of our work is to characterize the
first-order phase transitions in the different systems regarding
their possible noncongruence and to identify the typical
noncongruent aspects. This characterization and classification,
and our qualitative results, should not depend on the model
used for the calculations but should be valid in a rather general
way. In our study of noncongruent phase transitions we used
essential features of such types of phase transitions obtained
from terrestrial applications with high-temperature chemically
reacting plasmas [57-62].

A noncongruent, first-order phase transition occurs for a
nonunary system with more than one (globally) conserved
charge where the charge ratios change during a phase
transformation. In principle, all the investigated scenarios
contain several conserved charges, with at least baryon number
and electric charge. However, due to isospin symmetry, for
the symmetric case (LGS and HIS), matter always stays
symmetric, even if there is phase coexistence, which is called
“azeotropic” behavior. Only these two cases lead to congruent
phase transitions. To further illustrate the differences between
a congruent and a noncongruent phase transition, we also
considered the cases of LGAS_fc and HIAS_fc, where we
forced the system to have a congruent phase transition, by
constraining the local charge fractions to be equal in the two
phases. From a physical point of view, the forced-congruent
treatment of phase transformations is not completely artificial
but corresponds to the so-called frozen diffusion approxima-
tion. In a similar way we considered enforced local charge
neutrality in neutron stars in the case of NSLCN instead of
global charge neutrality (NSGCN). In Table V we summarize
the classification of the phase transitions in the different
physical systems.
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TABLE V. Classification of the equilibrium conditions and type
of first-order phase transition in the different scenarios.

Case Equilibrium conditions Type of PT

LGS Gibbs/Maxwell (equiv.) Congruent (azeotrope)
LGAS Gibbs Noncongruent
LGAS_fc Maxwell Forced congruent

HIS Gibbs/Maxwell (equiv.) Congruent (azeotrope)
HIAS Gibbs Noncongruent
HIAS_fc Maxwell Forced congruent
NSLCN Maxwell Forced congruent
NSGCN Gibbs Noncongruent

In the astrophysics community, congruent and noncon-
gruent phase transitions are usually called “Maxwell” and
“Gibbs” phase transitions, referring to the way in which phase
coexistence is calculated. Because of the constant charge
ratios and the fact that all properties of the two phases do
not change for an isothermal phase transformation, a simple
Maxwell construction can be used for the congruent case.
Conversely, for noncongruent phase transitions, the more
complicated Gibbs construction is necessary to solve the set
of thermal, mechanical, and multiple chemical equilibrium
conditions. Due to their prominent role in neutron star physics,
NSLCN and NSGCN are considered the two most represen-
tative scenarios. However, as we demonstrated, they are only
examples illustrating the further classification of first-order
phase transitions to be either congruent or noncongruent.

The distinction between congruent and noncongruent
phase transitions is crucial for the dimensionality of phase
diagrams. For a given temperature 7, a congruent phase
transition occurs at a single value of the Gibbs free energy
per baryon fi. Therefore, in the T-fi plane, one obtains
a phase transition line, as well as in the 7-P and P-ji
planes, and generally in any pair of intensive thermodynamic
variables [52]. Conversely, for a noncongruent phase transition
calculated with the Gibbs construction and a given chemical
composition, in any pair of intensive thermodynamic variables
one obtains two-dimensional “banana-like” phase-coexistence
regions (see, e.g., Fig. 1 in Ref. [52]). One of the conclusions
from the present study is that all asymmetric systems are
noncongruent if no additional local constraints are enforced.
The corresponding phase diagrams should always be regions
and not lines.

Inside the phase coexistence region, the order parameters
(e.g., density and charge fraction for LG, density, charge
fraction, chiral condensate, and & field representing the
Polyakov-loop for QHPT) have different values in the two
phases, which is the actual definition of a first-order phase
transition. We demonstrated the behavior of some of these
order parameters on the binodal boundaries and within two-
phase regions and how they become equal at the critical
point. Furthermore, for the QHPT this was also illustrated
for the chiral condensate and the & field for trajectories
through the phase diagram in a high-energy heavy-ion collision
and in a neutron star. For a congruent phase transition, the
different values appear as a jump when crossing the phase
transition line and moving from one phase to the other.
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For noncongruent phase transitions, at the phase coexistence
boundary the second phase appears, and its volume fraction
increases until the first phase has disappeared completely when
the phase coexistence region has been crossed. During such a
noncongruent phase transformation, both phases continuously
change their thermodynamic properties and order parameters.

Local charge neutrality for macroscopic phase coexistence
in neutron stars under Maxwell conditions has been applied in
a number of published works. It is well known that the local
charge chemical potentials behave discontinuously in such a
transition, while the generalized nonlocal electrochemical po-
tentials are continuous in accordance with generalized Gibbs-
Guggenheim conditions (e.g., Ref. [52]). The discontinuity is
associated with the so-called Galvani potential of the phase
interface in Coulomb systems (e.g., Refs. [61] and [124]).
In the present article, for the Coulombless approximation we
derived expressions for the total charge chemical potential €
inside the phase coexistence region as a function of the total
baryon number density, which behaves continuously. The new
expressions show explicitly that the total chemical potentials
on the binodal surface correspond to the ones of the dominating
phase if its volume fraction is unity. We also derived the total
chemical potentials for the other phase transitions where local
constraints were applied.

Another fundamental aspect of noncongruent phase tran-
sitions is the location and properties of the critical point. For
congruent phase transitions, the critical point is located at the
end of the phase transition line. Conversely, the phase coex-
istence region of a noncongruent phase transition has several
(topological) end points, namely for temperature, pressure,
and chemical potential, which all differ (e.g., Ref. [52]). The
critical point, as the point of thermodynamic singularity, and
where the two phases are identical, does not coincide with
these end points. For the LGPT we found that the temperature
end point is located on the saturation curve, i.e., the critical
point is located at higher densities than the temperature end
point, while the pressure end point is located on the boiling
curve. This is the same arrangement as for noncongruent phase
transitions in terrestrial chemically reacting plasma (e.g., Fig. 1
in Ref. [52]). The properties of all (pseudo-) critical points
found in the present study are listed in Table IV.

For the QHPT we could not resolve the end points and the
critical points because we reached the limit of our numerical
accuracy. But, at the same time, this is related to another
important finding from our study: at low temperatures, the
asymmetry has a significant impact on the phase diagrams
of the QHPT. Conversely, for high temperatures, close to the
critical point, this impact is vanishingly small because the EOS
is dominated by thermal contributions. As a consequence, the
noncongruent features of HIAS are almost unnoticable close
to the critical point. This is in contrast to LGAS of nuclear
matter considered here and the LGPT in terrestrial chemically
reacting plasma [57-62] for which the noncongruence is
significant for all conditions.

Another important difference between the LGPT and QHPT
comes from the phase diagrams in the temperature-pressure
plane. For ordinary Van-der-Waals-like phase transitions of
liquid-gas type, and also for the numerous variants of the
LGPT in nucleonic matter studied in other papers, the slope
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of the P-T phase transition line is positive, which we also
confirm in our study. Conversely, for the QHPT, we found
that the slope is negative, which leads to the conclusion that
this phase transition is not of liquid-gas type. The Clapeyron
equation shows that this peculiar feature is a result of the
generally higher entropy per baryon of the quark phase than of
the hadronic phase during phase coexistence. We also found
that the denser phase of the QHPT (the quark phase) is more
asymmetric than the more dilute phase (the hadronic phase),
which is also opposite the behavior in the LGPT.

In the future, we could extend our work to study phase
diagrams of protoneutron stars and supernovae. Those objects
are special, not only for having higher temperature in compar-
ison to neutron stars but also for having a higher fixed lepton
content due to the presence of trapped neutrinos. Such features
transform an already binary phase transition into a ternary one
due to the introduction of the lepton number conservation,
with potentially interesting results. It was already shown that
a phase transition to deconfined matter prior to the supernova
explosion can have observable effects [125]. Another aspect
which we did not discuss in detail are the consequences of
different constraints regarding strangeness conservation and
possible strangeness distillation.

It would be interesting to explore further the experimental
consequences of noncongruence in heavy-ion collisions. In
our investigations we have found that the noncongruence of
the QHPT increases with decreasing temperature. Therefore,
the possible noncongruent features could become particularly
relevant for the heavy-ion experiments at the future FAIR fa-
cility at Darmstadt or NICA at Dubna, which both aim to probe
asymmetric matter at high densities and low temperatures.
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APPENDIX A: CRITICAL POINTS IN A “TWO-EOS”
DESCRIPTION

It is well known (e.g., Ref. [53]) that in a “two-EOS”
description of PTs, where two different EOS models are used
for the two phases in coexistence, there cannot be a termination
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point or critical point of a phase transition line. This is due to
the standard argument of the impossibility of a continuous
and smooth transformation from one phase into another in a
two-EOS approach (e.g., commonly used for crystal-fluid co-
existence). This is in contrast to the claims in the recent studies
of, e.g., Refs. [38,126—128]. The previous statement can be
supported with the following geometrical argumentation. For
symmetric matter, the two phases give two different planes in
the parameter space of pressure P, temperature 7, and baryon
chemical potential u 5. Where the two planes intersect, one has
phase coexistence. This intersection of two two-dimensional
planes in a three-dimensional parameter space either has to
be a closed or an infinite curve. A termination point of the
intersection curve is impossible, as long as the planes do not
show any discontinuities, which would be rather unphysical.
This argumentation can also be generalized to asymmetric
matter, where the charge chemical potential 1 appears as
another dimension.

APPENDIX B: AZEOTROPIC BEHAVIOR FOR
SYMMETRIC MATTER IN HIS AND LGS

The azeotropic behavior of HIS and LGS can be explained
as a result of isospin symmetry in the following way. First,
it is important to note that from Yy = 0.5 it follows that
the total third component of the isospin is zero, I3 = 0, if
there is no net strangeness, S = 0. Furthermore, the considered
particles (neutrons and protons for LGS; u, d, s quarks, and
the baryon octet for HIS) can be grouped in pairs of isospin
partners, where the isospin partners have identical baryon
number, strangeness, and mass, but opposite third component
of the isospin, and some remaining particles with a zero third
component of the isospin. If, in addition, the interactions
are built in an isospin-symmetric way, namely that they are
identical for the isospin partners at I3 = 0, it follows that
Iy = 0 if and only if the isospin chemical potential is also
zero, [y, = 3 ; = 0. For the constraints used in LGS and
HIS, all these conditions are fulfilled by the two applied EOS
models FSUgold and chiral SU(3). On the other hand, it can
be shown that the charge chemical potential is equal to the
isospin chemical potential, (17, = o. Thus, we obtain that
no =0if Yy = 0.5and S = 0 butindependent of temperature
and density. For two-phase coexistence in HIS and LGS we
use the constraints S'=8"=0 and Yy = 0.5. Therefore,
we get iy, = g = 0and Y, = Y[, = 0.5, which shows that
the two phases remaln symmetrlc and that the PT is, therefore,
azeotropic.

APPENDIX C: TOTAL CHEMICAL POTENTIALS INSIDE
THE PHASE-COEXISTENCE REGIONS

In all cases of HI and LG local constraints are applied for
two-phase coexistence. Therefore, it is necessary to refine the
definition of the total chemical potentials inside the two-phase
mixture and to relate them to the local chemical potentials
already defined in Table II.
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1. HIAS fc and LGAS _fc

Let us start with the cases of LGAS_fc and HIAS_fc. The
constraints listed in Table III are equivalent to considering
B = const., Q = const. = Yo B, Y, = Yj,and §' = S" =0.
Note that this set of constraints also gives Yo = Yj, = Y.
The constraint for zero local strangeness, S' = SII =0, is
formulated with local extensive variables. However, it would
be equivalent to consider Y{ = Y and S =0, or p§ = plf
and S = 0, where we define Yg = S'/B', py = S'/V!, and
analogous expressions for phase II. In conclusion, we have the
simple conservation of the total charges, which are fixed to
some values, plus two additional local constraints Y é = YIQI
and Yg = Y¢', or Y}, = Y[ and pg = py. Let us, first, use the
first of the two formulations of the two local constraints.

Now we can define the total baryon chemical potential
inside the two-phase mixture as the following derivative:

oF
KB = -4 . (C1)
IB T,V,S,0,Y,=Yp,Yi=Y{

This is nothing but the definition of wupg outside the two-
phase mixture given in Table I but with the additional local
constraints taken into account. This is what we mean by the
total chemical potentials inside the two-phase mixtures. For
the definition of g, “Q” and “B” have to be exchanged in
Eq. (C1) and for pug itis “S” and “B”. For fi, only “Q” has to
be replaced by “Y” in the list of constant variables. Note that
this definition of fi gives the same relation,

i=Youg+us, (C2)

obtained previously for single phases. Let us introduce X as
an abbreviation for the set of variables kept constant and the
local constraints,

_OF 3
HE= 5B,
For the definition of the total chemical potentials of other
cases than HIAS_fc and LGAS_fc, one only has to exchange
the local constraints in X.
Now we want to evaluate the above expression for ppg in
HIAS_fc and LGAS_fc. Inside the two-phase mixture, the total
free energy F' is given as the sum of the two phases

F=F\(T. VB S, 0"+ F(T. v B" 5" 0",
(C4)
where we used thermal equilibrium, Eq. (15). With the chain

rule and the definitions of the local chemical potentials of
Table II we obtain

V! V! pil B!
HE="%8 | ~ 9B |y 0B |"*
LBy 0! 'y as|
9B | 2T 8By 9B |
8QI I aQH I
+8_B Mo + 9B X,bLQ. (C5)

Because of pressure equilibrium, Eq. (14), the first two terms
sum up to zero. Next we use S = YIBI for the expression
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asI
57 x5

8YI
9B

+B‘aYI
3B |x

as'|
9B |x

(0B

— 6
S9B | (Co)

where the second equality comes from Ys = 0. If we have

Y; = Y;I, we also have Y; = Y;I = Yy and, thus,
Yy aY. B!
Bl=S 122851 - _Zys=o0. (C7)
B |x 9B |x B

. . 1 .
In conclusion, we obtain £|X =0, and, in the same way,

3S" S5 Ix = 0. Thus, we are left with
_ 9 B! a8 9B 11
np = BB Up 9B
8Q1 anl
B | to+ Gy | o (€8)

To make use of the local constraint YIQ = Yg in X, we replace
Q" with Y/,B" and Q" with YJB" and use Yy = Y}, = Y.
This gives

8BI 1 aBH 11 1, I
MB:B_B (NB‘i'Y )+ BB‘X(MB+YQMQ)
BI BII

Now we can use the interphase equilibrium conditions (31)
and (32), and the definitions of ji' and i"" [Eq. (34)], to obtain

_ BI BH
wp = il = = Youp — —Yoho,
BI | BII - BI B
_ D - Doau_ 2yl _ 2 ymu
g+ g~ g ore — Yoro
I I
= B B (C10)
B B
This can be written as
o P
pp = (1 — a)—MB +a p—BMg, (C11)

where « is the volume fraction of phase II in the two-phase
mixture,

S
=280 (C12)
P~ Pp

For pp = ,oB,onegets up = ,uB,and for pp = ,oB,,uB = ,LLB,
i.e., the correct limits are obtalned Furthermore, if ! 3= =ul B,
one finds that puz = ul = =pul B, independent of pgp. With a
similar derivation, one obtains the following expression for
the total charge chemical potential:

I

_(1—05)—MQ+ PE

— C13
o8 Ho- ( )
It turns out that one obtains the same expressions (C11) and
(C13) if one uses the strangeness constraint in the form ,05 =
py instead of Y{ = Y. Furthermore, note that Egs. (C11),
(C13), and (C2) also allow one to express ji in terms of the
local chemical potentials.
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Interestingly, for the total strange chemical potential the
form of the strangeness constraint makes a difference,

:Os _ pn

(1 —a)ul + aul, for
s = iy 19

(1- )p’*us+ap”us, for

Note that the two forms give identical results if @ = 0 or if
a = 1, i.e., at the phase boundaries.

Equations (C11), (C13), and (C14) can be used to determine
the chemical potential of particles for the two-phase mixture as
a whole. For example, for protons and neutrons, one obtains,
using Eq. (10),

Mp=(1—a) Mp-i-Ol M,,, (C15)

ol

pn = (1 — )Bun+a u,, (C16)
PB PB

For A’s the constraint Y § =Y ;I would, for example, lead to

I

pa = (1 —a)—uA +ap—uA (C17)

2. LGS, LGAS, HIS, and HIAS

In the cases of LGS, LGAS, HIS, and HIAS, the only local
constraint is ST = S = 0. Here one finds

g =Wy = Wy, (C18)
o = lp = Mg (C19)
(1 —)uls +apul, for  py = py
(s = (C20)
(1- )p"us—i-ap”us, for Yi=Yl

3. NSLCN and NSGCN

For the case of NSGCN, which uses the Coulombless
approximation and leads to a noncongruent PT, all three local
chemical potentials have equal values in the two phases and
one obtains

e (C21)
o = [y = [, (C22)
s = ps = pg(=0). (C23)

In Table III, the local charge neutrality constraint in NSLCN
was formulated as Y. = Y'QI =0, i.e., in terms of the local
electric charge fractions. Here one has a similar situation as for
the local strangeness constraint in Appendix C 1: It would be
equivalent to consider ,oIQ = ,oIQI = Oinstead of Y, IQ =Y IQI =0.
After a similar derivation as in Appendix C 1 one obtains

g = M% = 1 (C24)
ps = = uli(=0), (C25)
(1— (x),uQ +O£/LIé, for pIQ = ,oIQI
He= {(1 —a)Z—%uIQ —|—ozp”,ulé, for Y, =Y. (€20
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For the determination of ¢ it makes a difference whether
one assumes equal charge fractions or equal charge densities
in the two phases. It would be more intuitive to assume the
first of the two conditions, namely that additional charge is
distributed uniformly, because here we have in mind that the
Coulomb forces are the reason for local charge neutrality.

APPENDIX D: GIBBS FREE ENERGY

Let us, first, assume we are outside of the two-phase
coexistence region, i.e., there is only one phase. The Gibbs
free energy G can be obtained via a Legendre transformation

from the (Helmholtz) free energy F,
G=F+PV. (D1)

If G =G(T, P,{N;}) is seen as a function of the particle
numbers N;, which are fixed by Eq. (10), one obtains

G = ZNilii,

= Bup+ Qurg + Sus.

(D2)

(D3)

This shows that G can also be seen as a function of B, Q, and S,
ie., G = (T, P, B, Q, S). Furthermore, because we consider
either S = 0 or ug = 0, we obtain from Egs. (D3), (7), and (8),
(D4)
(D5)

G = Bug + QILQ,
= Biji,

which shows that /& is indeed the Gibbs free energy per baryon
(respectively, the two definitions are equivalent).

PHYSICAL REVIEW C 88, 014906 (2013)

Inside the two-phase mixture we have
G = G(T. . (N!). {N!))
— G, P, [N) + (7. P {N1))

=Y Nul+ Y Nl (D6)
= Bluy + By + 0'up + QMg
+ 'l + S, (D7)

where we used Eqgs. (16). Interestingly, the total chemical
potentials given in Appendix C also fulfill the following
equalities:

G = Bup + Quo + Sus. (D8)
=G(T,P,B,0Q,S). (D9)

Note that
G'(T. P, {N}}) = B'ujy + S'us + Q'uy.  (D10)

and because we always consider either S' = S = 0 or u} =
w4 = 0, we obtain from Eq. (34)

G'= BIM% + QIMIQ,
= B'it!,

(D11)
(D12)

so the local fi! is also equal to the local Gibbs free energy per
baryon.

We remark that the Gibbs free energy per baryon is
important because it is just this quantity which must be equal
in the case of forced-congruent phase coexistence (under
Maxwell conditions), in analogy to the specific Gibbs free
energy used for terrestrial chemically reacting plasma.
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