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We analyze the proton-lead collisions at the CERN Large Hadron Collider energy of
√

sNN = 5.02 TeV in
the three-stage approach, previously used to successfully describe the relativistic A-A collisions. The approach
consists of the early phase, modeled with the Glauber model, the event-by-event viscous 3 + 1 dimensional (3 + 1
D) relativistic hydrodynamics, and the statistical hadronization at freeze-out. We show that features typical of
collective dynamics, such as the harmonic flow and the ridge structures in the two-particle correlations in relative
azimuth and pseudorapidity, may be naturally explained in our framework. In the proton-nucleus system the
harmonic flow is generated from an initially event-by-event deformed system and is entirely due to these initial
fluctuations. Notably, fluctuations of strength of the initial Glauber sources which yield the observed distribution
of hadron multiplicities and, at the same time, lead to correct values of the elliptic flow coefficients both from the
two- and four-particle cumulant method, as measured by the ATLAS collaboration. The azimuthally asymmetric
flow is not modified significantly when changing the viscosity coefficient, the initial time for the collective
expansion, or the initial size of the fireball. The results present an estimate of the collective component in the
two-particle correlations measured experimentally. We demonstrate that the harmonic flow coefficients can be
experimentally measured with methods based on large rapidity gaps which reduce some of the other sources of
correlations.
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I. INTRODUCTION

The recent interest in proton-nucleus (p-A) collisions stems
from the expectations that the experimental data for this system
could be used to test various theoretical approaches developed
for relativistic collisions [1], moreover, it could serve as a
reference for experiments involving nucleus-nucleus (A-A)
collisions. An interesting possibility is that the collective
behavior clearly seen in the A-A collisions may be present
already in the p-A collisions, and even in the proton-proton
(p-p) collisions of highest multiplicity of the produced
particles. The experimental [2–8] and theoretical [9–13]
investigations can provide a limit on the amount of the
collective flow in small systems, setting a boundary on the
collective behavior and helping to answer the questions: How
small may the system be and under what conditions it is still
describable with hydrodynamics? What observables are most
sensitive to the collectivity? What is the interplay of various
stages of the dynamics, starting from the initial condition,
through the intermediate evolution, to hadronization?

The studies of the A-A collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) [14] and the CERN Large Hadron
Collider (LHC) [15] led to by now conventional interpretation
of numerous observed phenomena in the midrapidity region
via formation of a hot dense medium—the strongly interacting
quark-gluon plasma—which evolves as a fluid and may be
successfully described with relativistic hydrodynamics [16].
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Basic phenomena supporting this view are

(i) The harmonic flow (elliptic, triangular, higher-order)
[14,15,17];

(ii) Characteristic ridge structures seen [4,15,18] in the two-
particle correlation functions in relative pseudorapidity
and azimuth, possible to explain with harmonic flow
[19,20];

(iii) Specific features of the interferometric radii [21,22];
(iv) Jet quenching (see, e.g., [23] and references therein).

In the study presented in this article we investigate the first two
items from the above list for the case of the p-Pb collisions,
recently studied at the LHC at the collision energy of

√
sNN =

5.02 TeV. We apply a treatment based on hydrodynamics
to find quantitative estimates for the measured quantities,
extending an early analysis of flow [11] by one of us (PB) in the
p-A and deuteron-nucleus systems, as well as the more recent
event-by-event studies of the correlation functions [12] and the
interferometric radii [24]. As will turn out, our results agree at
a quantitative or semiquantitative level with the experimental
data for the highest centrality classes, supporting the collective
picture of the most central p-Pb collisions. Our results also
set the background for more elementary explanations of
the correlation studies, based on saturation and the color-
glass-condensate (CGC) theory [25–30]. We note that certain
features can also be obtained with cascade models [31].

We note that a certain degree of collectivity has
been suggested for the p-p collisions as well [9,10], where a
same-side ridge is observed in the 2D correlations functions [8]
for the highest multiplicity events. This may indicate the
presence of azimuthal correlations in the gluon emission from
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the initial state [25,26,28–30]. However, the same-side ridge
observed in the p-p collisions could also result from the
collective expansion of the created medium [10]. The
intriguing questions concerning the p-p collisions will not be
explored in this work, devoted to the detailed analysis of the
p-Pb case.

Finally, we stress that our method is applicable to soft
physics, related to particles produced with transverse momenta
lower than, say, 2 GeV.

II. THE THREE-STAGE APPROACH

Our event-by-event approach is based on, by now, a
standard picture involving three stages: generation of the
initial densities, hydrodynamic evolution, and hadronization.
Certainly, variants of the modeling of each stage are present in
the literature. We use the Glauber approach as implemented in
GLISSANDO [32] to model the initial phase, the 3 + 1 dimen-
sional (3 + 1 D) viscous hydrodynamics [33], and the statisti-
cal hadronization as implemented in THERMINATOR [34].

A. Initial conditions

The initial condition is generated with GLISSANDO [32],
implementing various variants of the Glauber model [35,36].
The parameters of the calculations are similar as in [11], except
that they are adjusted for the collisions energy of

√
sNN =

5.02 TeV. Thus we take the nucleon-nucleon (NN ) inelastic
cross section σNN = 67.7 mb, moreover, we use a realistic
(Gaussian) wounding profile [37] for the NN collisions.

In the Glauber model, when a NN collision occurs, a source
is produced, meaning a deposition of energy in a location in the
transverse plane and spatial rapidity. In the standard wounded
nucleon model it is assumed that a point-like source is located
at the center of each participating nucleon, which leads to a
rather large initial transverse size in the p-Pb system. Locating
the source in the center-of-mass of the NN pair is also a
possible model choice; it leads to smaller initial distributions.
In the results presented below we use both variants of the
model, termed standard and compact. That way we may
estimate the uncertainty related to modeling the initial phase
within the Glauber treatment.

There is another important effect in the initial stage that
influences the results: The weight of each source fluctuates
according to some statistical distribution, simply reflecting
the fact that each NN collision may produce a different
number of partons and therefore lead to varying deposition
of the entropy. In the simulations [32], this feature is achieved
by overlaying a suitable distribution of strength w over the
spatial distribution of the participant nucleons. As described
in Sec. II E, the observed multiplicity distributions can be
described as convolution of the number of participant nucleons
and a negative-binomial distribution. At the stage of the
formation of the initial fireball it is equivalent to imposing
fluctuations of the entropy deposited per participant nucleon
following the � distribution,

P�(w) = wκ−1κκ

�(κ)
e−κw (1)

with κ = 0.9, as it leads to correct multiplicity distribution
of the produced particles, cf. Sec. II E. This case is labeled
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FIG. 1. (Color online) The distribution of the transverse rms
radius for the initial configuration in the standard case (solid line),
compact case (dashed line), and the Glauber + NB case (dotted line),
for the centrality class 0–3.4%.

Glauber + NB as it eventually gives the multiplicity distribu-
tion as a convolution of the Glauber Monte Carlo distribution of
participant nucleons and a negative binomial distribution. It is
the most physical one and leads to best results when compared
to the experiment. By construction, in the Glauber + NB case
we place the sources at the centers of the participant nucleons,
as in the standard case.

In all cases, after generating the spatial positions of sources,
we smooth them with a Gaussian profile of width 0.4 fm.
This physical effect (the sources do have a non-zero width) is
also essential for hydrodynamics, which requires sufficient
smoothness of the initial conditions. The smoothed initial
distribution is placed on the 3 + 1 D lattice with spacing of
0.15 fm and then the event-by-event hydrodynamics is run.

Some features of the resulting initial distributions are shown
in Figs. 1 and 2 for the collisions at the high centrality,
c = 0–3.4%.1 We use here a few hundred configurations
generated with GLISSANDO which are later fed into the event-
by-event hydrodynamic evolution. The basic properties of the
distributions are listed in Table I.

B. Initial size

At first glance, a rather surprising feature is the large
transverse rms size of the initial distributions. To understand,
consider first the standard case, where the sources are located
in the centers of the proton and of each of the participants
from the lead nucleus. If the geometric “hard-disk” of radius R
were used for wounding, then the inelastic cross section would
be σNN = πR2, from where R = 1.47 fm, corresponding to
rms of 0.98 fm in a single NN collision. This would be the
uncertainty of the location of the point-like source created in
the NN collision in the model. However, we use the realistic
Gaussian wounding profile [37] of the form

p(b) = A exp(−πAb2/σNN ), A = 0.92. (2)

1The statistical errors of our model simulations, not displayed in the
figures, may be estimated by the relative changes of the neighboring
bin heights.
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FIG. 2. (Color online) The distributions of the scaled eccentrici-
ties εn and scaled harmonic flow coefficients vn{2}, n = 2, 3 for the
standard case. The thin solid line shows the Wigner distribution of
Eq. (4). The flow coefficients vn{2} are discussed in the following
sections.

After folding with the distributions of the nucleons in the Pb
nucleus (via the Monte Carlo procedure in GLISSANDO) and
after smoothing the positions with Gaussians of width 0.4 fm
located in the centers of each source, we obtain the rms radius
of the initial distribution listed in Table I, namely, 1.54 fm.

In the compact case, where the the sources are placed in
the center-of-mass of the colliding proton and the nucleon
from the Pb nucleus, the source is significantly smaller, with
the transverse rms of 0.93 fm. More involved models of the
initial stage have been considered [38]. The details of the
energy deposition, such as the fluctuations and small scale
structures, are relatively more important in p-Pb than in
A-A collisions. Our calculation, which uses two cases with
significantly different initial size of the fireball can serve as

TABLE I. The mean values and standard deviations of the basic
characteristics of the initial distributions for the centrality class
0–3.4%.

Standard Compact Glauber + NB

Mean std. dev. Mean std. dev. Mean std. dev.

〈r2〉1/2 [fm] 1.54 0.15 0.93 0.06 1.45 0.22
ε2 0.25 0.13 0.19 0.09 0.34 0.16
ε3 0.29 0.13 0.18 0.09 0.32 0.15

an illustration of the effects of the variation in initial size on
the final harmonic flow observables.

C. Initial eccentricities

The participant eccentricities shown in Fig. 2 are defined in
the usual way for a given event as

εne
i�n =

∫
dxdyrnρ(x, y)eiφ∫
dxdyrnρ(x, y)

, (3)

where ρ(x, y) is the initial transverse entropy distribution in
the fireball at zero pseudorapidity and �n is the azimuthal
angle of the event plane. For the p-Pb system, the origin of the
nonzero eccentricity lies in the fluctuations of the positions of
the participant nucleons. From the formulas of Appendix D of
Ref. [36] it is straightforward to obtain the result that for the
very central collisions, c = 0, where the average distribution in
the Pb nucleus seen by the proton is azimuthally symmetric, the
scaled eccentricities s = εn/〈εn〉 calculated from the positions
of the participant nucleons follow the Wigner distribution

w(s) = πs

2
exp

〈
− πs2

4

〉
, (4)

independently of the rank n of the harmonic component. The
distribution has 〈s〉 = 1 and var(s) = 4/π − 1 [36]. We note
that this universality is clearly seen in Fig. 2, up to the statistical
noise and a slight departure from the central case of c = 0. The
eccentricities are calculated from the smooth coarse-grained
lattice distributions which introduces some small corrections
with respect to the eccentricities calculated from discrete
positions of the the participant nucleons [39].

D. Pseudorapidity distribution

It is assumed that the initial transverse and longitudinal
distributions are factorized. This assumption plays a key role
in the interpretation of the development of the ridge structures
in the hydrodynamic approach. It means that the transverse
distribution is, within a reasonable range around the central
region, independent of the pseudorapidity, i.e., approximately
boost invariant. This leads to a correlation of “geometry” for
the fireball slices separated by 
η, and, in consequence, to
the correlation of flow. If an (approximately) boost-invariant
fireball is formed, azimuthal correlations due to collective flow
show up [17,19].

For the shape of the longitudinal distributions in the NN
center-of-mass frame we use the following profiles in the
space-time rapidity η‖:

f (η‖)± = exp

(
− (|η‖| − η0)2

2σ 2
η

θ (|η‖| − η0)

)

× (yb ± η‖)

yb

θ (yb ± η‖), (5)

with η0 = 2.5, ση = 1.4, and yb = 8.58 denoting the beam
rapidity. The indices + and − correspond, respectively, to the
distribution generated by the forward and backward moving
participant nucleons. The same functional form of the profile
has been successfully used in Ref. [40] to describe features of
the A-A collisions, in particular the spectra in pseudorapidity
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FIG. 3. (Color online) Model predictions for the rapidity distribu-
tion of π+ for the most central events. The solid line is for the standard
calculation, with the initial source rms size of 1.54 fm, η/s = 0.08,
and the initial time τ0 = 0.6 fm/c. The dotted line shows the results
for the initial time of 0.2 fm/c (and the other parameters unchanged),
the dashed line stands for the calculations with η/s = 0.16, and
the dash-dotted line represents the calculation with the initial rms
size 0.93 fm/c. The solid line with the triangle symbols shows the
Glauber + NB results, the case where the Glauber Monte Carlo initial
conditions are convoluted with the � distribution (cf. Sec. II E).

and the behavior of the directed flow at RHIC. A phenomeno-
logical motivation for such “triangular” parametrizations has
been discussed in [40,41]. The asymmetric distribution in
space-rapidity leads to asymmetric rapidity distributions of the
produced hadrons. The predicted asymmetry is the strongest
for central collisions (Fig. 3). A more detailed study of the
energy deposition in the longitudinal direction will be possible
once data on pseudorapidity (rapidity) distributions for differ-
ent centralities become available. The azimuthal asymmetry
is largely factorized from the longitudinal distribution, and
the details of the parametrization in Eq. (5) are not essential
for the estimates of flow coefficients. The shape of the
fireball in the transverse plane is similar at different rapidities,
hence the reaction planes at different pseudorapidities are
aligned (Sec. IV B). To summarize, the initial conditions for
hydrodynamics are the product of the smoothed transverse
Glauber distribution in the transverse plane and the function
(5) in the longitudinal direction.

E. Multiplicity distribution and fireball fluctuations

The Glauber Monte Carlo approach provides
event-by-event fluctuations in the number of NN
collisions and their distribution in the transverse plane.
This mechanism explains most of the observed fluctuations
in the shape of the fireball in the A-A reactions [42,43]. The
event-by-event hydrodynamic expansion of the fluctuating
fireball generates azimuthally asymmetric flow and its
fluctuations [17,38,43,44]. Some observables indicate that
additional sources of fluctuations are present, beyond
the fluctuations in the number of participant nucleons,

e.g., the event-by-event distribution of harmonic flow
coefficients [15,45] or the multiplicity distributions [38,46].

It is well known that the multiplicity distributions in the
p-p collisions can be described by the negative binomial
distribution [48]

Nλ,κ (n) = �(n + κ)λnκκ

�(κ)n!(λ + κ)n+κ
, (6)

where the multiplicity n has the mean and variance given by λ
and λ(1 + λ/κ), respectively. Below we argue that in the p-Pb
collisions we have a similar situation. In Sec. II A we stated
that one should overlay a weight distribution over the spatial
distribution of participant nucleons—a feature implemented
in GLISSANDO. Now we show how this distribution can be
adjusted in such a way that the multiplicity data are properly
reproduced.

We use the multiplicity distributions of tracks observed
in the minimum-bias p-Pb collisions [47]. In the three stage
model of particle production, multiplicity fluctuations come
from the fluctuations of the initial entropy of the fireball, from
the entropy production during the viscous hydrodynamic stage,
and from the statistical emission of hadrons at freeze-out. To
a good approximation, in the considered regime of centralities
the entropy after the hydrodynamic expansion is directly
proportional to the initial entropy, which reflects the fact that
the deterministic hydrodynamic evolution does not introduce
fluctuations [49]. For independent statistical emission, the
number of emitted hadrons is proportional to the final entropy
and follows the Poisson distribution [34].

First, we consider the case where there is no weight distri-
bution overlaid over the participant nucleons. Then the initial
entropy is proportional to the number of participant nucleons
and the distribution of the observed tracks is a convolution of
three distributions: the distribution of participant nucleons, a
Poisson distribution for each participant with a mean λ defined
as the average number of particles produced per participant,
and a binomial distribution with success rate p giving the
probability of recording a track in the CMS acceptance. The
folding yields the multiplicity distribution of the produced
hadrons of the form

P (n) =
∑

i

Ppart(i)
(λpi)n e−λpi

n!
, (7)

where Ppart(i) is the distribution of the participant nucleons
from the Glauber Monte Carlo. The parameter λp = 5.36 is
chosen to reproduce the mean number of the observed tracks.
As we can see (the dotted line in Fig. 4), the multiplicity
distribution from the Glauber model convoluted with the
Poisson distribution is much too narrow and does not reproduce
the experimentally observed high-multiplicity tail.

The above shows that inserting a distribution of weights
over the participant nucleons is necessary. In that case the
distribution of the observed tracks is a convolution of four
distributions: the distribution of participant nucleons, an
overlaid distribution of weights, a Poisson distribution for
the production of hadrons, and a binomial distribution for
the experimental acceptance. When we use the distribution of
weight in the form of the � distribution (1), then its folding
with the Poisson distribution yields the negative-binomial
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FIG. 4. (Color online) Multiplicity distribution of tracks with
p⊥ > 0.4 GeV and |η| < 2.4 measured by the CMS collaboration
[47]. The dotted and solid lines denote the convolution of the
distribution of participant nucleons from GLISSANDO with the Poisson
and negative binomial distributions, respectively.

distribution (6), which we now take for hadrons produced per
participant nucleon. One finds

P (n) =
∑

i

Ppart(i)Npλi,κi(n). (8)

The experimental multiplicity distribution is now very well
reproduced with the parameter values λp = 5.36 and κ =
0.9 (solid line in Fig. 4). We refer to this calculation as
Glauber + NB.

The procedure outlined above is clearly a simplified picture
of the multiplicity fluctuations in the relativistic nuclear
collision. Further effects could be important, in particular
the shape of the multiplicity distribution can depend on the
pseudorapidity window, the track acceptance of the CMS
detector is not uniform, particles from jets that contribute to the
the tails of the multiplicity distribution do not increase the fluc-
tuations in the thermalized fireball, or the entropy production
in viscous hydrodynamics is not exactly linear. Nevertheless,
the considered mechanism of additional density fluctuations in
the fireball can serve as a model to illustrate its expected effects
on the eccentricities and the harmonic flow coefficients. Such
effects in A-A collisions have been considered previously in
the Glauber scheme [36,50] and found to be relevant.

F. Hydrodynamics

The hydrodynamic model used in this work is described
in detail in [11]. It carries out an event-by-event 3 + 1 D
evolution and includes the shear and bulk viscosities. The
multiplicity expected in central p-Pb collisions is extrapolated
linearly in the number of the participating nucleons from the
minimum bias results of the ALICE collaboration [2]. That
way the average initial entropy per participant is adjusted.
The shape of the entropy distribution follows the distribution
of sources described in the previous section. The starting
time of hydrodynamics is chosen to be τ0 = 0.6 fm/c for the
standard case, but the evolution with the choice τ0 = 0.2 fm/c
is also studied. The relatively short total duration of the
collective expansion phase makes the results more sensitive
to this very early stage and, possibly, to some nonequilibrium
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Τ
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FIG. 5. (Color online) A sample event evolution, visualized via
the freeze-out isotherms in the x − τ plane (solid) and the y − τ

plane (dashed). The standard case.

transient behavior [51]. The ratio of the shear viscosity η
to entropy density s is η/s = 0.08 or η/s = 0.16, while the
ratio of the bulk viscosity ζ to s in the hadronic phase is
ζ/s = 0.04 [52]. For each case (standard, compact, higher
viscosity, lower initial time, or Glauber + NB) we produce
initial configurations that are evolved event-by-event with
hydrodynamics to obtain freeze-out hypersurfaces of the
constant temperature Tf = 150 MeV.

Two typical evolution histories for the standard and compact
case, both for Npart = 19, are depicted in Figs. 5 and 6, where
we show isotherms at Tf = 150 MeV in the x − τ plane (solid
lines) and in the y − τ plane (dashed lines). We note that
although the systems originally have different sizes, the spatial
spread of the isotherms at later times is similar, about 5 fm.
The evolution of the standard source is about 15% longer than
from the compact-source case. The radial flow is larger for
the compact case, as the system is more squeezed initially.
This leads to 20% higher values of the average transverse
momentum.
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FIG. 6. (Color online) Same as Fig. 5 for the compact-source case.
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FIG. 7. (Color online) Midrapidity transverse momentum spectra
of π+ for the most central events. Symbols as in Fig. 3.

The transverse momentum spectra depend on the choice of
initial conditions. The pT -spectra for π+ are shown in Fig. 7.
We notice that the spectra get harder with the increase of
the shear viscosity, the decrease of the initial time τ0, or in
the Glauber + NB case. The hardening of the spectra is most
pronounced when starting the calculation from the compact
source, which involves larger gradients present in the system.

G. Statistical hadronization

For each freeze-out configuration we generate 1000 THER-
MINATOR events to efficiently improve the statistics. This is a
technical point, as physically one event should hadronize into
one set of hadron distribution. The trick of running multiple
THERMINATOR simulations on the same hydro-event allows us
to efficiently improve the statistics, as the computing time
for the hydro-evolution is two orders of magnitude longer than
for the generation of a single THERMINATOR event.

We note that the statistical hadronization built in THERMI-
NATOR contains the nonflow correlations from all resonance
decays. The use of a full Monte Carlo generator of hadron
distributions is also of practical merits, as it allows imple-
mentation of the kinematic cuts, acceptance or efficiency from
the experimental setup, which is crucial in comparisons to the
data.

H. Local charge conservation

Sizable correlations among opposite-charge particles result
from the local charge conservation [53]. There are indications
that this effect is generated at hadronization [20,54], i.e., at
the late stage of the reaction. Our implementation of the
charge balancing is based on the assumption that the particle-
antiparticle pairs of charged hadrons are emitted locally at
freeze-out, carrying thermal distribution. The mechanism is
described in detail in Ref. [20].

I. Transverse-momentum conservation

In our studies of the correlation variables we enforce the
global transverse momentum conservation, which is important

in correlation analyses [55]. In particular, it affects the shape
of the two-particle correlations in relative pseudorapidity and
azimuth. To satisfy the constraint approximately we require
the following condition on the global transverse momentum:√√√√(∑

i

px

)2

+
(∑

i

py

)2

< PT , (9)

where i labels particles in the event. We have found nu-
merically that in the central p-Pb system it suffices to take
PT = 5–10 GeV. That way we retain 5–10 % of the least-PT

events from our full sample. A further lowering of PT does not
affect the correlation results, while it deteriorates the statistics.
The momentum conservation is imposed when calculating
the dihadron correlation functions. For the calculation of the
elliptic and triangular flow, imposing the momentum conser-
vation in that form is irrelevant.

J. Centrality definition

The simplest determination of the centrality classes in our
model can be obtained from conditions on the number of the
participant nucleons. The collisions with Npart � 18 amount
to 3.4% of the most central events from GLISSANDO. The
next most central class is defined as 16 � Npart � 17, which
forms centrality 3.4–7.8 %. On the other hand, as noted in [11],
simplistic centrality definitions based on the impact parameter
are ill defined for central p-Pb collisions.

For the Glauber + NB case we define the centrality classes
not by the number of participant nucleons, but through the
total initial entropy in the fireball, i.e., we take into account the
fluctuations from the overlaid � distribution. A more accurate
determination, following closely to the experimental setup,
should impose the cuts on the final multiplicity of the produced
particles, instead of on Npart or the initial entropy.

III. TWO-PARTICLE CORRELATIONS

A. Definitions

The basic objects of the study of this section are the
two-dimensional two-particle correlation functions in relative
pseudorapidity and azimuth. These quantities in comparison
to the CMS data [4] have already been analyzed in [12]. Here
we extend this analysis, comparing to the ATLAS data [6] as
well.

The simplest definition of the correlation function in the
considered kinematic variables is

C(
η,
φ) ≡
〈

d2Npair

d
η d
φ

〉
events〈

d2Npair

d
η d
φ

〉
mixed events

. (10)

If the correlations were absent, C(
η,
φ) = 1, thus unity is
a natural scale for this measure. This correlation is used by the
ATLAS collaboration [6].

The “per trigger” correlation function, used by the CMS
collaboration, is defined as [4]

Ctrig(
η,
φ) ≡ 1

N

d2Npair

d
η d
φ
= B(0, 0)

S(
η,
φ)

B(
η,
φ)
,

(11)
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with 
η and 
φ denoting the relative pseudorapidity and
azimuth of the particles in the pair. The signal and the mixed-
event background are defined with the pairs from the same
event, and the pairs from the mixed events, respectively:

S(
η,
φ) =
〈

1

N

d2Npair

d
η d
φ

〉
events

,

(12)

B(
η,
φ) =
〈

1

N

d2Npair

d
η d
φ

〉
mixed events

.

The number of particles N in the prefactor (denoted by CMS
as Ntrig) is the number of charged particles in a given centrality
class and acceptance bin, corrected for the detector efficiency.
The multiplication with the central bin content B(0, 0) in
Eq. (11) brings in the interpretation of Eq. (11) as the average
number of correlated pairs per trigger particle.

To make quantitative comparisons easier, one also uses the
projected correlation functions. A function used by the ATLAS
collaboration is defined as

Y (
φ) =
∫

B(
φ)d(
φ)

πN
C(
φ) − bZYAM, (13)

where S(
φ) and B(
φ) are averages of S(
η,
φ) and
B(
η,
φ) over the chosen range in 
η avoiding the central
region, in particular 2 < |
η| < 5 in the ATLAS analysis, and
the constant bZYAM is such that the minimum of Y (
φ) is at
zero.

B. Comparison to the ATLAS data

The result of our simulations for the most central p-Pb
collisions (c = 0–3.4 %) with the kinematic cuts correspond-
ing to the ATLAS setup [6] is shown in Fig. 8. We display
the standard-source case, as for the compact or Glauber + NB
cases the results are quantitatively similar. We note the two
prominent ridges, generated with flow, as well as the central
peak, coming in our simulation from the charge balancing [20].

The same-side ridge appears naturally as a consequence
of the collective flow. More precisely, in our framework the
shape and flow in the fireball in the forward and backward
rapidity regions is correlated, reflecting the assumption on the
factorization of the transverse and longitudinal distributions

φΔ-1 0 1 2 3 4 5
ηΔ

-5-4-3-2-1012345

)φ
Δ,η

Δ
C

(

0.98
0.99

1
1.01
1.02
1.03
1.04

<4 GeV
T

c=0-3.4%, 0.5<p

FIG. 8. (Color online) The charge-independent correlation func-
tion C(
η,
φ). The total transverse momentum is approximately
conserved with the condition PT < 10 GeV. Charge balancing is
included.

φΔ
0 0.5 1 1.5 2 2.5 3

)φΔ
Y

(

0

0.1

0.2

0.3

0.4

0.5

0.6

 < 4.0 GeV
T

0.5 < p

c=0-3.4%

FIG. 9. (Color online) Projected and ZYAM-subtracted corre-
lation function Y
(φ) for the most central p-Pb collisions for
the standard source (solid line) and compact source (dashed line),
compared to the ATLAS data (points) at �EPb

T > 80 GeV. The total
transverse momentum is approximately conserved with the condition
PT < 5 GeV. Charge balancing is imposed.

in the initial condition. In particular, the principal axes of the
elliptic flow are correlated along the whole pseudorapidity
span. Thus, there are more pairs with 
φ ∼ 0 and 
φ ∼
π regardless of 
η. This “flow explanation” of the ridge
formation is appealing in its simplicity.

Next, to compare quantitatively to the data, we look at
the projected correlation function Y (
φ). There is a technical
issue which must be discussed. By construction, the prefactor
of Y (
φ) is proportional to 〈N (N − 1)〉/〈N〉—the ratio of the
average number of pairs to the average number of particles.
Thus to reproduce Y (
φ) in a model calculation one needs to
have proper correlations, but also correct fluctuations of the
multiplicity. The second requirement is not easy to accomplish,
in particular as ATLAS is using the transverse energy to define
the centrality classes, and the fluctuations of multiplicity are
large. For that reason in our comparison we rescale our model
Y (
φ) in such a way that the subtraction constant bZYAM is the
same in the model and in the experiment. This assumes that
the mechanism generating the flow and the ridge structures is
‘factorizable” from the multiplicity fluctuations.

The result of this procedure is shown in Fig. 9 for the most
central collisions. We note that experimental data fall within
our model results for the standard (solid line) and compact
(dashed line) sources. We note that the compact source, leading
to larger flow, has more prominent ridges.

The CMS correlation data for the p-Pb collisions have been
compared to in our previous short paper [24], hence we do
not repeat these results here, but only mention they are in
semiquantitative agreement with the data.

C. Effects of transverse momentum conservation

We can now demonstrate the relevance of the transverse
momentum conservation and the simple procedure introduced
in Sec. II I. We use the projected correlation function C(
φ)
for that purpose. We note that limiting the value of the max-
imum total transverse momentum PT in the accepted events
moves the strength from the same-side ridge to the away-side
ridge. This is natural, as the momentum conservation increases
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FIG. 10. (Color online) Projected correlation function C
(φ) for
the most central p-Pb collisions for the standard source and several
values of the maximum total transverse momentum PT , listed in the
legend.

the back-to-back motion of the particle. We note that for
a practical purpose it is enough to use PT < 5–10 GeV. A
further reduction changes the results very little at the expense
of deteriorating the statistics. The numerical results, displaying
the mentioned convergence, are shown in Fig. 10.

IV. HARMONIC FLOW

A. Cumulant method

From the two- and four-particle cumulant method [56] we
obtain the values of the flow coefficients collected in Table II.
The kinematic cuts correspond to the ATLAS experimental
setup. We compare the standard and the Glauber + NB
simulation, without or with the local charge conservation, and

TABLE II. Model predictions for the elliptic and triangular flow
coefficients from the cumulant method for the p-Pb collisions at√

sNN = 5.02 TeV. The cuts |η| < 2.5, 0.3 < pT < 5 GeV corre-
spond to the ATLAS setup. The standard and Glauber + NB cases
are used, with η/s = 0.08 and τ0 = 0.6 fm/c, without and with
charge balancing. The errors are statistical and reflect the accumulated
number of simulated THERMINATOR events (the actual error are
somewhat larger due to a small number of the event sample).

c = 0–3.4% c = 3.4–7.8%

Standard, no balancing
v2{2}2 [10−3] 3.70(1) 3.78(2)
v3{2}2 [10−3] 1.04(1) 0.95(1)
v2{4}4 [10−6] −0.4(4) 1.83(5)
v3{4}4 [10−6] 0.0(2) −0.3(3)

Glauber + NB, no balancing
v2{2}2 [10−3] 8.18(12) 8.24(10)
v3{2}2 [10−3] 1.52(8) 1.51(6)
v2{4}4 [10−6] 15(7) 16(6)
v3{4}4 [10−6] −2(2) −2(2)

Glauber + NB, with balancing
v2{2}2 [10−3] 8.22(7) 8.68(6)
v3{2}2 [10−3] 1.57(4) 1.62(4)
v2{4}4 [10−6] 19(4) 19(4)
v3{4}4 [10−6] −1(1) 0(1)

TABLE III. Parameter dependence of the predictions for the
elliptic and triangular flow coefficient from the two-particle cumulant
method for the p-Pb collisions at

√
sNN = 5.02 TeV, c = 0–3.4 %,

|η| < 2.5, 0.3 < pT < 5 GeV. Charge balancing not included.

v2{2} [%] v3{2} [%]

Standard
η/s = 0.08, τ0 = 0.6 fm/c 6.09(1) 3.22(2)
η/s = 0.08, τ0 = 0.2 fm/c 7.44(1) 4.49(1)
η/s = 0.16, τ0 = 0.6 fm/c 5.57(1) 2.67(2)
η/s = 0.16, τ0 = 0.2 fm/c 7.12(2) 4.01(2)

Glauber + NB
η/s = 0.08, τ0 = 0.6 fm/c 9.0(1) 3.9(2)

list the results for the two highest centrality classes. In Table III
we show the dependence of v2{2} for the most central events
on the parameters of the model: the value of the sheer viscosity
η and the time when hydrodynamics is initiated, τ0.

We note several qualitative features from Tables II and III:

(i) The dependence on centrality is very weak, as expected
from the flow generated mainly by the fluctuations of
the initial condition.

(ii) The vn{4}4 coefficients are, within the statistical limit of
our simulations, compatible with zero for the standard
case, while for the Glauber + NB simulations v2{4}4 is
positive. This again shows the fluctuation nature of the
generated flow from the Glauber initial conditions. Ad-
ditional fluctuations of the entropy deposited initially in
the fireball increase the eccentricity and yield a nonzero
value of v2{4} (cf. Table I).

(iii) Increased sheer viscosity quenches, as expected,
the flow. The relative effect is stronger for higher
harmonics.

(iv) A shorter time of starting hydrodynamics increases the
flow, which again is expected.

(v) The effect of the local charge balancing increases
somewhat the flow coefficients.

As a matter of fact, the first two items above are crucial
for the proper interpretation of the observed phenomenon.
Detailed comparisons of the model predictions to experimental
measurements provide a way of learning about the shape and
fluctuations of the initial density in the p-Pb system. The
observation of nonzero v2{4} by the ATLAS Collaboration [57]
indicates that in the small interaction region formed in the
p-Pb collisions the large fluctuations of the energy deposited
in each NN collision, as present in the Glauber + NB case, are
crucial. Thus the initial conditions from the Glauber model in
p-Pb collisions are fluctuation-dominated, analogously to the
central A-A collisions. The same observation applies to the
final elliptic and triangular flow in p-Pb collisions.

In view of the recent experimental results for the 2D
correlations functions in p-Pb collisions, it is interesting to
look at the possibility of measuring directly the harmonic flow
coefficients. We plot the elliptic and triangular flow coefficients
as functions of the pseudorapidity gap in Fig. 11. The quantities
are obtained in our hydrodynamic model from the Fourier
decomposition of the correlation function Ctrig(
η,
φ) [20].
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FIG. 11. (Color online) The flow coefficients v2(
η) (upper lines)
and v3(
η) (lower lines) calculated from the two-particle correlations
as function of the relative pseudorapidity of the particles in the pair.
The solid and dashed lines are for the unlike- and like-sign pairs,
respectively. The central peak is due to charge balancing and, to a
lesser extent, resonance decays.

The nonflow effects present in our model are important only
for pairs of small pseudorapidity separation. In the intervals
|
η| > 2 the nonflow effects from the resonance decays and
the local charge conservation can be neglected. We note that the
flow coefficients in Fig. 11 are sizable, thus could be measured.
It must be noted, however, that other sources of nonflow
correlations may be present also in that kinematic region, but
with smaller amplitudes, as measured in the p-p collisions [8].

The p⊥-dependent elliptic and triangular flow coefficients
calculated with the two-particle cumulant method [56] are
presented in Figs. 12 and 13. In the p⊥ < 2 GeV range,
where hydrodynamics applies, the flow coefficients show a
typical hydrodynamic behavior and the magnitude of the flow

0 0.5 1 1.5 2

0.1

0.2
=1.5fm1/2>2=0.6fm/c <R

0
τ/s=0.08η

/s=0.16η
=0.9fm1/2>2<R

=0.2fm/c0τ

Glauber+NB

p-Pb 5.02TeV   0-3%

2v

   [GeV]p

FIG. 12. (Color online) The p⊥ dependence of the elliptic flow
coefficient of charged particles with |η| < 1, obtained from the
second-order cumulant method. The solid line corresponds to the
standard calculation, η/s = 0.08, τ0 = 0.6 fm/c, with the initial
source rms size of 1.5 fm, the dotted line shows the case where
the initial time is reduced to 0.2 fm/c, the dashed line stands for the
calculations with increased viscosity, η/s = 0.16, and the dash-dotted
line represents the case of the compact source with rms size of
0.9 fm/c. Finally, the solid line with the triangle symbols shows
the Glauber + NB case (Sec. II E).
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0.05

0.1

0.15

0.2
=1.5fm1/2>2=0.6fm/c <R

0
τ/s=0.08η
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Glauber+NB

p-Pb 5.02TeV   0-3%
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FIG. 13. (Color online) Same as Fig. 12 for the triangular flow
coefficient, v3{2}.

is large. We find the elliptic (triangular) flow of about 10%
(5%) for p⊥ ∼ 1 GeV. The results are sensitive to the physical
parameters of the model (cf. Table III). The flow decreases
for larger viscosity or when using compact initial conditions,
and increases when starting the hydrodynamic evolution
earlier. It also increases with the presence of additional initial
fluctuations, as in the Glauber + NB case (Fig. 14). We notice
a larger relative variation for the triangular flow than for the
elliptic flow when varying the parameters.

B. Scalar product method

The correlation between particles produced in p-Pb colli-
sions can have different origin. A way to reduce some of the
nonflow contributions to the harmonic flow coefficients is to
use methods involving a rapidity gap between the reference
particles defining the event plane orientation and the particles
used to calculate the flow coefficient. In this subsection we
present results for the scalar product method [58,59]. One

20 40 60 80 100 1200

0.02

0.04

0.06

0.08

0.1

0.12 p-Pb 5.02TeV ATLAS
{2}2v
{4}2v
{2PC}2v

 hydro  Glauber{2}2v
 hydro  Glauber+NB{2}2v
 hydro  Glauber+NB{4}2v

  GeV〉 EΣ〈

2v

FIG. 14. (Color online) The elliptic flow coefficient of charged
particles for |η| < 2.5, 0.3 < p⊥ < 5.0 GeV from the cumulant
method v2{2} and v2{4}, and from the dihadron correlation function
measured by the ATLAS collaboration [57], compared to our
hydrodynamic calculation for the standard case (v2{2} at centralities
0–3.4 % and 3.4–7.8 %) and for the Glauber + NB case (v2{2} and
v2{4} at centralities 0–5 %, 5–10 %, and 10–20 %). The corresponding
transverse-energy for the centralities in the model calculations is
obtained via interpolation of the experimental values.
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defines the Qn vector

QA,B
n ei�n =

∑
k

wke
inφk (14)

as a sum over charged particles in a given reference bin (A or
B). We use two definitions of the event plane, one with charged
particles with 0.3 < p⊥ < 3 GeV and 2.0 < η < 2.5 (Pb side),
or with −2.5 < η < 2.0 (proton side). The weights are equal to
the transverse energy (wk = E⊥) for the 3.2 < |η| < 4.8 bin.
The resolution correction is

Q̄A
n =

√〈
QA

n QB
n

〉 〈
QA

n QC
n

〉
〈
QC

n QB
n

〉 , (15)

where the reference bin C is defined in all cases as 0.3 < p⊥ <
3 GeV and |η| < 0.5. We have checked that the results do not
differ noticeably when changing the p⊥ or η limits defining
the Q vectors. The flow coefficients are then calculated as

vA,B
n {SP } =

〈
Q

A,B
N cos (n(φk − �n))

〉
Q̄

A,B
n

. (16)

The flow coefficients with reduced statistical error can be ob-
tained with combined event planes on the proton and Pb sides.

In Fig. 15 we show the elliptic and triangular flow
coefficients obtained from the scalar-product method with the
Q vector from the bin 2.0 < |η| < 2.5 on either the proton or
the lead side. We notice that the two results are very consistent,
with slightly smaller statistical errors for the Q vector defined
on the lead side. This reflects a better resolution of the event
plane in that case. The azimuthally asymmetric initial source
for hydrodynamic evolution is longitudinally extended, which
yields a strong correlation between the event planes on the lead
and proton sides. The observed two-particle correlation func-
tions are almost symmetric for 
η > 0 and 
η < 0, which
shows that the correlations are similar on the proton and the
lead side [4]. The consistency of flow correlations defined with

0 0.5 1 1.5 2
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0.15

0.2

p side EP

Pb side EP

combined EP

2v 3v
p-Pb 5.02TeV   0-3%

nv

   [GeV]p

FIG. 15. (Color online) The elliptic (solid symbols and dashed
line) and triangular (open symbols and solid line) flow coefficients
obtained with the scalar product method. The circles and squares
represent the calculation using the Q vector calculated on the proton
and lead side, respectively. The lines show the result of combining
the the two event planes.
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|<4.8)η Q(3.2<|{SP}2v

p-Pb 5.02TeV   0-3%
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   [GeV]p

FIG. 16. (Color online) Comparison of the elliptic flow coeffi-
cients for |η| < 1 calculated from the second cumulant method (solid
line), from the scalar product method with event planes defined by
charged particles in 2 < |η| < 2.5 and 0.3 < p⊥ < 3.0 GeV (dotted
line), and from the scalar product method with event planes defined
by the transverse energy in 3.2 < |η| < 4.8 (dashed line).

Q vectors for positive and negative rapidities justifies the use
of the combined Q vector, which reduces the statistical error.

The results obtained with the Q vectors defined by charged
particle tracks or the calorimeter energy are compared to the
results of the second cumulant method in Figs. 16 and 17.
The elliptic and triangular flow coefficients obtained from the
different definitions of the Q vector are very similar. The
second cumulant harmonic flow is calculated for smaller
average pseudorapidity separation of the pair, thus contains
some contribution of non-flow effects which increase the
observed correlations. We expect that in the presence of
additional non-flow correlation in the small system, such
deviations could be larger. By comparing the second cumulant
vn to methods using large rapidity gaps, the importance of such
nonflow correlations could be estimated in the data.

C. Correlations of flow and the initial geometry

One of the main reasons to study the flow is to acquire
the knowledge on the early phase of the reaction. One
result that holds event-by-event is the proportionality of the
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FIG. 17. (Color online) Same as Fig. 16 for the triangular flow.
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FIG. 18. (Color online) The scattered plot of the event-by-event
eccentricity-elliptic flow correlations. Glauber + NB, correlation
coefficient 0.85.

eccentricity coefficients of the “geometric” distribution, εn, to
the coefficient of the harmonic flow of the produced hadrons,
vn. In Figs. 18 and 19 we show the event-by-event scattered
plots of eccentricity-flow distributions. For this calculation the
hydrodynamic events are combined from 1000 THERMINATOR

events corresponding to the same freeze-out configuration. We
notice large correlation coefficients, defined as

ρ = 〈εnvn{2}〉 − 〈εn〉〈vn{2}〉
var(εn)var(vn{2}) (17)

in these distributions, ρ = 0.85 for the elliptic and ρ = 0.74
for the triangular case, respectively. This feature, well know
for the A-A collisions, is vividly present in our treatment of
the p-Pb collisions.

V. CONCLUSION

We have analyzed various aspects of soft collective dy-
namics of the relativistic p-Pb collisions in the approach
consisting of three stages: Glauber modeling of the initial
phase, event-by-event viscous 3 + 1 D hydrodynamic, and
statistical hadronization. Our analysis shows that the collective
dynamics may very well be present in the highest-centrality
p-Pb system formed in ultra-relativistic heavy-ion collisions.
The application of the three-stage model, where the shape
fluctuations in the initial stage are carried over to the
harmonic flow coefficients in the hadronic spectra, allows for a
quantitative understanding of the data for v2 and v3, as well as
to describe the ridge structures in the two-particle correlation
functions. The issues connected to the femtoscopic variables
in p-Pb collisions, which display considerable sensitivity to
collectivity, have been presented elsewhere [24].

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.02

0.04

0.06

0.08

Ε3

v 3

FIG. 19. (Color online) Same as Fig. 18 for the triangular case.
Correlation coefficient 0.74.

Thus, following the successful experience of describing
the A-A collisions in the three-stage approach, we argue that
the collective scheme provides a natural and conventional
explanation of numerous aspects of the soft dynamics of the
“small” p-Pb system.

In central p-Pb collisions, the initial shape eccentricity
parameters εn are entirely due to fluctuations. These fluctu-
ations are enhanced by the distribution of overlaid weights on
the spatial distribution of the participant nucleons. We find
it quite remarkable that the same distribution that explains
the multiplicity distribution of the produced hadrons in
minimum-bias collisions leads also to quantitative agreement
for the values of the elliptic and triangular flow coefficients
measured recently by the ATLAS collaboration [57]. This
agreement includes the elliptic flow coefficient obtained from
the four-particle cumulants.

We argue that the lowest harmonic flow coefficient may
be measured directly in the LHC p-Pb experiments, hence
we compute them through various methods (cumulant, scalar-
product, rapidity-gap). These predictions, as well as the
femtoscopic radii [24], will hopefully be verified shortly in
the upcoming experimental analyses.
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[11] P. Bożek, Phys. Rev. C 85, 014911 (2012).
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