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Longitudinal fluctuations of the center of mass of the participants in heavy-ion collisions
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A model for computing the probability density of event-by-event participant center-of-mass rapidity yc.m. is
presented. The evaluations of the yc.m. distribution are performed for different collision energies and different
centralities. We show that for certain conditions the rapidity distribution is described by a Gaussian with a variance
determined mostly by the collision centrality. It is found that the width of the yc.m. distribution increases strongly
for more peripheral collisions, while it depends weakly on the collision energy. Other theoretical estimates of
rapidity distribution are presented and questions of interaction and separation between spectators and participants
are discussed.
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I. INTRODUCTION

To describe the many-particle interacting system created in
heavy-ion collisions (participant system) different models—
such as hydrodynamics or kinetic transport models—are used.
Along with the participants there are also spectators, which
are nucleons emerging from the colliding nuclei that do
not take part in any reaction with other nucleons during
the collision process and move with their initial momenta.
The number of spectators from each of the nuclei changes
event by event (EbE) and, due to this fluctuation, the center
of mass of participant system does not coincide with the
collider center-of-mass system (cms); i.e., the participant c.m.
rapidity, yc.m., may be nonzero in a particular event. The EbE
fluctuations of yc.m. can be especially significant in peripheral
collisions when the impact parameter of colliding nuclei is
large and the mass of the spectators is essential.

When comparing different observables which depend on
rapidity, for instance collective flow (calculated, e.g., in a
hydrodynamical model) with experimental measurements, it
could be important to account for participant c.m. fluctuations,
which may influence the results [1–3]. The possible influence
of EbE longitudinal fireball density fluctuations on the mea-
surable two-particle rapidity correlation function was recently
studied in [4].

In the present work a simplified model for the calculation
of the EbE yc.m. distribution is presented, and center-of-mass
rapidity fluctuations are discussed.

II. THE MODEL

A. Participant rapidity from spectators

We consider the collision of two identical heavy nuclei
with mass number A, and we analyze the probability for a
nucleon to become a spectator or a participant. The many-
particle system created in heavy-ion collisions can be divided
into three subsystems (Fig. 1): spectators from the projectile
(A), spectators from the target (B), and participant particles
(P). The conservation of four-momentum provides us with the
following expressions for the total energy and longitudinal

momentum in the collider cms:

Etot = EA + EB + EP , (1)

P z
tot = P z

A + P z
B + P z

P = 0. (2)

The c.m. rapidity of the participant system can then be
expressed as

yP = 1

2
ln

EP + P z
P

EP − P z
P

. (3)

Using Eqs. (1) and (2) we can express yP in terms of spectator
energy and momentum [3]:

yc.m. ≈ yP = arctanh

[
− (

P z
A + P z

B

)
Etot − EA − EB

]
. (4)

Next we will neglect the initial Fermi motion of nucleons
in the colliding nuclei compared to their collective collision
energy. In this case we can express Etot, EA(B), and P z

A(B) in
terms of spectator numbers NA and NB as

Etot = 2Ap0
i , (5)

EA = NA p0
i , (6)

EB = NB p0
i , (7)

P z
A = NA pz

i , (8)

P z
B = −NB pz

i , (9)

where p0
i = √

s/2 and pz
i =

√
s/4 − m2

N are the initial nucleon
energy and momentumm respectively, and hence the spectator
nucleon energy and momentum. Here mN = 938 MeV/c2 is
the nucleon mass. The c.m. rapidity can be expressed now in
terms of the spectator numbers NA and NB as

yP (NA, NB) = arctanh

(
NB − NA

2A − NA − NB

vi

)
, (10)

where vi = pz
i /p

0
i is the initial velocity of nucleons. It is

seen from this relation that within our model only discrete
sets of values of yc.m. are possible. This is a consequence
of neglecting the Fermi motion of nucleons, which would
smear the momenta of spectators if accounted for, and also a
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FIG. 1. (Color online) Decomposition of the system into spec-
tators and participants. The possibility for nucleons to become
spectators even if they are in the overlap region of colliding nuclei is
specially illustrated.

consequence of neglecting the interaction between spectators
and participants. Thus, we can determine the probabilities of
different participant rapidities, yc.m., if we can determine the
probabilities of spectator numbers NA and NB .

B. Spectator number probability

The transverse distribution of spectators in the collision
of heavy ions can be evaluated from the Glauber-Sitenko
approach [5–7]:

d2Nspec

dxdy
= TA(x − b/2, y)

[
1 − σNNTB(x + b/2, y)

A

]A

+ TB (x + b/2, y)

[
1 − σNNTA(x − b/2, y)

A

]A

,

(11)

where b is the impact parameter, σNN is the nucleon-nucleon
reaction cross section, and

TA(B)(x, y) =
∫

dz ρA(B)(x, y, z)

is the thickness function of the projectile (target) nucleus. Here

ρA(B)(x, y, z) ∝
[

1 + exp

(
r − R

α

)]−1

(12)

is the Woods-Saxon nuclear density distribution in nucleus.
For large mass number, A, we have (1 − σNNTB/A)A ≈
exp (−σNNTB) and in this case Eq. (11) is often written in terms
of exponents. The first term on the right-hand side of Eq. (11) is
the transverse distribution of the spectators from the projectile
nucleus and the second term is the transverse distribution of
the spectators from the target nucleus. The probability that a
nucleon from the projectile will become a spectator (which is
the same as the probability for a nucleon from the target due
to symmetry) can be expressed as

pA = pB = p = 1

A

∫
dx dy TA (x − b/2, y)

×
(

1 − σNNTB(x + b/2, y)

A

)A

. (13)

FIG. 2. (Color online) (a) The nucleon spectator probability
dependence on impact parameter for Pb + Pb collisions at

√
sNN =

2.76 TeV. (b) The same dependence of the average number of
spectators (dotted green line) and participants (dashed blue line). The
solid red line indicates the lower threshold value for these numbers,
which determines the conditions when the Gaussian approximation
of the Poisson distribution is applicable.

The dependence of this probability on the impact parameter
for Pb + Pb collisions at

√
sNN = 2.76 TeV is depicted in

Fig. 2. The values of parameters used for calculations are
σNN = 70 mb [8,9], A = 208, R = 6.53 fm, and α = 0.545.
Using parameter p from (13) we can determine the probability
that there will be NA(B) spectators in the projectile (target) as
a binomial distribution:

p(NA) =
(

A

NA

)
pNA (1 − p)A−NA, (14)

p(NB) =
(

A

NB

)
pNB (1 − p)A−NB . (15)

Here we have assumed that the initial many-nucleon distri-
bution function can be approximately expressed as a product
of one-nucleon distribution functions; i.e., the momenta and
spatial positions of nucleons are uncorrelated. Next, one can
take the number of spectators in the projectile as independent
of the number of spectators in the target. This is not exactly
true: e.g., if there are participants from one nucleus then
there were reactions between the colliding nucleons, and there
should also be participants from the other nucleus. This implies
that, for a fixed number, NA, of spectators in the projectile
nucleus we can expect the number of spectators, NB , in the
target nucleus to fluctuate around the value 〈NB〉 ≈ NA. An
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analogous statement can be found in Ref. [10] where this
subject was analyzed within the microscopic transport models.
So, the numbers of spectators from different nuclei are not fully
uncorrelated. Meanwhile, for the sake of simplicity, we assume
that the number of spectators in the projectile is independent
of the number of spectators in the target. But we can expect
this approximation to work well if we have colliding heavy
ions with large mass numbers. Using this approximation we
can write

p(NA, NB) ≈ p(NA) p(NB). (16)

Using this probability one can then determine the distribution
function of the corresponding c.m. rapidity of the participants
[see Eq. (10)].

C. Gaussian approximation and rapidity distribution

As mentioned above, in our approach yP takes discrete set
of values. Because we neglect the smearing of momentum
of spectators, the rapidity is defined solely by the spectator
numbers, NA and NB , which so far take discrete sets of values.
It is possible to obtain a continuous rapidity distribution if we
allow the quantities NA and NB to take continuous values. It is
well known that for some conditions the binomial distributions
p(NA) and p(NB) can be accurately approximated by the
Gaussian distribution with mean Ap and variance Ap(1 − p)
as

p(NA(B)) ⇒ ρ(NA(B)) =
exp

(− (NA(B)−Ap)2

2Ap(1−p)

)
√

2πAp(1 − p)
. (17)

In our case these conditions are the following: the average
spectator and participant numbers, Ap and A(1 − p), are large
enough, e.g., Ap > 5 and A(1 − p) > 5. It is seen from Fig. 2
that these conditions are quite well satisfied in our model
for heavy ions, especially for noncentral collisions. Using
the Gaussian approximation (17) we can write the rapidity
distribution function as

fP (y) =
∫ A

0
dNA

∫ A

0
dNB ρ(NA) ρ(NB )

× δ[y − yP (NA,NB )]

=
∫ ∞

−∞
dNA

∫ ∞

−∞
dNB ρ̃(NA) ρ̃(NB)

× δ[y − yP (NA,NB )], (18)

where to switch to infinite integration limits we introduce

ρ̃(NA(B)) = ρ(NA(B)) θ (A − NA(B)) θ (NA(B)). (19)

Let us now define the new variables

N = 1

2
(NA + NB), n = NB − NA,

fP (y) =
∫ ∞

−∞
dN

∫ ∞

−∞
dn ρ̃(N + n/2) ρ̃(N − n/2)

× δ

[
y − arctanh

(
n

2(A − N )
vi

)]
. (20)

Then we make a transformation to a new variable in the
δ function in accordance with the rule δ[y − f (n; N )] =

δ[n − F (y; N )]/|f ′(n)|, where

n = F (y; N ) = 1

vi
2(A − N ) tanh y. (21)

After f ′(n) is introduced explicitly, the rapidity distribution
becomes

fP (y) =
∫ ∞

−∞
dN ρ̃(N + n/2) ρ̃(N − n/2)

2(A − N )

vi cosh2 y
.

(22)
In order to compute the integral in (22) we will use the
following approximation:

ρ̃(N ± n/2) ≈ ρ(N ± n/2). (23)

This approximation works well in the case when the original
binomial distribution (15) is well approximated by the Gaus-
sian (17). The presence of the Gaussian allows one to neglect
the Heaviside theta functions in the integration in (22), which
we perform using (17) for ρ(N ± n/2) and obtain

fP (y) =
√

A(1 − p)

πp

v2
i exp

[−A(1−p)
p

tanh2 y

v2
i +tanh2 y

]
cosh2 y

[
v2

i + tanh2 y
] 3

2

. (24)

D. Ultrarelativistic limit and distribution at midrapidity

It is useful to analyze Eq. (24) in the ultrarelativistic limit,
i.e., when vi → 1. We obtain

f UR
P (y) =

√
A(1 − p)

πp

exp
[−A(1−p)

p
tanh2 y

1+tanh2 y

]
cosh2 y[1 + tanh2 y]

3
2

. (25)

If we now consider collisions of identical nuclei at fixed
impact parameter for different collision energies then we can
see that the only parameter in Eq. (25) which depends on
collision energy is the single-nucleon spectator probability p.
It depends on collision energy only due to possible energy
dependence of the nucleon-nucleon cross section σNN [see
Eq. (13)]. It is known that for a wide energy range [e.g.,
for Super Proton Synchrotron (SPS) and Relativistic Heavy
Ion Collider (RHIC) energies] σNN depends very weakly on
collision energy and therefore we can claim that under such
conditions the participant center-of-mass rapidity distribution
is invariant of collision energy.

Another limit which can be explored is the distribution at
midrapidity, i.e., around y = 0. We can expect that the c.m.
rapidity fluctuations in heavy-ion collisions should be quite
small (and subsequent calculations in next section seem to
confirm this) and for small c.m. rapidity values yc.m. we can
approximate hyperbolic functions in Eq. (24) as cosh y ≈ 1
and tanh y ≈ y. Also, since we deal with relativistic collision
energies vi should be close to 1, which allows us to write
(tanh y)2 + v2

i ≈ v2
i . With these approximations the rapidity

distribution becomes

fP (y) =
√

A(1 − p)

πp v2
i

exp

[
−A(1 − p)

p v2
i

y2

]
. (26)
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FIG. 3. The dependence of the standard deviation on the impact
parameter. The calculations are made for Pb + Pb collisions at√

sNN = 2.76 TeV.

This is actually a Gaussian distribution around y = 0 with
variance

δy2 = p v2
i

2A(1 − p)
. (27)

The expression for the variance gives the following result:
rapidity fluctuations are stronger for higher nucleon spectator
probability p; i.e., they are increasing with the increase of
impact parameter. For p = 0 there are no spectators in the
system and therefore the collider cms and the participant cms
coincide. This result is reproduced by Eq. (26) in our model.

The dependence of standard deviation,
√

δy2, given by this
Gaussian distribution on collision impact parameter for Pb +
Pb collisions at

√
s = 2.76 TeV is depicted in Fig. 3. It is seen

that the standard deviation of rapidity (which is basically a
distribution width) stays significantly smaller than 1, hence
justifying our approximation of rapidity distribution for small
values of y. We can expect the total rapidity distribution given
by the Gaussian in Eq. (26) to work well for most conditions
in heavy-ion collisions.

Expression (27) for
√

δy2 can be rewritten in terms of mass
number A and average number of participants, Np = A(1 −
p). It reads as

δy2 = v2
i

2

(
1

Np

− 1

A

)
. (28)

It is interesting to explore the dependence of rapidity fluctua-
tions on the average number of participants, Np, for different
pairs of colliding nuclei A + A. This dependence is depicted
in Fig. 4 for Pb + Pb, In + In, S + S, and C + C collisions.
There we take the initial nucleon velocity vi = 1, since just
ultrarelativistic collision energies are considered. Notice that,
for fixed average number of participants, Np, the rapidity
fluctuations are stronger in collisions of heavier nuclei. For
instance, if we consider central collisions of light nuclei, then
the rapidity fluctuations in “equivalent” noncentral collisions
of heavier nuclei will be bigger. Here “equivalent” means that
in both colliding systems the average number of participants,
Np, is the same. A similar amplification of fluctuations with
respect to the mass number was obtained in Ref. [10].

FIG. 4. (Color online) The dependence of standard deviation,√
δy2 [see Eq. (28)], of the rapidity distribution given by the Gaussian

(26) on the average number of participants, Np , for different colliding
nuclei: Pb + Pb, In + In, S + S, and C + C.

III. CALCULATION RESULTS

Let us calculate the participant c.m. rapidity distribution
for various collision conditions. The dependence of nucleon
spectator probability p from (13) on the impact parameter was
considered in Sec. II. This dependence for Pb + Pb collisions
at

√
s = 2.76 TeV is depicted in Fig. 2(a). It is seen that

the nucleon spectator probability strongly depends on the
centrality of the collision: it is small, but nonzero, for central
collisions, about 0.5 for midcentral collisions, and closer to
unity for peripheral collisions.

Next, we will explore the participant c.m. rapidity distribu-
tion for different centralities but for the same collision energy
using Eq. (24) for calculations. The rapidity distributions for
Pb + Pb collisions at

√
s = 2.76 TeV are depicted in Fig. 5

for three different centralities: central (b = 0 fm), midcentral
(b = 6 fm), and peripheral (b = 9.5 fm). It is seen that the
rapidity distribution fP (y) depends strongly on the impact
parameter, just as the nucleon spectator probability. At small
impact parameter the yc.m. fluctuations are small and appear
to be insignificant. However, increasing the impact parameter
up to 9.5 fm (peripheral collisions) results in a significant
increase of the fP (y) distribution width compared to central

FIG. 5. (Color online) Participant center-of-mass rapidity distri-
bution for Pb + Pb collisions at

√
sNN = 2.76 TeV for three different

centralities.
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FIG. 6. (Color online) Participant center-of-mass rapidity distri-
bution for peripheral Pb + Pb collisions at

√
sNN = 6.41 GeV (Ekin =

20 GeV),
√

sNN = 17.32 GeV (Ekin = 158 GeV), and
√

sNN =
2.76 TeV.

collisions. So, in peripheral collisions the c.m. rapidity fluctu-
ations may play an important role when calculating different
measurable rapidity distributions [3]. As was discussed, the
rapidity fluctuations are smaller in central collisions of light
nuclei compared to the fluctuations in noncentral collisions
of heavier nuclei when the number of participants is the
same in both cases. It was also checked that in all three
cases depicted in Fig. 5 the calculated rapidity distribu-
tion virtually coincides with the Gaussian distribution given
by (26).

It is interesting to explore the influence of the collision
energy on the participant c.m. rapidity fluctuations. To do that
we consider Pb + Pb collisions at three different energies:√

sNN = 6.41 GeV (Ekin = 20 GeV),
√

sNN = 17.32 GeV
(Ekin = 158 GeV), and

√
sNN = 2.76 TeV. The first two

energies correspond to CERN SPS experiments and the third
one to the CERN Large Hadron Collider (LHC) experiment.
We take σNN = 33 mb for both SPS energies [8] and σNN =
70 mb for LHC energy. The calculation results for different
energies for peripheral collisions (b = 9.5 fm) are presented
in Fig. 6.

We can see that the collision energy influence on participant
c.m. rapidity fluctuations is rather weak, especially compared
to the centrality dependence. This can be explained by the
fact that for high energies the rapidity distribution is well
described in the ultrarelativistic limit (25), and the difference
between LHC energy and SPS energies is due to doubling of
the nucleon-nucleon cross section, which still does not lead to
a significant change in rapidity fluctuations.

A. Other theoretical estimates

Longitudinal fluctuations arising from initial state fluctua-
tions in the PACIAE parton and hadron molecular dynamics
model were analyzed recently [11], and the fluctuation of
the center-of-mass rapidity of the system was conservatively
estimated to be �yc.m. = 0.1, by neglecting all pre-equilibrium
emission effects that increase the yc.m. fluctuations.

The unique separation of participants and spectators in
realistic situations is not trivial. Between the participants

FIG. 7. (Color online) Participant center-of-mass rapidity dis-
tribution for Pb + Pb peripheral collisions at

√
sNN = 17.32 GeV

(Ekin = 158 GeV) within the present model and in the UrQMD model.

and spectators some level of interaction may remain at
the separation, and a small number of nucleons cannot be
classified definitely as either participants or spectators. This
indefiniteness may result in an increase or a decrease of yc.m.

fluctuations. Longitudinal fluctuations may influence other
observables also [12,13].

Next we will compare our model calculations with cor-
responding calculations within the ultrarelativistic quantum
molecular dynamics (UrQMD) microscopic transport model
[14,15]. The EbE c.m. rapidity can be computed in the
UrQMD model by using Eq. (3). There we can account for
the Fermi motion as well as for initial nucleon correlations;
however, a large number of simulated UrQMD events are
necessary to obtain a smooth distribution. The comparison
of the participant c.m. rapidity distribution calculated within
our model and with the UrQMD model for Pb + Pb collisions
at

√
sNN = 17.32 GeV (Ekin = 158 GeV) with σNN = 33 mb

for peripheral collisions (b = 9.5 fm) is presented in Fig. 7.
One can see that there is a difference in the distributions

calculated within these two models: the distribution from the
UrQMD model is wider. The difference is relatively small
compared to the difference arising from changing the collision
centrality (see Fig. 5). The difference, which is seen in
Fig. 7, can be attributed to neglecting the initial many-nucleon
correlations as well as the spectator number correlations for
nucleons from the colliding nuclei, which were assumed in our
model. It could also be questioned whether nucleons, which
did not take part in any reaction in the UrQMD model, may
be correctly identified as spectators in the Glauber-Sitenko
approach.

The separation of spectators from participants is studied
in Ref. [16]. Here the pre-equilibrium emission of one or
two nucleons plays a non-negligible role. The (thermal) equi-
libration is demonstratively not present for particles, which
interacted fewer than 4–6 times. These cannot be considered
as parts of a participant system and usually have large
longitudinal and small transverse momenta, although these
do not reach the zero-degree calorimeters, so experimentally
these are not identified as spectators. Similar considerations
were used to describe the strangeness enhancement within
the core-corona picture [17], where nucleons which have
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FIG. 8. (Color online) Participant center-of-mass rapidity distri-
bution for (a) central and (b) peripheral Pb + Pb collisions calculated
in the UrQMD model for different participant definitions, where
nucleons which collided less often than the given limit are excluded
from the participants.

scattered only once were regarded as corona nucleons and
were not part of a fireball. In central and semiperipheral
reactions these pre-equilibrium particles may influence the
yc.m. fluctuations considerably. For example, if we exclude
nucleons from the participant system which collided fewer
than six times, M < 6, then in central collisions the center-
of-mass rapidity fluctuation doubles [see Fig. 8(a)]. However,
there is little change in the rapidity distribution in case of
peripheral collisions [Fig. 8(b)].

B. Participant angular momentum

The model also provides an estimate of the total angular
momentum of the initial participant system. The angular
momentum LP

tot of the participant system can be calculated as
the difference of total angular momentum Ltot and the angular
momentum of spectators, LS

tot. The quantities Ltot and LS
tot

can be calculated with the use of nuclei thickness functions
TA(B)(x, y) and using the transverse distribution of spectators,
T S

A(B)(x, y), as

Ltot = pz
i

∫
dx dy x [TA(x − b/2, y) − TB(x + b/2, y)] ,

LS
tot = pz

i

∫
dx dy x

[
T S

A (x, y) − T S
B (x, y)

]
,

LP
tot = Ltot − LS

tot.

FIG. 9. (Color online) The dependence of total angular mo-
mentum of the participant system on impact parameter in Pb + Pb
collisions for (a) LHC and (b) SPS conditions for different nuclear
density profiles.

The transverse distribution of spectators can be determined
from the Glauber-Sitenko model as (11). Another approach is
to consider as participants all nucleons in the overlap region
of colliding nuclei [1,2,18,19].

First of all the angular momentum for LHC Pb + Pb reac-
tions at

√
sNN = 2.76 TeV is about two orders of magnitude

larger than that at SPS energy of
√

sNN = 17.32 GeV (see
Fig. 9) and one order of magnitude larger than for Au+Au
reactions at RHIC energy of

√
sNN = 200 GeV [19].

The angular momentum is the largest for nuclei with
a Woods-Saxon radial density profile [see Eq. (12)], due
to the presence of the diffusion zone with a tail, which
effectively increases angular momentum. For nuclei with
homogeneous nuclear density where the density profile has
a sharp boundary we consider all nucleons from the overlap
region as participants and all other nucleons as spectators
(hard sphere nuclei). In this case the angular momentum is
about a factor of 2 less than for a Woods-Saxon profile (see
Fig. 9).

If, in addition, transparency in the overlap region is
assumed due to the finite NN cross section (soft sphere
nuclei) then the angular momentum is further reduced by
2% and 15% at LHC and SPS energies, respectively (see
Fig. 9).

Thus, in fluid dynamical and in molecular dynamics
models, the assumed initial state leaves some freedom for the
angular momentum of the participant system.
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IV. CONCLUSIONS

A simple model to calculate the participant c.m. rapidity
distribution is developed and used to analyze the rapidity
fluctuations for different conditions in heavy-ion collisions.
In the model a weak initial nucleon-nucleon correlation in
colliding nuclei and weak correlations between spectator
numbers from different nuclei are assumed and the interaction
between spectators and participants is neglected. The main
input parameter in the model is the probability for a nucleon to
be a spectator, which is determined from the Glauber-Sitenko
approach in the present work. Different models for calculating
this probability are applicable.

It is shown that for small rapidity values the rapidity
distribution can be well approximated by the Gaussian dis-
tribution with variance determined by the nucleon spectator
probability and by initial nucleon velocities. The calculation
results confirm that this approximation works well in a wide
range of collision energies and centralities.

It is shown that rapidity fluctuations strongly depend on
impact parameter—they are stronger for more peripheral
collisions and these fluctuations should be taken into account
in calculation and interpretation of various rapidity-dependent

observables [3]. It is necessary to note that, if we consider
collisions of two different pairs of nuclei, for instance A1 + A1

and A2 + A2 with A1 > A2, where the number of participants
is the same in both collisions, then the rapidity fluctuations
are smaller in collisions A2 + A2 of lighter nuclei. Recent
studies [3] indicate a possibility of experimental measurement
of the yc.m. fluctuations.

The collision energy dependence of rapidity fluctuations
appears to be weak. Comparison with similar c.m. rapidity dis-
tribution calculations within the UrQMD model shows qualita-
tive agreement; however, some indefiniteness in identification
of spectators and participants, for instance pre-equilibrium
emission of nucleons, may lead to extra sources of participant
c.m. fluctuations, especially at more central collisions.
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