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One-neutron and noncompound-nucleus decay contributions in the 12C + 93Nb reaction
at energies near and below the fusion barrier
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The dynamical cluster-decay model (DCM), with effects of deformations and orientations of nuclei included
in it, is used to study the decay of the hot and rotating compound nucleus 105Ag∗ formed in a 12C + 93Nb reaction
at near and below barrier energies. The only parameter of the model is the neck-length parameter, which varies
smoothly with the temperature of the compound nucleus, and its value remains within the range of validity
(∼2 fm) of the proximity potential. The emissions of both the observed light particles (A2 = 1–4) representing
the evaporation residue (ER) and the (energetically favored) intermediate mass fragments (IMFs; 5 � A2 � 13),
together with the so far unobserved fission channel, are considered as the dynamical collective mass motions of
preformed fragments or clusters through the barrier. A best fit to data is shown to be obtained only if a large
noncompound-nucleus (nCN) contribution, calculated as a quasifission or capture process, is allowed in the
DCM. Another interesting result is that the one-neutron contribution is large, rather the largest, when best fits
are attempted only for the ER cross sections, but, in turn, it reduces to zero or becomes relatively small if the
data on the total fusion cross section σfus, i.e., σER + σIMFs, are considered. Furthermore, the fusion-fission (ff)
cross section σff , consisting of symmetric and near-symmetric fragments, at the considered three energies of the
experiment, is predicted to be of the order of 101 to 103 mb, depending on the choice of neck-length parameter
for fission region. Further experimental studies are called for both the nCN and ff channels in this reaction.
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I. INTRODUCTION

Heavy-ion reactions at below barrier energies give rise to
highly excited compound nuclear systems that carry large
angular momentum and hence decay by emitting multiple light
particles (LPs: A � 4, Z � 2, like n, p, and α) or their heavier
counterparts and γ rays, termed the evaporation residue (ER),
intermediate mass fragments (IMFs) of masses 5 � A � 20
and 2 < Z < 10, and fusion-fission (ff) consisting of the
near symmetric and symmetric fission fragments (nSF and
SF, respectively) of masses (A/2) ± 20. In addition, many a
times a noncompound-nucleus (nCN) decay process, such as
quasifission (qf) or, equivalently, capture, also contribute. The
cross section for such a compound nucleus (CN) decay is
called the CN production cross section, or simply the (total)
fusion cross section σfus, given as

σfus = σER + σIMFs + σff + σnCN = σCN + σnCN. (1)

In general, the IMFs form a part of the ff and, in a fissionless
decay, its contribution is small, of the order of 5 to 10%, i.e.,
σIMFs ≈ 5–10% σER. All these components of the fusion cross
section are individually measurable quantities. If the σnCN has
not been measured, it can be estimated empirically from the
calculated and measured σCN as

σnCN = σ
Expt.
CN − σ Cal.

CN . (2)

It may be pointed out that different mass regions of compound
nuclei constitute different combinations of these processes
(ER, IMFs, ff, and nCN) or a single one of them as the dominant
mode.

In a recent experiment [1], the excitation functions (EFs)
of various decay products were measured for the CN 105Ag∗

formed in a 12C + 93Nb reaction at below barrier energies.
The observed decay products are the heavy residues whose
complementary fragments are the LPs (A � 4) and IMFs
(4 � A � 13). The data are compared with the statistical
model code PACE2, which gives the complete fusion (CF,
equivalently, ER) cross section consisting of 2n, 3n, 4n, and
possibly also 4H. The disagreement of PACE2 for heavier
residues, the IMFs, is taken by the authors as signatures of
incomplete fusion (ICF) and/or the direct reaction process,
supported by their recoil range distribution measurements. The
ICF consists (the complementary fragments) of 4,5,6H, 4,5He,
8Li, 9,10,11Be, 12B, and 13C. What is striking about the PACE2

predictions is that one-neutron (1n) emission is, in general,
found missing (cross section σ1n = 0; see also, e.g., Refs. [2,3]
for a 64Ni + 100Mo reaction where only the ER cross section is
measured [2]). On the other hand, like in Ref. [3], we see in the
following that the dynamical cluster-decay model (DCM) [3,4]
predicts the contribution due to 1n to be the largest, when
only the ER cross sections σER (=∑4

x=1 σxn) are considered,
but like in experiments [1], in DCM also the σ1n reduces to
almost zero (or becomes relatively very small) if the IMFs
cross sections σIMFs (here, IMFs is the summed cross section
of 5–13 mass numbers) are also included, i.e., the total fusion
cross section σfus is considered, rather than σER alone. It is
important to stress that the study of EFs (σfus as a function
of CN excitation energy E∗

CN) serves as a powerful tool to
understand the reaction mechanism governing the collision
dynamics, ranging from CF and ICF to more complex nCN
pre-equlibrium or qf processes.

In this paper, we attempt to understand the measured
total cross section σTotal (=σER + σIMFs), including the role of
missing 1n content in σER, the fusion-fission σff contribution,
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FIG. 1. Schematic configuration of two equal or unequal axially
symmetric deformed, oriented nuclei lying in the same plane
(azimuthal angle � = 00) for various θ1 and θ2 values in the range 0◦

to 180◦. The θi are measured counter-clockwise from the colliding
axis and the αi are measured clockwise from the symmetry axis.

and the σnCN component in σTotal, together with the EFs for
the decay of 105Ag∗ formed in the 12C + 93Nb reaction, using
the DCM [3,4]. We consider the three laboratory energies
ELab. = 46.4, 54.0, and 61.2 MeV (Ec.m. = 41.097, 47.828,
and 54.205 MeV, respectively), at which the EFs for 2n, 3n
and mass 4 (4H, 4He, and 4n/4H, respectively) are measured
in the present experiment [1]. In the following, we find
that, on the basis of the DCM, an unexpectedly large nCN
component is predicted in this reaction, whose possibility
was pointed out by Mirgule et al. [5] in their measured
α spectra of the above-noted experiment at near Coulomb
barrier energies in the entrance channel. The possible role
of deformed configurations is also anticipated in this work
[5]. Our DCM calculations include deformation effects up

to hexadecapole deformations (β2i , β3i , β4i) with compact
orientations θci , i = 1, 2, of the hot fusion process for the case
of coplaner (azimuthal angle � = 0◦) nuclei (see Fig. 1) [6,7].
For prolate-deformed nuclei, in a compact hot fusion process,
the barrier is highest and the interaction radius is smallest in a
configuration of belly-to-belly (for � = 0◦) or equator-cross
(for � �= 0◦). If one of the nuclei is spherical, the configuration
is termed equatorial compact (ec). The presence of large
positive hexadeccapole deformation (β4 � 0), together with
β2 > 0, results in a not-belly-to-belly compact (nbbc) or not-
equatorial compact (nec) configuration, which differs from bbc
or ec by as much as 20◦. The same is true for oblate-deformed
nuclei [8], as illustrated in Table I for the present reaction.

The paper is organized as follows. Section II gives a brief
description of the DCM. Our calculations for the 12C + 93Nb
reaction, using the DCM, are given in Sec. III. A summary and
conclusions of our work are presented in Sec. IV. Brief reports
of this work have been reported at the 2012 Department of
Atomic Energy (DAE) Symposium on Nuclear Physics [12]
and the 2013 Chandigarh Science Congress (CHASCON) [13].

II. THE DYNAMICAL CLUSTER-DECAY MODEL (DCM)

The DCM of Gupta and collaborators [3,4] is based on
collective coordinates of mass (and charge) asymmetries η
(and ηZ) [η = (A1 − A2)/(A1 + A2), ηZ = (Z1 − Z2)/(Z1 +
Z2)] and relative separation R, with multipole deformations
βλi (λ = 2, 3, 4; i = 1, 2) and orientations θi . In terms of these
coordinates, for the CN fusion probability in the entrance
channel taken as unity for all partial waves (an assumption
more suitable for higher energies, but extended here to lower
energies), we define the CN decay cross section for 
 partial

TABLE I. The compact orientations θci , as per the prescription in Ref. [7], the deformations (β2i , β3i , β4i ; i = 1, 2) from Refs. [9,10], and
the barrier height and position, VB and RB , calculated at 
 = 0 and T = 0 for target-projectile combinations (A1, A2) referring to minima
in mass fragmentation potential V (Ai), for compact hot configurations. β22 for A2 < 16 and Z2 < 8 are from the relativistic mean-field
calculations [11]. θci are independent of 
 values. VB increases and RB changes as the 
 value increases. For example, for 104Ag + 1n at

max = 75 h̄, VB = 97.60 MeV, and RB = 9.50 fm. For A2 = 4, the cases of 4H and 4He are also included.

Reactions Deformations of (A1, A2) Barriers Compact
(A1 + A2)

β21 β31 β41 β22 β32 β42 VB RB θc1 θc2

104Ag + 1n 0.153 0.0 0.001 0.0 0.0 0.0 0 14.939 90◦ s
103Ag + 2n 0.134 0.0 0.016 0.0 0.0 0.0 0 15.208 90◦ s
102Ag + 3n 0.125 0.0 0.022 0.0 0.0 0.0 0 15.418 90◦ s
101Ag + 4n 0.08 0.0 0.018 0.0 0.0 0.0 0 15.644 90◦ s
101Pd + 4H 0.134 0.0 0.032 0.0 0.0 0.0 5.81 10.496 90◦ s
101Rh + 4He 0.152 0.0 0.025 0.125 0.0 0.0 12.021 9.879 90◦ 106◦
100Pd + 5H 0.088 0.0 0.019 0.0 0.0 0.0 5.71 10.744 90◦ s
99Ru + 6Li 0.152 0.0 0.034 −0.099 0.0 0.0 17.7 9.847 90◦ 178◦
98Ru + 7Li 0.115 0.0 0.038 −0.086 0.0 0.0 17.423 10.043 90◦ 172◦
97Ru + 8Li 0.053 0.0 0.001 −0.09 0.0 0.0 17.203 10.196 90◦ 174◦
96Tc + 9Be 0.053 0.0 0.001 −0.107 0.0 0.0 22.7 10.069 90◦ 172◦
95Mo + 10B 0.053 0.0 0.001 −0.121 0.0 0.0 27.981 9.948 88◦ 180◦
94Mo + 11B 0.053 0.0 0.001 −0.086 0.0 0.0 27.705 10.069 88◦ 172◦
93Mo + 12B 0.053 0.0 0.009 −0.028 0.0 0.0 27.44 10.189 90◦ 180◦
92Nb + 13C 0.053 0.0 0.017 −0.02 0.0 0.0 32.278 10.143 80◦ 180◦
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waves as

σ = π

k2


max∑

=0

(2
 + 1)P0P, k =
√

2μEc.m.

h̄2 , (3)

where P0 is the preformation probability referring to η motion
and P is the penetrability, to R motion, both dependent on
angular momentum 
 and temperature T . μ is the reduced
mass with m being the nucleon mass. 
max is the maximum
angular momentum, defined for the light particle ER cross
section σER(
) →0, equivalently, P0(
) →0 (with limiting
value P0 > 10−10, as shown in Fig. 5). The same formula
is applicable to the nCN decay process, calculated here as the
qf decay channel or, equivalently, the capture process where
P0 = 1 for the incoming channel because, for qf, the target and
projectile nuclei can be considered to have not yet lost their
identity. In other words, no mass distribution takes place in qf
or the capture process, and the DCM reduces to an (
-summed)
extended-Wong model [14].

P0 is the solution of the stationary Schrödinger equation in
η, at a fixed R = Ra ,{

− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ V (R, η, T )

}
ψν(η) = Eνψν(η),

(4)

with ν = 0, 1, 2, 3 . . . referring to ground-state (ν = 0) and
excited-state solutions. Then, the probability

P0(Ai) = |ψ[η(Ai)]|2
√

Bηη

2

A
, (5)

where, for a Boltzmann-like function,

|ψ |2 =
∞∑

ν=0

|ψν |2 exp(−Eν/T ). (6)

For the position R = Ra , the first turning point for calculating
the penetration P , in the decay of a hot CN, we use the
following postulate [15–17],

Ra(T ) = R1(α1, T ) + R2(α2, T ) + �R(T ),

= Rt (α, η, T ) + �R(T ), (7)

with radius vectors

Ri(αi, T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi)

]
, (8)

with temperature-dependent nuclear radii R0i(T ) for the
equivalent spherical nuclei [18],

R0i = [
1.28A

1/3
i − 0.76 + 0.8A

−1/3
i

]
(1 + 0.0007T 2). (9)

Note that in Eq. (7) the only parameter of the model is �R(T ),
the neck-length parameter, or equivalently the first turning
point Ra(T ), where both �R and Ra are T dependent, with
the η dependence contained only in Rt . �R(T ) assimilates
the deformation and neck formation effects between two
nuclei, introduced within the extended model of Gupta and
collaborators [19–21]. This method of introducing the neck-
length parameter �R is similar to that used in both the scission-
point [22] and saddle-point [23,24] statistical fission models.

FIG. 2. The 
-dependent scattering potential V (R) for 103Ag +
2n, in the decay of 105Ag∗ formed in the 12C + 93Nb reaction
at Ec.m. = 54.205 MeV. The concept of barrier lowering �VB =
V (Ra) − VB is also shown in this figure for both the 
max = 75 h̄

and 
min = 27 h̄ values. The first and second turning points Ra and
Rb are also labeled.

Also, we use the Süsmann central radii Ci = Ri − b2/Ri

(in fm), where the surface thickness parameter (in fm) [18] is

b(T ) = 0.99(1 + 0.009T 2). (10)

The choice of parameter Ra (equivalently, �R) in Eq. (7),
for a best fit to the data, allows us to relate in a simple way
the V (Ra, 
) to the top of the barrier VB(
) for each 
, by
defining their difference �VB(
) as the effective “lowering of
the barrier”:

�VB(
) = V (Ra, 
) − VB(
). (11)

Note, �VB for each 
 is defined as a negative quantity
because the actually used barrier is effectively lowered. This
is illustrated in Fig. 2 for 
min and 
max values, whose values
are fixed for the LPs’ (here, e.g., xn, x = 1–4) cross section
σxn(
) → 0 (or the penetrability starts to contribute, i.e.,
P0 > 10−10 and P > 10−15 for the example studied; see,
Figs. 5 and 6, respectively). Thus, the fitted parameter �R
controls the “barrier lowering” �VB .

The collective fragmentation potential V (R, η, T ) in
Eq. (4), which brings the structure effects of the CN into
the formalism, is calculated according to the Strutinsky
renormalization procedure (B = VLDM + δU ), using the T -
dependent liquid-drop-model energy VLDM(T ) of Davidson
et al. [25], and the “empirical” shell corrections δU of
Myers and Swiatecki [26], for spherical nuclei, also made
T dependent to vanish exponentially with T0 = 1.5 MeV
[27]. Then, including also the T dependence in the nu-
clear proximity VP , the Coulomb VC , and the 
-dependent
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potential V
,

VR(η, T )

=
2∑

i=1

[VLDM(Ai, Zi, T )]

+
2∑

i=1

[δUi] exp

(
−T 2

T 2
0

)
+ VP (R,Ai, βλi, θi,�, T )

+VC(R,Zi, βλi, θi,�, T ) + V
(R,Ai, βλi, θi,�, T ),

(12)

where VP , VC , and V
 are for deformed oriented nuclei. The
moment of inertia used in V
 is in the complete sticking
limit, IS(T ) = μR2 + 2

5A1mR2
1(α1, T ) + 2

5A2mR2
2(α2, T ). In

general, the experimental numbers for 
 are based on the
moment of inertia calculated in the nonsticking limit I =
INS = μR2. This use of reduced mass alone corresponds to the
supposition of prompt emission of fragments. However, IS is
more appropriate for the proximity potential (nuclear surfaces
�2 fm apart) which has consequences for the limiting 
 value
to be much larger due to the relatively larger magnitude of IS .
This is shown [28,29] to result in the reduction of the nuclear
surface separation distance �R, and vice versa for INS.

The same considerations are applied to neutron and proton
clusters of x (�1) nucleons, by defining [30,31] the binding
energy of a cluster with x neutrons as x times the binding
energy of one neutron (equivalently, the mass excess �mn =
8.0713 MeV), i.e.,

B(AL = xn) = x�mn,

and defining the same for proton clusters as

B(AL = xp) = x�mp − acA
5/3
L ,

with �mp = 7.2880 MeV, the one-proton mass excess
or equivalently the binding energy of one proton. ac =
0.7053 MeV [26], with the additional term due to ac acting as
the disruptive Coulomb energy [= − ac(Z2

L/A
1/3
L )] between

the x protons (here x = AL = ZL). Because it is difficult
to define the volume and the surface of n or p clusters, the
T dependence of their binding energy is included only via
the shell correction term δU , and not in VLDM. The above
definitions of n or p clusters are found to describe well the
“halo” structures of almost all the n- or p-rich light nuclei
[30,31] and mean that the nucleons in these clusters are taken to
be unbound (i.e., structureless particles), following the model
of Hansen and Jonson [32], the few-body theories [33], or as
suggested by some experiments [34,35].

The mass parameters Bηη, entering Eq. (4) for P0 calcula-
tions, are the smooth classical hydrodynamical masses [36],
because at large T values the shell effects are almost com-
pletely washed out. For smaller T (<1.5 MeV), in principle,
the shell-corrected masses, like the Cranking masses, should
be used, but for simplicity we use the same smooth classical
hydrodynamical masses.

The penetrability P in Eq. (3) is the WKB integral,

P = exp

(
− 2

h̄

∫ Rb

Ra

{2μ[V (R, T ) − Qeff]}1/2dR

)
, (13)

FIG. 3. Mass fragmentation potential minimized in charge coor-
dinate ηZ for the decay of 105Ag∗ formed in the 12C + 93Nb reaction at
Ec.m. = 54.21 MeV and at 
min and 
max values. For mass A2 = 4, the
minimized fragment is 4H, but is here replaced by the corresponding
binding energy of 4n. The neck-length parameters �R are given in
Table II and refer here to Cal.2, the case of both ER and IMFs fitted.
For fragments A2 > 13, �R is same as that for IMFs.

solved analytically [37,38], with the second turning point Rb

(see Fig. 2) satisfying

V (Ra) = V (Rb) = Qeff = TKE(T ). (14)

As the 
 value increases, the Qeff(T ) [=TKE(T ), total kinetic
energy]increases and hence V (Ra, 
) increases. Thus, Ra acts
like a parameter through �R(T ), and we define that Ra is the
same for all 
 values, i.e., V (Ra) = Qeff(T , 
 = 0). This is
required because we do not know how to add the 
 effects in
binding energies. Alternatively, we may define Ra and hence

FIG. 4. Same as for Fig. 3, but for charge fragmentation potential
V (ηZ2 ) and preformation factor P0(ηZ2 ) for mass A2 = 4 fragment at

min value.
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TABLE II. Calculated fusion-evaporation cross sections σ Cal.1
ER due to LPs alone (referred to as Cal.1), compared with the corresponding

experimental data σ
Expt.
ER of Ref. [1]. Also tabulated are the calculated cross sections σ Cal.2

ER,IMFs due to both LPs and IMFs taken together for a best

fit (referred to as Cal.2) and compared with the measured fusion cross section σ
Expt.
fus . Also σqf is calculated and added to both σER and σIMFs

(referred to as Cal.3), giving the σ Cal.
fus . Here LPs and IMFs refer, respectively, to A2 = 1n–3n, 4H, 4He or 4n, and a sum of A2 = 5–13. The

neck-length parameter �R for LPs and IMFs are considered to take different values in Fig. 3 for the best fit to data, in each case of 4H, 4He, or
4n for mass 4 fragment. The variation of �R with T (≡Ec.m.) or fragment mass (here LPs) is found to be not as smooth as expected because
the nCN (≡qf) component being large has been a difficult task to separate out. The cross sections marked with † in Cal.3 should, in principle,
be zero by the definition of the nCN contribution.

Decay DCM-Cal.1 DCM-Cal.2 DCM-Cal.3
channel (ER alone) (Both ER and IMFs) (qf contribution)

�R σ Cal.1
ER σ

Expt.
ER �R σ Cal.2

ER,IMFs σ
Expt.
fus �R σqf σ Cal.

fus

(fm) (mb) (mb) (fm) (mb) (mb) (fm) (mb) (mb)
Ec.m. = 54.205 MeV ER: 1n, 2n, 3n, and 4n

1n 1.363 75.4 0 0.8 0.587 0 0.5 0.137 0.724
2n 1.363 7.6 7.6 ± 1.4 1.803 7.6 7.6 ± 1.4 0.2 0.002† 7.602
3n 1.363 0.156 398.2 ± 46.9 1.5 0.11 398.2 ± 46.9 1.3695 398 398.11
4n 1.363 0.0022 203.4 ± 26.4 1.5 0.0024 203.4 ± 26.4 1.3345 203 203.0024
IMFs (5–13) – – – 1.5 215 296.4 0.9099 79.9 294.9

Ec.m. = 54.205 MeV ER: 1n, 2n, 3n, and 4H
1n 1.3847 81 0 0.79 0.533 0 0.5 0.137 0.670
2n 1.3847 7.67 7.6 ± 1.4 1.81 7.6 7.6 ± 1.4 0.3 0.0062† 7.606
3n 1.3847 0.185 398.2 ± 46.9 1.99 0.398 398.2 ± 46.9 1.3691 397 397.398
4H 1.3847 2.51 233.7 ± 25.7 1.99 1.43 233.7 ± 25.7 1.201 232 233.43
IMFs (5–13) – – – 1.55 249 296.4 0.8379 47.2 296.2

Ec.m. = 47.828 MeV ER: 1n, 2n, 3n, and 4He
1n 1.571 455 0 1.15 9.98 0 0.3 0.003 9.983
2n 1.571 38.2 38.2 ± 3.9 1.75 14.7 38.2 ± 3.9 1.028 23.4 38.1
3n 1.571 0.63 615.4 ± 125.3 0.31 0.0001 615.4 ± 125.3 1.4212 614 614.0001
4He 1.571 0.067 2.8 ± 0.4 1.843 2.80 2.8 ± 0.4 0.1 0.049† 2.849
IMFs (5–13) – – – 1.513 168 168 0.1 0.01† 168.01

Ec.m. = 41.097 MeV ER: 1n, 2n, 3n, and 4H
1n 1.2586 38.2 0 1.0 4.84 0 0.3 0.012 4.852
2n 1.2586 2.69 80.0 ± 9.6 1.9 13.2 80.0 ± 9.6 1.1272 66.6 79.8
3n 1.2586 0.04 260.3 ± 11.3 1.9 0.508 260.3 ± 11.3 1.2994 259 259.508
4H 1.2586 1.8 1.8 ± 0.3 1.4672 1.8 1.8 ± 0.3 0.4 0.007† 1.807
IMFs (5–13) – – – 1.3528 28 28 0.3 0.074† 28.074

�R(T ) in terms of the T -dependent binding energies B(T ) as

Qeff(T ) = B(T ) − [B1(T = 0) + B2(T = 0)]

= TKE(T ) = V [Ra(T )]. (15)

Here B’s are the respective binding energies for the decay
of hot CN at temperature T to two exit-channel fragments
observed in the ground state (g.s.; T = 0). Equation (15) could
apparently be achieved only by emitting some LPs, like n, p,
and α or γ rays, of energy:

Ex = B(T ) − B(0) = Qeff(T ) − Qout(T = 0)

= TKE(T ) − TKE(T = 0), (16)

which is zero for the g.s. (T = 0) decay, the case of exotic
cluster radioactivity, treated within the preformed cluster
model [37,38].

Apparently, Eq. (16) with respect to Eq. (15) suggests that
the emission of LPs starts early in the decay process. The
exit channel fragments in Eq. (15) are then obtained in the
ground state with TKE(T = 0), as can be seen by calculating

E∗
CN − Ex :

E∗
CN − Ex = |Qout(T )| + TKE(T = 0) + TXE(T ), (17)

where the total excitation energy TXE(T ) is used in, not treated
here, the secondary emission of LPs from the fragments which
are otherwise in their ground states with TKE(T = 0) in the ra-
dial motion. Instead, we compare the present calculations with
the, in general, available primary pre-secondary-evaporation
fragment emission data [24,39]. Thus, by defining Qeff(T )
as above, via the T -dependent binding energies [Eq. (15)], the
DCM becomes a parameter free [40], nonstatistical, dynamical
treatment of the complete decay of hot and rotating CNs, where
the LPs emission are treated on par with the IMFs and ff decays.

III. CALCULATIONS AND RESULTS

In this section, we present our calculations for the possible
decay processes of 105Ag∗ formed in the 12C + 93Nb reaction
at different center-of-mass energies Ec.m.. As noted in the
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FIG. 5. Preformation probability P0 as a function of angular
momentum 
 for xn decays of 105Ag∗ formed in the 12C + 93Nb
reaction at Ec.m. = 54.205 MeV. P0 ∼ 10−10 for 
max = 75 h̄.

Introduction, in this reaction, the experimentally observed
decay channels of ER are 2n-4n, or 2n, 3n, and 4H, populated
by CF, and the intermediate mass fragments (IMFs) A2 = 5–
13, considered as the ICF products. In the following, we treat
both the observed cases of ER and IMFs, together with the not
yet observed ff component, as the CF products, i.e., due to the

FIG. 6. Penetration probability P as a function of angular mo-
mentum 
 for xn decays of 105Ag∗ formed in the 12C + 93Nb reaction
at Ec.m. = 54.205 MeV, calculated up to 
max = 75 h̄. P ∼ 10−15 for

min = 27 h̄.

FIG. 7. Calculated fusion ER and (sum of) IMFs cross sections,
σER and σIMFs, for decay of 105Ag∗ formed in the 12C + 93Nb reaction,
compared with experimental data at Ec.m. = 54.205 MeV. 
max = 75 h̄

and 
min = 27 h̄. Cal.1 (open circles) refers to fitting of ER alone, and
Cal.2 (up triangles) refers to both ERs and IMFs fitted together. Cal.3
(crosses) gives the noncompound, qf contribution, which upon adding
to σER and σIMFs gives the calculated fusion cross section σ Cal.

fus (open
squares), compared with the experimental value (solid squares) σ

Expt.
fus .

decay of the CN. Then, the ER (A � 4) should also constitute
the 2n, 3n, and 4He. Furthermore, the 1n evaporation channel,
not observed in the experiment, is treated on equal footing.
The nCN effects, if any, are considered to be due to qf or the
capture process where the preformation factor P0 = 1 for the
incoming nuclei to keep their identity.

Figure 3 shows the calculated mass fragmentation potential
V (A2) for the best-fitted �R to both the measured ER and
the summed IMFs cross sections at Ec.m. = 54.205 MeV
(T = 2.19 MeV) and at 
min and 
max values. For fragments
heavier than the IMFs, �R is same as that for the IMFs.
Though 4H is energetically the most favored (see, Fig. 4 where
the charge dispersion potential V (Z2) and the corresponding
preformation factor P0(Z2) is plotted for the mass A2 = 4
case), in Fig. 3 we have replaced it by the binding energy of
4n (and the complementary heavy fragment). Note that some
fragments change in going from the 
min to the 
max value.
�R is taken different for each decay channel of ER and the
summed-IMFs, as given in Table II (refer to Cal.2, the case
of both ER and IMFs fitted). A similar procedure is carried
out for 4H and 4He fragments, replacing 4n (see Table II for
each case of 4n, 4H, and 4He occurring at different Ec.m.’s).
Other characteristic properties for nuclei referring to ER and
IMFs are given in Table I for the 
 = 0 case. The cases of
4H and 4He, in place of 4n, are also included in Table I. We
notice in Table I that, except for one prolate-deformed +
prolate-deformed configuration (101Rh + 4He), other config-
urations are of either prolate-deformed + spherical nuclei
or prolate-deformed + oblate-deformed nuclei, and, due to
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FIG. 8. Calculated excitation functions (EFs) compared with experimental data for (a) 2n, (b) 3n, and (c) mass 4 emission in the decay of
105Ag∗ formed in the 12C + 93Nb reaction. Calculations are shown for σER+IMF (up triangle), σnCN (crosses), and the total σER+IMF+ncN (down
triangle).

the positive β41, the compact orientations θci are affected by
as much as 16◦ (for the prolate-deformed case 90◦ changes
to 106◦ or 80◦ and for the oblate-deformed case 180◦ goes
to 172◦), meaning thereby that higher-order deformations
(β4) play an important role for the orientation degree of
freedom.

The calculated P0 and P , as a function of 
, based on V (η)
of Fig. 3 and V (R) like that of Fig. 2, respectively, are plotted in
Figs. 5 and 6 for the illustrative ER channels. These figures fix
the 
max and 
min values, respectively, where the contributions
to cross sections become negligible. Interesting enough, the
1n channel competes with the other three neutron channels. In
fact, the 1n product is not only the most strongly preformed
product (largest P0) but also has large penetrability P , which
however is smaller than for the other three neutron channels.
In other words, the σ1n makes the largest contribution to the
ER cross section σER = ∑4

x=1 σxn, if we fit only the ER data
(see Fig. 7 and Table II). Figure 7 (open circles) and Table II
(top pannel, cal.1) show that only σ2n is best fitted, with a
large σ1n value of 75.4 mb (compared to zero in experiments),
whereas σ3n and σ4n are very small (=0.156 and 0.0022 mb),
compared to measured values of 398.2 ± 46.9 and 203.4 ±
26.4 mb, respectively. Note that different �R values are used
for different xn channels, which means different reaction times
for different residue products. On the other hand, if we also
include the IMFs (here the sum of A2 = 5–13 cross sections)
in the fitting of �R, i.e., both ER and IMFs are fitted together
(Cal.2 in Table II and up triangles in Fig. 7), then for the
same best fit of σ2n, and σIMFs close to experiments (with in
∼75% of the data at this highest energy), σ1n reduces nearly to
zero, as required by experiments, but the σ3n and σ4n are still
very small compared to data and call for large noncompound
(qf or capture) contributions. Following Eq. (2), we define
the nCN component as the order of disagreement, i.e., the
difference between the calculated and the measured decay

cross sections:

σnCN = σ
expt
decay-product − σ cal

decay-product.

Then, with the proper choice of �R for each decay product,
i.e., within the nuclear proximity limit of ∼2 fm, an exact fit
to data for both the ER and IMFs cross sections is obtained.
Note that such a large nCN component is perhaps predicted
for the first time.

FIG. 9. The barrier lowering �VB , defined by Eq. (11), as a
function of Ec.m. for the case of 
 = 
max in the decay of 105Ag∗

formed in the 12C + 93Nb reaction.
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FIG. 10. The 
-summed fragment preformation probability P0,
the penetrability P , and the decay cross section σ as a function
of the light fragment mass number A2 for the compound system
105Ag∗ formed in the 12C + 93Nb reaction at Ec.m. = 54.205 MeV,

max = 75 h̄. For A2 > 13 fragments �R = 1.5 fm, the same as that
for IMFs.

Table II (and Fig. 7) shows that the largest nCN content is
in 3n emission, and the 2n, mass 4 (4H and 4He), and IMFs
are dominantly the CN decays. This is further shown in Fig. 8
where the EFs are plotted for the emission of 2n, 3n, and
mass 4 fragments. We notice that whereas the CN and nCN
components are comparable in 2n and mass 4 decays, the
3n is shown to be mainly a nCN decay [Fig. 8(b)] at the three
considered excitation (or c.m.) energies. This could perhaps be
further understood in terms of the “barrier lowering” parameter
�VB , shown in Fig. 9 as a function of Ec.m.. Apparently, the
largest barrier lowering is required for 3n emission, and more
so at Ec.m. = 47.83 MeV. �VB is nearly zero for mass 4 and
very small for 2n emission. Thus, nuclear force(s) other than
the proximity force used here could be more relevant to the
reaction under study [41].

Figure 10 shows our calculated 
-summed P0, P , and
σ as functions of the light mass fragment A2 for Ec.m. =
54.205 MeV. We notice from this figure that, in addition to
the observed ER and IMFs decay products, the IMF window
is extended up to A2 ≈ 18 (cross sections of similar order
as for the observed ER and IMFs) and a new window of
symmetric and near-symmetric fission of fragment masses
(A/2)±16, i.e., of A2 = 37–52 and complementary heavy
fragments, is evident whose yields (P0 and/or σ ) are as large as
those for the observed IMFs and LPs. Defining σff as the sum
of cross sections for A2 = 37–52 and complementary heavy
fragments, we notice from Fig. 11 that the fission component is
significantly large, of the order of 103 mb. Note that in this case
�R = 1.5 fm for the fission region, the same as that for IMFs

FIG. 11. Calculated fusion-fission cross section σff for the decay
of 105Ag∗ formed in the 12C + 93Nb reaction as a function of center-of-
mass energy Ec.m.. Here ff is defined as the mass window A2 = 37–52
plus their complementary heavy fragments A1 = 68–53.

and 3n, but larger than that for 2n emission. Knowing that �R
for ff is much smaller than that for ER [42] (LPs are promptly
emitted particles, and hence with larger �R), we have varied
�R for the ff region and recalculated σff for �R = 1 and
1.2 fm. This is also plotted in Fig. 11. The interesting result
is that σff is of the order of 101 to 103 mb, depending on the
choice of the neck-length parameter �R for the fission region.
Thus, experimental measurements of σff are called for in this
reaction.

IV. SUMMARY AND CONCLUSIONS

Concluding, we have applied the DCM to the decay of
105Ag∗ at near and below barrier energies in order to study the
missing contribution of 1n in ER cross sections and the nCN,
qf contribution required in fitting the observed EFs for both the
ER and the IMFs. The model contains deformation effects up
to hexadecapole for coplanar nuclei with compact orientations
of the hot fusion process. The neck-length �R, which itself
varies smoothly with the excitation energy or temperature T
of the system, is the only parameter of the model whose value
always stays within the proximity limit of ∼2 fm.

It is shown for the first time that if ER data alone are
considered, fits are possible only for the 2n cross section,
predicting a rather large contribution of 1n (compared to zero
for experiments) and a strong underestimation of both 3n and
4n (or 4H) cross sections. However, if the fitting of both the
ER and the IMFs (only the sum of cross sections in this later
case) is done simultaneously, interestingly σ1n reduces nearly
to zero (at least becomes comparatively very small), to be
compared with zero of experiments, for a similar best fit to
2n or 4H cross-section data, and σIMFs also obtained close
to data, at least for the higher energies. Other ER channel
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cross sections are still very small compared to experiments,
which suggests a large nCN, qf contribution. Once the nCN, qf
component is included, the data for both the ER and the IMFs,
i.e., total EFs, are fitted nearly exactly. The nCN component
obtained is rather large, a case perhaps noted for the first time.
Furthermore, different �R are used for different ER and IMF
channels, which refers to different reaction times for different
residue products.

Furthermore, our calculations suggest a significant ff
component, which constitutes an extended IMF window plus
a symmetric and nearly symmetric fission mass component.

Apparently, further experiments are needed not only for
the measurement of nCN effects but also for the fission
component.
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