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Background: The recoil-corrected continuum shell model provides coupled-channels solutions for bound and
unbound wave functions from realistic effective interactions. The wave functions are antisymmetric and contain
no spurious components because the calculations are performed in the center-of-mass system.
Purpose: This model has now been extended to include 1h̄ω excitations in the structure of p-shell target (residual)
nuclei, hence allowing 0s-shell knockout processes. Several reactions involving the 12C compound system are
investigated to demonstrate the utility of the model.
Methods: The states of 11B and 11C are constructed in the nonspurious 0h̄ω plus 1h̄ω model space. An interaction,
fitted to Cohen and Kurath (8-16) plus Reid soft core g-matrix elements, is employed. One nucleon is coupled to
these states to create a basis for the bound and scattering states for 12C.
Results: Calculated elastic and inelastic cross sections agree well with available data. The calculated transverse
response at high momentum transfer is lower than that extracted from data. Although significant, meson exchange
currents are not sufficient to give agreement with data. Likewise inclusion of 0s-shell knockout is not sufficient
to provide agreement. The high-energy octupole resonance appears at low momentum transfer and an energy of
106/A1/3.
Conclusions: The model should provide meaningful predictions for states near the proton drip line via the (p,n)
reaction. Coupled-channels solutions are necessary for describing 12C(e,e′x) at low momentum transfer. Lack
of strength at low energy and momentum transfer in optical model calculations of 12C(e,e′x) is at least partly
attributable to the omission of giant resonances. Data for (π+,π+′p)/(π−,π−′p) could verify this conclusion. Lack
of strength in the transverse response may be attributable to recoil terms which are omitted in most calculations.
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I. INTRODUCTION

Reactions involving one nucleon in the continuum, such
as elastic and inelastic nucleon-scattering, charge-exchange,
and knockout reactions, are conveniently investigated in
continuum shell-model calculations. The processes can be
analyzed and described in conventional shell-model terms.
The recoil-corrected continuum shell model (RCCSM) [1,2]
has the advantage of producing wave functions that are
antisymmetric and contain no spurious components because
the calculations are performed in the center-of-mass system.
Any realistic effective interaction may be employed as long as
it is translationally invariant. Solutions are obtained by the R
matrix method [3], which has proven to be the most physical
and convenient reaction theory for solving many-coupled
channel systems in light- and medium-mass nuclei. It is not
uncommon to couple 30 or more residual states of the target.
In addition to providing scattering states, the formalism yields
bound states and resonances. Coupled-channels techniques
which involve integrating coupled differential equations can
become unstable for large numbers of channels, and they can
miss narrow resonances because the equations must be solved
for each energy over the resonance. Additional advantages of
the R matrix procedure may be found in a review article by
Descouvemont [4].

The RCCSM has been applied to several nuclei with the
core (target or residual) states restricted to the p shell [5,6].
The structure of the core states has now been extended to
include the p-shell plus one-particle excitations from the 0s

to 0p shell and one-particle excitations from the 0p to the sd
shell.

The purpose of this article is to pick a system near the
middle of the p shell for which numerous data exist and to
see how the model results compare to these data. Certainly
no nucleus has been investigated more than 12C. Success
in describing reactions for this compound system will be a
test of the model’s ability to predict other reactions in other
systems. The model does very well for elastic and inelastic
proton scattering and (p,n) reactions. It should, therefore,
make reasonable predictions for systems near the proton drip
line. The (e,e′p) and (e,e′x) results give reasonable agreement
at low momentum transfer. It is shown that, in this momentum
transfer region, coupled-channels solutions are required for
agreement with data and that a true structure model that
produces resonances is required. Appearing at an energy
of 106/A1/3 MeV is the high-energy octupole resonance.
The inclusion of the 0s shell knockout is less significant,
but appreciable throughout the 300–500 MeV/c range of
momentum transfer. At high momentum transfer the effect
of coupled channels and structure become less important.
However, meson exchange currents (MECs) persist at higher
momentum and energy transfer, but their inclusion is not
sufficient to provide agreement with the extracted transverse
response function. This is in contrast to 4He(e,e′x), where
inclusion of the MEC contribution provided agreement with
data. A possible explanation for the deficit in the transverse
response is the omission of recoil terms.
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II. THE MODEL

The input to the RCCSM is an oscillator size parameter,
υ0 = mω/h̄ (0.32 fm−2 in this work), the desired states of the
A − 1 core nuclei, and a realistic, translationally invariant
interaction. Wave functions and scattering observables are
calculated with R matrix techniques. For p-shell nuclei [7]
the channel wave functions within the channel radius, ac, may
be written as an expansion in a harmonic oscillator basis,

�JB
=

∑
JAαl̄j̄ n̄

fn̄l̄j̄JAαJB

[
a+

n̄l̄j̄
⊗ |αJA〉 ]JB +

∑
β

dβ |βJB〉 ,

(1)

where β runs over all 0h̄ω, p-shell states with spin JB and
a+

n̄l̄j̄
creates a particle in the core-nucleon, center-of-mass

coordinate. The sum over n̄ and l̄ goes to n̄ + l̄ = 22 in this
calculation, where n̄ starts at zero. The created particles are
coupled to chosen nonspurious 0h̄ω plus 1h̄ω states of the
A − 1 core. These states are labeled by |αJA〉 and designate
the channels to be coupled.

The wave function with outgoing flux vi with initial
conditions i = {αJAMAms} takes the form [8]

ψ
(−)
i = (4π/pi)

∑
i	Y ∗

	m	
(p̂)e−iσ	 (−i/2)

×C	1/2j
m	msm

C
JAjJB

MAmMB
�JBMB (−)

c , (2)

where the sum is over 	m	jmJBMB and

�JBMB (−)
c =

∑
c′

r−1u
JB (−)
c′ (r)|α′J ′

A	′j ′JBMB〉. (3)

The radial function u
JB (−)
c′ has the asymptotic form

u
JB (−)
c′ = u

JB (+)∗
c′ → (vc/vc′ )1/2(Oc′δcc′ − Ic′Scc′ ). (4)

The index c stands for αJA	j with JA and j coupled to JB , and
pi is the nucleon momentum in the nucleon-nucleus center-
of-mass frame.

The required energies, overlaps, and one-body densities of
the p-shell states were calculated with the code NUSHELL [9].
The interaction was derived from a fit to Cohen and Kurath
(8-16) [10] (CK) and the Reid soft-core [11] g-matrix elements
for 16O. The matrix elements are fit to a sum of Yukawas.
The interaction is shown in the Appendix. It contains central,
spin-orbit, and tensor components, but no antisymmetric spin-
orbit. A comparison with the CK matrix elements is shown in
Table I. The matrix elements show a similar trend, but the
form of the parameterization, the requirement that the high h̄ω
Reid matrix elements be fit, plus the lack of an antisymmetric
spin-orbit component means the fit cannot account for the more
extreme values of the CK matrix elements.

Hence, the calculated low-lying spectrum for 11B, shown
in Fig. 1, has the 7/2− state out of order. In addition, the
1/2+ state comes too high. In a conventional bound-state shell
model, this would be corrected by changing the sd single-
particle energies. However, in the RCCSM the single-particle
energies are calculated from the interaction. Therefore, the
threshold for 0s shell knockout will be about 3 MeV too high.

TABLE I. Comparison of the CK(8-16) matrix elements with
those obtained from the interaction in this work. The i, j , m, and n

orbits may be 1 = p1/2(p), 2 = p3/2(p), 3 = p1/2(n), or 4 = p3/2(n).
The matrix elements are in MeV.

i j m n J CK Present

1 1 1 1 0 0.24 0.92
2 1 2 1 1 0.73 0.59
2 1 2 1 2 −1.14 −1.5
2 2 1 1 0 −5.05 −4.4
2 2 2 1 2 −1.74 −1.6
2 2 2 2 0 −3.33 −2.19
2 2 2 2 2 0.09 −0.37
3 3 3 3 0 0.24 0.43
4 3 4 3 1 0.73 0.16
4 3 4 3 2 −1.14 −1.97
4 4 3 3 0 −5.05 −4.48
4 4 4 3 2 −1.74 −1.63
4 4 4 4 0 −3.33 −2.73
4 4 4 4 2 0.09 −0.82
1 3 1 3 0 0.24 0.43
1 3 1 3 1 −4.29 −1.99
2 3 1 3 1 1.2 1.39
1 4 1 3 1 −1.2 −1.39
2 3 2 3 1 −6.56 −4.44
2 3 2 3 1 0.73 0.16
2 3 2 3 2 −4.06 −3.42
2 3 2 3 2 −1.14 −1.97
2 4 1 3 0 −5.05 −4.48
2 4 1 3 1 1.77 0.6
2 4 2 3 1 3.21 2.15
2 4 1 4 1 −3.21 −2.15
2 4 2 3 2 −1.74 −1.63
2 4 1 4 2 1.74 1.63
2 4 2 4 0 −3.33 −2.73
2 4 2 4 1 −3.44 −1.39
2 4 2 4 2 0.09 −0.82
2 4 2 4 3 −7.27 −3.93

In Eq. (1) the only positive-parity A = 11 states that are
included are the 1/2+ states because this work is mainly
interested in the contribution of the 0s shell knockout. The
nonspurious 1/2+ states contain 9/11 of the 0s hole state and
this 0s hole state strength is distributed as in Fig. 2 in 11B.
We take the first four states of 11B and 11C, and hence 90%
of the available 0s hole strength. This violates the empirical
RCCSM rule that one should choose only core states that
correspond to states that are experimentally nucleon bound or
nearly bound. Following this rule, one should take only two
of each. However, the inclusion of four each would represent
the maximum contribution of the 0s hole states in the energy
region of interest. Inclusion of four instead of two produces
some unphysical resonances at high excitation energy, as seen
in the following section. In addition to the four 1/2+ states, the
negative-parity states, 1/2−

1 , 1/2−
2 , 1/2−

3 , 3/2−
1 , 3/2−

2 , 3/2−
3 ,

5/2−
1 , 5/2−

2 , 5/2−
3 , 7/2−

1 , and 7/2−
2 , of 11B and 11C were

included as |αJA〉 states.
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FIG. 1. The low-lying states of 11B.

III. INELASTIC SCATTERING

Data are available for the 11B(p,n)11C and 11B(p,p′)11B in
a proton energy region suitable for investigating rare isotopes
by inverse kinematics. The 11B(p,n)11C cross sections to
the ground state and first 1/2− state for 30- and 50-MeV
proton energies are shown in Fig. 3 with the data of Ref. [12]
The agreement with the data is good, demonstrating that the
structure of these states and the interaction are modeling the
process well.

In Fig. 4 are shown the 11B(p,p′)11B cross sections to the
first 1/2−, 5/2−, and 7/2− states and the second 3/2− state

FIG. 2. Distribution of 0s hole strength in 11B.

FIG. 3. Charge-exchange cross sections for 11B to the ground
state and first excited state of 11C. The solid lines are from
calculations. The data are from Ref. [12].

along with the data of Ref. [13]. Again the agreement with
data is good for the 1/2−, 5/2−, and 7/2− states, showing
that the structure of these states is well modeled and that the
contributing components of the interaction are appropriate.
The agreement for the second 3/2− state is less satisfactory,
indicating that the state may have higher order structure

FIG. 4. Inelastic scattering of protons from 11B. Solid curves are
from RCCSM calculations. Data are from Ref. [13].
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FIG. 5. Elastic proton scattering from 11B at 30.3 MeV. The solid
line is the RCCSM calculation. Data are from Ref. [14].

components. The four calculated curves agree as well or better
with the data than those of the intermediate coupling model in
Ref. [13].

IV. ELASTIC SCATTERING

Elastic proton scattering data are available at 30.3 and
155 MeV. These results are shown in Figs. 5 and 6 with
the data of Refs. [14] and [15], respectively. The agreement
with the 30.3-MeV data is good; in fact, the quality of the
agreement is similar to the optical model fits in Ref. [14]. The

FIG. 6. Elastic proton scattering from 11B at 155 MeV. The solid
line is the RCCSM calculation. Data are from Ref. [15].

155-MeV calculation show less agreement with the data. This
calculated cross section is surprisingly insensitive to changes
in the interaction and the allowed 11B configurations as long
as the long-range component of the effective interaction is
fixed at the one-pion exchange. This means a mechanism
must be missing from the model, and that mechanism is the
two-nucleon knockout. Therefore, without adding absorption
into the two-body interaction, one expects the elastic cross
section to be overpredicted for energies above 100 MeV.
However, the qualitative agreement at 155 MeV is not of
concern because knockout reactions show less sensitivity to the
interaction at high-energy transfer. Therefore, the RCCSM is
one model that will provide satisfactory agreement with many
nucleon-induced reactions at moderate energies and sufficient
agreement for intermediate-energy reactions.

V. THE 12C(e,e′x) REACTION

Many experiments and numerous calculations have been
performed for this reaction [16]. Fermi-gas calculations
were among the first [17]. These calculations could provide
reasonable agreement with extracted longitudinal responses
at moderate momentum transfer, but at the expense of
overpredicting the longitudinal response at low-momentum
transfer. In an attempt to explain the overestimate of the longi-
tudinal response in these Fermi-gas calculations, a number of
continuum random phase approximation (RPA) calculations
followed [18–20]. The calculation of Ref. [18] improved the
longitudinal responses, but they were still overestimated, while
the transverse responses were too low. A number of relativistic
calculations followed [21,22], some of which included vacuum
polarization. An improvement in the longitudinal response
was obtained, but calculations were limited to the higher
momentum transfers.

The difficulty with the RPA calculations is that they tend to
be sensitive to the interaction, and without proton scattering
calculations, it is difficult to judge the appropriateness of each
interaction. The calculation in Ref. [23] took a step toward
addressing this problem by coupling shell-model states to
optical model solutions for outgoing protons and neutrons.
Calculations were performed with and without distortion.
Those with distortion provided reasonable longitudinal re-
sponses, but underpredicted the transverse responses. A recent
4He(e,e′x) self-consistent continuum RPA calculation also
found that the transverse responses were too low [24]. There-
fore, a general trend is that calculations that reproduce the
longitudinal response in the quasielastic region, underpredict
the transverse response at high-momentum transfer.

It will be helpful to have calculations from a coupled-
channels model that is successful in describing nucleon
induced reactions. We follow Ref. [25], where h̄ = c = 1.
The incident and exit electron momenta are kμ = (k0, k) and
k′
μ = (k′

0, k′); the final, free nucleon momentum is pμ =
(p0, p); the final core momentum is pAμ = (EA, pA); and
the momentum transferred to the nucleus is qμ = (q0, q) =
k′
μ − kμ. For inclusive scattering one sums over all possible

outgoing channels. This allows one to write the cross section
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as [8]

d2σ

d�dω
= 1

2π

∑
c,JB

(μc/pc)
dσcJB

d�
, (5)

where dσcJB
/d� is a fictitious cross section calculated with

the wave functions in Eq. (2) with outgoing flux vc in open
channel c. The equation for dσcJB

/d� in the laboratory frame
can be taken as Eq. (3.46) in Ref. [26]. For exclusive scattering
to a definite residual nuclear state, the cross section is given
by

d5σ

d�d�pdω
= α2

q4
μ

(
2k′

0p0p

k0R

)(
kμk′

ν + k′
μkν + q2

μgμν

/
2
)
JμJ ν∗,

(6)

where α is the fine structure constant and R = (1 − p0p ·
pA/p2EA).

Because all nucleon and nucleus angular momentum
projections will be summed over and the initial nuclear state
has spin zero (JB = 0), the spherical components of the nuclear
currents for all final projections, M ′

B , may be written as

Jλ = −(2π )1/2(−i)J 〈J ′
B‖ − T el

j + λT
mag
J ‖JB = 0〉δJJ ′

B
(7)

for λ = ±1,

Jλ=0 = Jz = −(4π )1/2(−i)J 〈J ′
B‖LJ ‖JB = 0〉δJJ ′

B
, (8)

J0 = −(4π )1/2(−i)J 〈J ′
B‖MCoul

J ‖JB = 0〉δJJ ′
B
. (9)

The continuity equation, qμJμ = 0, is employed to eliminate
Jz in favor of (q0/q)ρ. In a nonrelativistic reduction of the
current operators we keep only terms of order 1/MN , yielding

MCoul
JM =

∑
i

jJ (qri)YJM (r̂i)F
i
1

(
q2

μ

)
, (10)

T el
JM =

∑
c

(
F i

1

(
q2

μ

)/
MN

) {
−

(
J

2J + 1

)1/2

jJ+1(qri)[YJ+1(r̂i) ⊗ 	∇i]JM +
(

J + 1

2J + 1

)1/2

jJ−1(qri)[YJ−1(r̂i) ⊗ 	∇i]JM

}

+ [
F i

1

(
q2

μ

) + κiF
i
2

(
q2

μ

)]
[q/(2MN )]jJ (qri)[YJ (r̂i) ⊗ σi]JM, (11)

T
mag
JM =

∑
c

(iq)

{
−

(
J

2J + 1

)1/2

jJ+1(qri)[YJ+1(r̂i) ⊗ σi]JM +
(

J + 1

2J + 1

)1/2

jJ−1(qri)[YJ−1(r̂i) ⊗ σi]JM

}

× [
F i

1

(
q2

μ

) + κiF
i
2

(
q2

μ

)]/
(2MN ) − [

iF i
1

(
q2

μ

)/
MN

]
jJ (qri)[YJ (r̂i) ⊗ 	∇i]JM. (12)

Transverse and longitudinal responses for a spin zero initial
state are given by

RT =
∑
J=1

(|〈J ′
B‖T el

j ‖JB = 0〉|2 + 〈J ′
B‖T mag

J ‖JB = 0〉|2),

(13)

RL =
∑
J=0

|〈J ′
B‖T Coul

j ‖JB = 0〉|2. (14)

The nucleon form factors are taken from the three-pole
approximation of Ref. [27].

The MECs of Ref. [28] are also calculated, but in the
approximation that no 0s40p8 components appear in the
scattering states wave functions. This should be a very good
approximation for the energy range considered.

In Fig. 7 are shown the inclusive data of Ref. [29] at Ee =
1500 MeV and θ = 11.95◦ and in Fig. 8 of Ref. [30] at Ee =
480 MeV and θ = 36◦ compared to the calculated results
for neutron plus proton knockout, both with (dashed line) and
without MEC (solid line). Both of these data sets correspond to
an average momentum transfer of ∼300 MeV/c. Owing to the
large bin size, the data will not show the low-lying resonances.

The spike at ω = 100 MeV and apparent weak resonances
at higher energy appearing in the calculation are attributable
to collective spin excitations built on the four nonphysical
1/2+ core states, as mentioned above. Eliminating them from

the basis removes the effect. However, the resonance at ω =
47 MeV is real and remains even when all eight 1/2+ core

FIG. 7. Cross section for 12C(e,e′x). The solid curve is from
calculation with single-particle operators [Eqs. (10)–(12)]. The
dashed curve includes meson exchange contribution. Data are from
Ref. [29].

014610-5



DEAN HALDERSON PHYSICAL REVIEW C 88, 014610 (2013)

FIG. 8. Cross section for 12C(e,e′x). The solid curve is from
calculation with single-particle operators [Eqs. (10)–(12)]. The
dashed curve includes meson exchange contribution. The dotted line
results from using the 300 MeV/c responses in Fig. 9 that were
extracted from data. Data are from Ref. [30].

states are removed from the basis. This is the high-energy oc-
tupole resonance. Its appearance at 106/A1/3 is consistent with

the 110/A1/3 extracted from proton scattering on 40Ca, 116Sn,
and 208Pb [31]. It exhausts about one-half of the sum rule. Of
course, an octuple resonance in 12C would have a very large
α-decay width, so such a narrow resonance would not show
in the data. However, if its strength is spread over a width of
20 to 25 MeV, it would fill in what appears to be missing
strength in this region. Such strength would be missing in any
quasifree or optical model calculation of this process. It would
be very beneficial to have (π+, π+′p)/(π−, π−′p) data in this
region. It was shown in Ref. [32] that this reaction can identify
regions of giant resonances.

The transverse and longitudinal responses were extracted
from the data in Ref. [30]. These are shown in Fig. 9 along
with the calculations with single-particle operators shown as
solid lines. The apparent weakness in the low-energy shoulder
of the calculated transverse response at q = 300 MeV/c
may not be real. In the analysis of the data, the energy
resolution will mix the effect of the resonances and even bound
states into neighboring energy regions, making the low-energy
continuum response appear large. This result can be seen when
the responses extracted from the data are entered into Eq. (5).
The resulting cross section shown as a dotted line in Fig. 8
appears, and it does not track the apparent resonance at low
energy.

In Fig. 10 is shown the data of Ref. [30] at Ee = 680 MeV
and θ = 36◦ compared to the calculated results both with
(dashed line) and without MEC (solid line). This data set

FIG. 9. Longitudinal and transverse responses extracted from the data of Ref. [30]. Solid lines are responses calculated with single-particle
operators of Eqs. (10)–(12). Dashed lines omit contributions from coupled channels. Dotted lines omit contributions from 0s hole components.
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FIG. 10. Cross section for 12C(e,e′x). The solid curve is from
calculation with single-particle operators [Eqs. (10)–(12)]. The
dashed curve includes meson exchange contribution. The dotted line
results from using the 400 MeV/c responses in Fig. 9 that were
extracted from data. Data are from Ref. [30].

corresponds to an average q of ∼400 MeV/c. The position
and width of the calculated quasielastic peak are in agreement
with the data, but the peak cross section is now too small.
The transverse-longitudinal response analysis shown in Fig. 9
indicates that the weakness is in the transverse response;
however, the weakness at low energy may again be exaggerated
because employing the responses from the data in Eq. (5) leads
to a cross section that is too large at low energy, as shown by
the dotted line in Fig. 10. The contribution of MEC, shown as
the dashed line in Fig. 10, is too small to provide agreement
with the data. A small contribution of the MEC was also found
in Ref. [21]. This is in contrast to 4He, where MEC in the
RCCSM gives agreement with the data.

The cross section in Fig. 11 has a mean q of ∼550 Me/c, and
here the data of Ref. [30] is poorly fit. The response function
analysis for q = 550 MeV/c in Fig. 9 again points to the
transverse response as being the main deficit. This effect, of the
models that fit the transverse response at low q underpredicting
the transverse response with increasing q, is the prevalent
result. Also, the contribution of the resonances disappears at
high momentum transfer, leaving the longitudinal response
also too small in the low-energy region.

The contributions to the responses have been dissected
in Fig. 9. The solid lines are the single-particle operator
contributions. The dashed lines eliminate the contribution
of channels that are not in the exit channel. This means
that in Eq. (3) all c′ contributions are set to zero unless
c = c′. One can see that a large amount of the longitudinal
response at q = 300 MeV/c is eliminated. This demonstrates
a significant difficulty with optical model calculations of
knockout reactions. In the optical model, elastic cross sections
are fit by including absorption, which reduces the flux and,
hence, the wave function in channel c. In the RCCSM elastic

FIG. 11. Cross section for 12C(e,e′x). The solid curve is from
calculation with single-particle operators [Eqs. (10)–(12)]. The
dashed curve includes meson exchange contribution. Data are from
Ref. [30].

cross sections are fit by removing the flux in channel c
by sending it to other channels. However, these channels
contribute to the knockout process and are missing in optical
model calculations. The contribution of the coupled channels
diminishes with increasing q. Interestingly, the contribution
of the high-energy quadruple resonance almost disappears
without the coupled channels, showing that this resonance
is, indeed, a collective excitation.

The dotted line in Fig. 9 results from eliminating the
contribution of the 0s hole state component of the wave
function. (They are still in the Hamiltonian; their amplitudes
are just set to zero in the wave function.) They contribute over
the range of q and have more effect than the MEC shown as
dashed lines in Fig. 12.

Also included in Fig. 12 as dotted lines are the transverse
responses calculated with only p-shell states included in the
A = 11 basis. This allows one to address the effect of
including higher h̄ω states in 12C. In Ref. [33] a marked
improvement in the transverse response for the 2+(4.44) was
obtained by including a 0h̄ω plus 1h̄ω basis. The deficiency
of the 0h̄ω space is demonstrated in Fig. 13, where the
dashed line is the result with the Cohen and Kurath (8-16)
interaction [8] as employed in Ref. [33]. Neither the nucleon
form factor or center-of-mass correction is applied to this
calculation. Shown as a dotted line is the equivalent calculation
with the interaction in this present work. This demonstrates
considerable dependence on the interaction. However, the peak
of the response remains shifted to high q as compared to
the data of Refs. [34] and [35]. The reason for this shift is
that no contribution to the convection current can come from
a pure p-shell calculation. Only the magnetization current
contributes. Higher h̄ω excitations are required to produce a
convection current contribution, and, as observed in Ref. [33],
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FIG. 12. The transverse responses extracted from the data of Ref. [30]. Solid lines are responses calculated with single-particle operators
of Eqs. (10)–(12). Dashed lines include MECs. Dotted curves result from eliminating 1h̄ω states from the core states.

inclusion of the 1 h̄ω space increased the strength and shifted
the peak in better agreement with the data. However, the
transverse response was still a factor of 2.5 too low. The
addition of the 1h̄ω space was not sufficient to account for
the complexity of this low-lying collective state.

The solid line in Fig. 13 is the result of the basis employed
in this present work. The basis includes selected many-h̄ω
excitations from the 0s and 0p shells owing to working in
the center-of-mass coordinate. The results are, however, very
similar to those of Ref. [33], in that the peak has shifted,
but the full strength has not been obtained. Therefore, the
higher h̄ω states improve the transverse response for this bound
state, but it is not clear that improvement would be found for
knockout reactions, because this process seems very different.
Knockout at high energy and momentum transfer is primarily a
single-nucleon process, whereas electroexcitation of bound
states can involve collective motion. Indeed, if one compares
the dotted lines in Fig. 9, where the 0s-hole states were
included in the A = 11 basis but their contribution set to zero,
with the dotted line in Fig 12, where they were eliminated
from the basis entirely, one sees only small differences. The
primary effect of including the higher h̄ω excitations in the
basis is to allow 0s-shell knockout, i.e., providing additional
nucleons to hit, and this is not sufficient to account for the
measured transverse response at high momentum transfer. A
possible explanation for the remaining discrepancy follows.

VI. THE RECOIL TERMS

The above calculations follow the general trend of previous
calculations in that the calculated transverse response at the
higher momentum transfer is smaller than that extracted from
data. This section presents a possible source of the deficit. This
problem does not occur in 4He where RCCSM calculations
agree well with nearly all electron data [25]. Having the
problem occur in the heavier 12C system would lead one to
guess that this is a medium modification effect. However, some

crucial recoil terms are included in the 4He calculation that
are missing in the 12C calculation and missing from other
calculations in the literature. The effect of omitting these
terms in 4He is similar to the effect seen above in 12C; i.e.,
the calculated transverse response is more suppressed as the
momentum transfer increases. The recoil terms are negligible
at q ∼ 205 MeV/c but increase the 180◦ cross section by a
factor of 2.4 at q ∼ 380 MeV/c.

To see where the recoil terms arise, one can look at how the
matrix elements of the single-particle operators are calculated

FIG. 13. Transverse reponse for 12C(2+), 4.44-MeV state. The
dashed line is result for a p-shell calculation with Cohen and Kurath
(8-16); the dotted line is result for p shell a calculation with the
interaction in present work; the solid line is for full basis with the
interaction in the present work. Open squares are data of Ref. [34];
the cross is a datum of Ref. [35].
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FIG. 14. The RCCSM coordinate system for 4He.

for 12C in this work. First, coefficients of fractional parentage
of the 12C p-shell states are employed so that all components
of the initial- and final-state wave functions of Eq. (1) are
written as a sum of oscillators coupled to core states:

�JB
=

∑
JAαl̄j̄ n̄

gn̄l̄j̄JAαJB
[ϕ

n̄l̄j̄
(ξ ) ⊗ |αJA〉 ]JB . (15)

The oscillators are a function of the coordinate connecting the
center of mass of the core and the particle and have oscillator
constant ν = ν0(A − 1)/A. Matrix elements of single-particle
operators are taken to be diagonal in the core states and connect
the particle states. This would be the same procedure used in
optical model calculations. Next, it is instructive to look at
the coordinate system for 4He shown in Fig. 14. The RCCSM
creates a particle in coordinate ξ 3 as in Eqs. (1) and (15).

The single-particle operators in Eqs. (10)–(12) require
coordinates r1, r2, r3, and r4, and r1 = 3/4ξ 3. Hence, a first
correction is to use r1 = (A − 1)/Aξ3 in these equations. This
can make up to a 10% effect in 12C for the reactions considered
here. However, the single-particle operator sums all particles,
and coordinates r1, r2, and r3 must also be included. These
could be included exactly in the simple 0s3 model of 3H and
3He. Comparing of the results of Ref. [36] where the RCCSM
wave functions were treated as particle-hole wave functions,
and hence included only r4, with the results of Ref. [25], where
all Jacobi coordinates were used, one sees that including the
recoil terms causes the 180◦ cross sections (and hence the
transverse response) to increase with increasing momentum
transfer. The recoil terms were absolutely necessary for
agreement with the data. One could argue that such a recoil
effect would be small in the heavier 12C system. However, 12C
has many more particles to contribute, so the situation is not
clear.

VII. CONCLUSION

The RCCSM has been extended to include core states with
1h̄ω excitations. This extension allows one to include 0s-shell
knockout processes. The model was applied to the 11B(p,n)11C
and 11B(p, p′)11B reactions, and reasonable agreement with
available data was obtained. Successful 11B(p,n)11C calcula-
tions provide confidence in the model’s ability to predict cross

sections to proton-rich systems. The calculated elastic proton
scattering cross section at 30.3 MeV agrees well with the data;
however, the calculation at 155 MeV gives the appearance that
the target size is somewhat too small.

Calculations were performed for 12C(e,e′x) in the quasi-
elastic region. The agreement with measured cross sections
was good at low-momentum transfer. At high q, the calculated
cross sections were smaller than the data, and dissection of
the cross sections into longitudinal and transverse responses
indicated that the weakness was in the transverse response.
A possible explanation for this lack of strength is the
neglect of recoil terms. Elimination of the contribution of
coupled channels reduces the longitudinal response by 23%
at q = 300 MeV/c, but only 2% at q = 550 MeV/c.
Appearing at an energy of 106/A1/3 MeV is the high-energy
octupole resonance. It contributes a significant amount of
strength to the longitudinal response at q = 300 MeV/c.
Such a contribution would be missing from optical model
calculations.

The inclusion of 0s shell knockout is less significant, but
its contribution persists throughout the range of momentum
transfer. The contribution of MEC is smaller than those
calculated for 4He in Ref. [25] and are not sufficient to boost
the calculated cross section in agreement with the data. The
ability of RCCSM calculations to describe the 12C(e,e′x)
reaction at and below 300 MeV/c indicates that they should
provide useful predictions for other knockout reactions in this
momentum-transfer region.
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APPENDIX

The effective interaction employs the same form and
ranges as in Ref. [37]. The central components are given
by V = ∑3

i=1 ViY (r/Ri), the spin-orbit components by V =∑2
i=1 ViY (r/Ri) L · S, and the tensor components by V =∑2
i=1 Vir

2Y (r/Ri) S12, with Y (x) = e−x/x. The coefficients,
Vi , are given in Table II.

TABLE II. Effective interactions strengths, Vi .

Force Range Triplet Triplet Singlet Singlet
(fm) even (MeV) odd (MeV) even (MeV) odd (MeV)

Central 0.25 21 599.80 −1000.00 4954.80 1254.50
0.40 −6342.00 1217.60 −1862.20 452.5
1.414 −10.46 0 −10.463 0

Spin-orbit 0.25 −1000.00 9999.80
0.40 −2998.60 −2592.10

Tensor 0.40 −1869.20 483.00
0.70 59.59 13.62
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