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Precise determination of the effective-range parameters up to an arbitrary order
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We propose a method to compute, for a given potential model, an arbitrary coefficient of the effective-range
function expanded as a power series in energy. The method is based on a set of recurrence relations at low energy,
that allows a compact and general description to any order in energy for neutral and charged cases. By using
the Lagrange mesh technique to compute the R matrix at zero energy, this proposal permits us to compute, with
a very good precision, the effective-range parameters. We use a potential model for some nuclear systems to
illustrate the effectiveness of this method and to discuss its numerical limitations.
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I. INTRODUCTION

Since the early days of nuclear physics, the study of
scattering processes at low energies has been based on the
partial-wave analysis of cross sections in terms of phase shifts
δl , where l is the orbital quantum number. Among the first
systems studied, the description of the s-wave elastic scattering
for the neutron-proton system took a high interest [1,2]. For
this system in particular, a good approximation of the function
k cot(δ0) (where k is the wave number in the center-of-mass
frame) as a linear function of k2 led to study of the effective-
range function (ERF) and its expansion in Maclaurin series,
better known as the effective-range expansion (ERE). Since
then, an ERF has been established for arbitrary partial waves,
both in the neutral and charged cases [3]. The analyticity
properties of this function have also been demonstrated,
making EREs an important tool for the parametrization of
low-energy scattering data.

The coefficients of the ERE, which are directly related to
the so-called effective-range parameters, have become a field
of study in themselves [4–6]. These parameters, including
the well known scattering length, effective range, and shape
parameter, can be interpreted in terms of physical properties
of the system, in particular regarding scattering states at low
energies and weakly bound states [7]. They can be considered
as parameters fitting these properties, hence providing a useful
analysis tool for experimental data. For instance, Ref. [2]
shows a way to obtain the first parameters of the ERE for the
neutron-proton and proton-proton systems from experiment.
Of course, in many cases, the possibility of determining the
effective-range parameters via the experimental data is open,
but the precision will depend on how close we can go to zero
energy and how many parameters we wish to determine.

The ERE coefficients actually carry information about
the interaction between the colliding particles; they can thus
be considered as an intermediate step between experiment
and models. In an inverse-problem perspective, they can be
extracted from scattering data and then used as an input
for an inversion method aimed at deriving an interaction
model. Conversely, ERE coefficients are calculated for a given
interaction by solving the Schrödinger equation at low-energy
scattering, hence providing an efficient way of comparing
the predictions from this model with experimental data. An

efficient method to obtain the first three effective-range
parameters is proposed in Refs. [8,9]. In particular, the latter
shows that using the R matrix [10,11] and the Lagrange mesh
technique [12,13], the prediction of the scattering length, the
effective range, and the shape parameters is accurate for neutral
and charged cases. The aim of the present paper is to extend
that proposal to calculate any parameter of the ERE in both
cases, for a given interaction model.

In Sec. II, we introduce the ERF of a two-body system via
the phase shift both for the neutral and charged case. Then, we
define the effective-range parameters and present the method
to compute any of them. In Sec. III we briefly describe the
scheme to compute derivatives at zero energy of the R matrix
based on the Lagrange mesh technique. In order to test the
method, three neutral and three charged cases are analyzed in
Sec. IV. Conclusions and perspectives are presented in Sec. V.

II. EFFECTIVE-RANGE FUNCTION AT LOW ENERGIES

Let us consider the scattering of two particles with relative
coordinate r and reduced mass μ. Let us also suppose that
part of the interaction between the two particles decreases
fast enough in such a way that the effective potential can be
described in two regions as the contribution of a short-range
potential (VN), a centrifugal potential, and a Coulomb potential
(VC) for r � a, and a centrifugal and a Coulomb potentials for
r > a. Here a is considered as the range of the short-range
potential, but in practice it could be taken larger or equal
to the minimal distance between the two particles when the
short-range potential is neglected in comparison with the rest
of the interaction. In this scenario, for the lth partial wave,
and if �l(k, r) = ul (k,r)

kr
is the radial wave function, the radial

Schrödinger equation can be written as[
− h̄2

2μ

d2

dr2
+ h̄2

2μ

l(l + 1)

r2
+ V (r) − E

]
ul(k, r) = 0, (1)

where ul(k, r) is known as the modified radial wave function,
E = h̄2

2μ
k2 is the energy in the center-of-mass frame and

V (r) =
{

VN(r) + VC(r), if r � a,

VC(r), if r > a.
(2)
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Let us introduce the following notations and conventions:

(i) H1l = H1l(k, a) is the Ricatti-Bessel (regular
Coulomb) function at r = a for the neutral (charged)
case.

(ii) H2l = H2l(k, a) is the Ricatti-Neumann (irregular
Coulomb) function at r = a for the neutral (charged)
case.

(iii) A prime represents the partial derivative with respect to
r at r = a [e.g., H ′

i l
= ∂Hil(k, r)/∂r|r=a].

(iv) Rl = [a ∂ ln[ul (k,r)]
∂r

|r=a]−1 is the single-channel R ma-
trix [10,11].

(v) For the charged case, if the interacting particles have
electric charge Z1e and Z2e, then aN = h̄2

μ
4πε0

Z1Z2e2 is the

nuclear Bohr radius, EN = h̄2

2μ
1

a2
N

is the nuclear Rydberg

energy, and

η = 1

aNk
=

√
EN

E
(3)

is the Sommerfeld parameter.

With the previous notations and conventions, the phase-shift
δl [4] is obtained through

tan(δl) = −H1l − aRlH
′
1l

H2l − aRlH
′
2l

. (4)

Equation (4) gives a good tool to compute the phase-shifts
and later the ERF in a wide range of energy. Unfortunately
Eq. (4) is not useful at low energies, in particular at the limit
when E tends towards zero, because the functions H1l and
H2l and their radial derivatives vanish, giving an indeterminate
value for the phase shifts and then for the ERF. However, this
limit is very important to determine the coefficients of the
ERE, since by definition they are calculated at zero energy.

In order to overcome the indeterminacy of δl at E = 0, a
convenient renormalization of the H1l and H2l functions is
proposed in Ref. [9]. These renormalized functions remain
finite at zero energy and are expressed as

H1l =
{

k−l−1H1l (neutral case),

k−1/2 exp(πη)H1l (charged case),
(5)

H2l =
{

klH2l (neutral case),
π
2 k−1/2 exp(−πη)H2l (charged case).

(6)

Using definitions (5) and (6) in Eq. (4) one can easily obtain
the expressions for the phase-shifts,

tan(δl) =
{

k2l+1Dl (neutral case),
π
2 exp(−2πη)Dl (charged case),

(7)

with

Dl = −H1l − aRlH′
1l

H2l − aRlH′
2l

. (8)

For simplicity, we have omitted the dependence on energy in
Eqs. (7) and (8).

By using the previous notation the ERF, Kl , can be written
as [3]

Kl =
{

D−1
l (neutral case),
2wl

l!2a2l+1
N

[
2D−1

l + h
]

(charged case),
(9)

where the functions wl and h read

wl =
l∏

j=0

[
1 + j 2

η2

]
, (10)

h = ψ(iη) − ln(iη) + 1

2iη
− iπ

e2πη − 1
, (11)

with ψ the digamma function [14].
It can be proven that Kl is analytical at zero energy, which

allows to write this function as a power series in energy, i.e.,

Kl =
∞∑

n=0

cl,nE
n. (12)

Equation (12) is useful to define the effective-range pa-
rameters. Here we adopt the standard convention for the first
three efective-range parameters: the scattering length (al),
the effective range (rl), and the shape parameter (Pl); i.e.,
expanding Eq. (12) one finds

Kl = − 1

al

+ rl

2

(
2μ

h̄2

)
E − Plr

3
l

(
2μ

h̄2

)2

E2

+
∞∑

n=3

Ql,n

(
2μ

h̄2

)n

En. (13)

In Eq. (13) we have defined Ql,n = ( h̄2

2μ
)ncl,n as the

effective-range parameter of order n, for n � 3.
Our goal is to compute the coefficient cl,n in Eq. (12) and

then to calculate the effective-range parameters in Eq. (13).
The coefficient cl,n is easily found by computing the nth
derivative of Kl at zero energy

cl,n = 1

n!
(Kl)

(n)
0 . (14)

Hereafter, we use the superscript (n) to designate the nth
partial derivative with respect to energy and the subscript 0 to
designate functions at E = 0. The reader should not confuse
the prime with the superscript (1).

As we have shown in Eq. (9), the explicit form of Kl depends
on whether the Coulomb interaction is present in the system
or not. For this reason we will study both cases separately in
the next two subsections.

A. cl,n for the neutral case

In the neutral case cl,n depends on D−1
l only; then using

Eq. (8) one can rewrite Eq. (14) as

cl,n = 1

n!

(
−H2l − aRlH′

2l

H1l − aRlH′
1l

)(n)

0︸ ︷︷ ︸
(D−1

l )(n)

0

. (15)

014601-2



PRECISE DETERMINATION OF THE EFFECTIVE-RANGE . . . PHYSICAL REVIEW C 88, 014601 (2013)

The term (D−1
l )(n)

0 can be expanded in terms of the derivatives
of Hi l , H′

i l
and Rl at E = 0. To do this, let us first define D−1

l

as

D−1
l = −	2l

	1l

, (16)

with

	il = Hi l − aRlH′
i l , for i ∈ {1, 2}. (17)

Using the product rule for derivatives, one gets

(
D−1

l

)(n)

0 = −
n∑

m=0

(
n

m

)
(	2l)

(n−m)
0

(
	1

−1
l

)(m)

0 , (18)

with ( n
m ) the binomial coefficient. In the same way, the terms

(	il)
(n)
0 and (	i

−1
l )(n)

0 can be written as

(	il)
(n)
0 = (Hi l)

(n)
0 − a

n∑
j=0

(
n

j

)
(Rl)

(n−j )
0 (H′

i l)
(j )
0 (19)

and

(
	i

−1
l

)(n)

0 = −
n∑

m=1

n−m∑
j=0

(
n − 1

m − 1

)(
n − m

j

)
(	il)

(m)
0

× (
	i

−1
l

)(n−m−j )

0

(
	i

−1
l

)(j )

0 , (20)

for n > 0.
The four previous equations, together with Eq. (15), allow

us to compute recursively any coefficient cl,n if one knows
(Hi l)

(n)
0 , (H′

i l
)(n)
0 , and (Rl)

(n)
0 . The value of (H′

i l
)(n)
0 is easily

obtained from (Hi l)
(n)
0 since the derivatives over r and E can

be interchanged. The functions (H1l)
(n)
0 and (H2l)

(n)
0 read [9]

(H1l)
(n)
0 =

(
− μ

h̄2

)n
al+2n+1

(2l + 2n + 1)!!
, (21)

(H2l)
(n)
0 =

(
μ

h̄2

)n

(2l − 2n − 1)!!a−l+2n. (22)

Thus, there only remains to find a general expression for (Rl)
(n)
0

to complete all requirements to compute the coefficient cl,n.
An efficient method to get the derivatives of the R matrix at
zero energy is described in Ref. [9]. We will briefly explain it
in Sec. III.

B. cl,n for the charged case

By using Eqs. (9) and (14), the coefficient cl,n for the
charged case reads

cl,n = 1

n!

2

l!2a2l+1
N

[
2
(
wlD

−1
l

)(n)

0 + (wlh)(n)
0

]
. (23)

Note that one can use the same procedure as the one used for
the neutral case to split the derivatives of the products wlD

−1
l

and wlh. With this idea the term (wlD
−1
l )(n)

0 can be written as

(
wlD

−1
l

)(n)

0 =
n∑

m=0

(
n

m

)
(wl)

(n−m)
0

(
D−1

l

)(m)

0 , (24)

and using the power series expansion of the function h,

h =
∞∑

n=0

h̃nE
n = 1

12

E

EN

+ 1

120

E2

E2
N

+ 1

252

E3

E3
N

+ 1

240

E4

E4
N

+ 1

132

E5

E5
N

+ 691

32760

E6

E6
N

+ 1

12

E7

E7
N

+ 3617

8160

E8

E8
N

+ 43867

14364

E9

E9
N

+ · · · , (25)

the term (wlh)(n)
0 reads

(wlh)(n)
0 =

n∑
m=0

n!

(n − m)!
(wl)

(n−m)
0 h̃m. (26)

The term (D−1
l )(m)

0 in Eq. (24) can be computed by using
Eqs. (18)–(20). For n > 0 the term (wl)

(n)
0 reads

(wl)
(n)
0 =

n−1∑
m=0

(−1)m
(n − 1)!

(n − 1 − m)!

(wl)
(n−1−m)
0

Em+1
N

Nl,m, (27)

with

Nl,m =
l∑

j=1

j 2(m+1). (28)

The value (wl)
(0)
0 = 1 is easily calculated from Eq. (10).

In Eq. (25) we have written the first ten terms explicitly,
which will be used in Sec. IV to compute the first ten effective-
range parameters. Note that h̃0 = 0.

At this point we have all the requirements to compute
cl,n except for general expressions of (Rl)

(n)
0 , (H′

i l
)(n)
0 , and

(Hi l)
(n)
0 which are required to calculate Eq. (19). Similarly

to the neutral case, the term (Rl)
(n)
0 will be obtained by

using the Lagrange mesh technique described in Sec. III, and
the term (H′

i l
)(n)
0 will be easily computed if one knows (Hi l)

(n)
0 .

Therefore, we can focus on finding a general expression for
(Hi l)

(n)
0 .

Let us start with the regular Coulomb function H1l . For
η > 0 this function can be expanded as

H1l =
√

π

2η

wl

e2πη − 1

(
2

x

)2l ∞∑
m=2l+1

bm

(x

2

)m

Im(x), (29)

where we have started from its expansion in terms of Bessel-
Clifford functions [14]. The argument of the first modified

Bessel function Im is the dimensionless variable x = 2
√

2r
aN

.

The term bm satisfies the recurrence relation

4η2(m − 2l)bm+1 + mbm−1 + bm−2 = 0, (30)

for m > 2l + 1 and with b2l = b2l+2 = 0, b2l+1 = 1.
By using Eqs. (29) in Eq. (5) one finds the compact

expression for the renormalized Coulomb function

H1l = √
πr

∞∑
m=2l+1

dmφm(x, l), (31)
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O. L. RAMÍREZ SUÁREZ AND J-M. SPARENBERG PHYSICAL REVIEW C 88, 014601 (2013)

where the terms dm = dm(η, l) and φm(x, l) read

dm = bm

√
wl

1 − e−2πη
(32)

and

φm(x, l) =
(x

2

)m−(2l+1)
Im(x). (33)

Because of the fast decrease of the term e−2πη when the
energy goes to zero, one can check from Eq. (32) that the only
contribution to the derivatives of dm at zero energy is given by
the term bm

√
wl . Therefore, from Eq. (31) one obtains

(H1l)
(n)
0 = √

πr

∞∑
m=2l+1

(bm

√
wl)

(n)
0 φm(x, l). (34)

Using the product rule for derivatives and taking into
account that bm is a polynomial in energy, Eq. (34) can be
written as

(H1l)
(n)
0 = √

πr

n∑
j=0

3(n−j )∑
m=2(n−j )

[(
n

j

) (√
wl

)(j )
0

× (bm+2l+1)(n−j )
0

(x

2

)m

Im+2l+1(x)

]
. (35)

Note that the sum over m runs from 2(n − j ) up to 3(n − j ).
This is because (bm+2l+1)(m̄)

0 = 0 if m < 2m̄ or m > 3m̄, as
one can prove from Eq. (30).

The terms (
√

wl)
(n)
0 and (bm+1)(n)

0 can be calculated by
iterating

(
√

wl)
(n)
0 = (n − 1)!

2En
N

n−1∑
j=0

(−1)j
(
√

wl)
(n−1−j )
0

(n − 1 − j )!
Nl,j , (36)

with Nl,j defined in Eq. (28), and

(bm+1)(n)
0 = −n

m(bm−1)(n−1)
0 + (bm−2)(n−1)

0

4(m − 2l)EN

, (37)

for m > 1 and n > 0.
For i ∈ {1, 2}, the simple and useful relation

(H′
i l)

(n)
0 = 1

2a

[
(Hi l)

(n)
0 + x

∂(Hi l)
(n)
0

∂x

]
r=a

, (38)

helps us to compute (H′
i l)

(n)
0 easily.

If i = 1 and using Eq. (35) one can compute the term
∂(Hi l )

(n)
0

∂x
in Eq. (38) as

∂(H1l)
(n)
0

∂x
= √

πr

n∑
j=0

3(n−j )∑
m=2(n−j )

[(
n

j

)
(
√

wl)
(j )
0 (bm+2l+1)(n−j )

0

×
(

x

2

)m (
m

x
Im+2l+1(x) + dIm+2l+1(x)

dx

)]
.

(39)

We have discussed the steps to obtain (Hi l)
(n)
0 and (H′

i l
)(n)
0

if i = 1. We can now move on to the case i = 2. For this case,
it is necessary to clarify that the expansion in Bessel-Clifford
functions of the irregular Coulomb wave function H2l [14]

is possible only when η → ∞. This limit is equivalent to
E → 0 [see Eq. (3)] which is our case of interest. Therefore,
mimicking the procedure followed previously for (H1l)

(n)
0

and (H′
1l)

(n)
0 , and defining Īn as the second modified Bessel

function, we find

(H2l)
(n)
0 = √

πr

n∑
j=0

3(n−j )∑
m=2(n−j )

[
(−1)m

(
n

j

)
(
√

wl)
(j )
0

× (bm+2l+1)(n−j )
0

(x

2

)m

Īm+2l+1(x)
]
, (40)

∂(H2l)
(n)
0

∂x
= √

πr

n∑
j=0

3(n−j )∑
m=2(n−j )

[
(−1)m

(
n

j

)
(
√

wl)
(j )
0

× (bm+2l+1)(n−j )
0

(x

2

)m

×
(

m

x
Īm+2l+1(x) + dĪm+2l+1(x)

dx

)]
. (41)

III. LAGRANGE MESH TECHNIQUE TO COMPUTE
R-MATRIX DERIVATIVES AT ZERO ENERGY

In order to understand some properties of two-body nuclear
systems, it is convenient to take advantage of the fact that
the nuclear interaction is a short-range interaction. This fact
allows us to divide the configuration space in two regions
as shown in Eqs. (1) and (2). In the external region (r > a)
the Schrödinger equation is solved by analytic procedures.
The challenge is to find the wave function in the internal
region (r < a) together with the correct matching between the
external and internal wave functions at r = a. It is equivalent to
find the R matrix for a single-channel case. In general, using
analytic methods it is not possible to achieve this challenge
(at least nowadays) and for this reason one needs to find a
good approximation of the wave function, which is usually
done numerically. In the case of the R matrix Rl , Ref. [11]
shows how to achieve this challenge by approximating the
wave function as a superposition of N linearly independent
functions, fn(r), of a basis. The result for a two-body system
with reduced mass μ and energy E is

Rl ≈ h̄2

2μa2

N∑
n,m=1

fn(a)[(C − EI )−1]nmfm(a), (42)

where the elements of the N × N matrix I and C are
respectively the Kronecker delta δnm and

Cnm =
∫ a

0
fn(r) [Tl + V (r) + L] fm(r)dr, (43)

with

Tl = − h̄2

2μ

[
d2

dr2
− l(l + 1)

r2

]
, (44)

the kinetic energy operator of the partial wave l, and

L = h̄2

2μ
δ(r − a)

d

dr
, (45)
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the Bloch operator [15]. The latter appears for two main
reasons. First, “to keep” the Hamiltonian Hermitian in the
internal region, and second, to match the internal and external
wave functions correctly.

The good estimation of Cnm in Eq. (43) will depend on the
basis chosen and how the integral is made. As the internal space
is r ∈ [0, a], a good basis is the shifted Lagrange-Legendre
basis [11]. This basis allows us to compute the integral in
Eq. (43) easily if it is approximated by the shifted Gauss-
Legendre quadrature. With these assumptions fn(a) and Cnm

read [9,11]

fn(a) = (−1)n√
axn(1 − xn)

, for n ∈ {1, 2, · · · , N}, (46)

Cnm ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h̄2

2μ
(4N2+4N+3)xn(1−xn)−6xn+1

3a2x2
n(1−xn)2

+ h̄2

2μ
l(l+1)
a2x2

n
+ V (axn), for n = m,

h̄2

2μ
(−1)n+m

a2
√

xnxm(1−xn)(1−xm)

× [
N2 + N + 1 + xn+xm−2xnxm

(xn−xm)2

− 1
1−xn

− 1
1−xm

]
, for n �= m,

(47)

with xn the abscissas of a shifted Gauss-Legendre quadrature
in the [0,1] interval.

Finally, the previous approximations allow to calculate the
j th derivative of the R matrix at zero energy as

(Rl)
(j )
0 ≈ h̄2

2μ

j !

a

N∑
n,m=1

fn(a)[(C−1)j+1]nmfm(a). (48)

IV. APPLICATIONS

In this section we discuss the effectiveness of the method
derived in Sec. II to calculate the first ten effective-range
parameters via the coefficients cl,n in Eqs. (15) and (23). To
do that, we use the technique shown in Sec. III to compute the
R-matrix derivatives at zero energy. We analyze the following
nuclear systems.

Neutral systems:

(i) SW (square well): s, p, d waves, h̄2

2μ
= 1 MeV fm2, and

square well potential of width 3 fm and depth 10 MeV.
(ii) W-S (Woods-Saxon): s, p, d waves, h̄2

2μ
= 1 MeV fm2,

and Woods-Saxon potential −V0
1+exp[(r−R)/d] , with R =

3 fm and V0 = 10[1 + exp(−R/d)] MeV. The diffuse-
ness d will be taken as a variable parameter.

(iii) n-p (neutron-proton): s wave and Bargmann poten-
tial [5] −8bβ2 exp(−2βr)

[1+b exp(−2βr)]2
h̄2

2μ
, with b = β−α

β+α
, α =

0.04 fm−1, and β = 0.81 fm−1 [16].

Charged systems:

(i) α + 3He: s wave, point-sphere Coulomb poten-
tial with RC = 3.248 fm, and Gaussian potential
−67.67 exp[−r2/(2.477 fm)2] MeV [8].

(ii) 16O + p: p wave, point-sphere Coulomb poten-
tial with RC = 3.553 fm, and Gaussian potential
−36 exp[−r2/(3.553 fm)2] MeV [8].

TABLE I. Units for the effective-range parameters and absolute
error in fmν .

al , ε(al) rl , ε(rl) Pl , ε(Pl) Ql,n, ε(Ql,n)

ν 2l + 1 −2l + 1 4l −2l + 2n − 1

(iii) 12C + α: d wave, erf-Coulomb potential
Z1Z2e

2

4πε0r
erf( r

2.5 fm ), where erf is the error function [14],

and Gaussian potential −112.3319 exp[−r2/(2.8 fm)2]
MeV [7].

All the previous systems are chosen in order to explore
the numerical merits and numerical limitations of our method
as much as possible. We choose the SW and n-p systems
because they allow us to compare our results with exact results.
The W-S system is chosen to evaluate the behavior of the
effective-range parameters when a weakly bound state, virtual
state, or resonance at low energy is present. The last three
systems were chosen to evaluate the charged case and because,
together with n-p, all of them are closer to real nuclear cases.

Before showing results, let us specify the calculation
conditions. All masses are atomic masses and are taken from
Ref. [17] except for systems SW and W-S. Units of the
effective-range parameters and theirs absolute errors, ε, will
be given in fmν where ν is shown in Table I.

In order to estimate the effective-range parameters using
the method described in Sec. II, it is necessary to compute
expressions that involve many operations that have to be
carried out numerically. This fact leads to some numerical
limitations in the accuracy of the estimations that will depend
on the characteristics of the software and hardware used. Here
we develop such a numerical evaluation using double precision
in FORTRAN language on a regular desktop computer. With
these conditions one expects that the values estimated match
the exact result up to 15 digits in the best case.

A. Neutral cases

Exact values of the first ten effective range parameters for
the SW and n-p systems are displayed in Table II.

Let us discuss some relevant features of the Ql,n parameters
displayed in Table II from the mathematical and numerical
points of view. First, for the s, p, and d waves of the SW
system, the absolute value of each parameter decreases with
its order for all cases except for Q1,8. This behavior guarantees
a good convergence at low energies for the ERE, and then a
good description of the ERF and phase shifts with a small set
of effective-range parameters. For the n-p system this effect
is rather evident because the ERE converges for all energies.
Second, for the s wave of the SW system, all Ql,n parameters
in Table II have the same sign and almost the same order of
magnitude. This fact restricts the range of convergence of the
ERE, but the numerical estimation for the parameters should
be equally good or bad for all, if the numerical precision
can handle correctly all calculations of the method; i.e., the
results should be reliable except for cases when subtractions
or additions of big numbers (from the numerical point of view)
are involved in the calculation. In contrast, this explanation
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TABLE II. Exact values of the first ten effective-range parameters
for the SW and n-p systems. All values are written with twelve digits
except P0 and Q0,n for the n-p system. Units can be consulted in
Table I.

SW

s wave p wave d wave

al 2.98035125196 54.5044450592 4.32199541189
rl 1.95321791835 −1.01095733502 −1.04292323145
Pl −0.07224549975 0.69171350459 −0.87150574727
Ql,3 0.41010095011 0.21472158944 0.35035876175
Ql,4 0.32190586543 0.10883657253 0.01058724882
Ql,5 0.25278100437 0.04415761104 −0.01015831203
Ql,6 0.19808608111 0.02925502308 −0.00625258947
Ql,7 0.15503303001 0.00791996459 −0.00253456328
Ql,8 0.12127431544 0.00948504977 −0.00082189556
Ql,9 0.09484976310 −0.00012111901 −0.00021419743

n-p

a0 −23.7654320988
r0 2.59740259740
P0 0
Q0,n 0, for n � 3

could play a relevant role in the calculation of Ql,n for the n-p
system, where the numerical calculation should compute zero
from subtractions and additions that may involve big numbers.
Third, for the d wave of SW, the parameters do not have the
same sign and the order of magnitude decreases every second
order. This increases the range of convergence of the ERE for
the d wave.

Let us now show and analyze some results for SW by
using the method in Sec. II. For all cases (s, p, d waves)
there is only one acceptable value for the channel radius,
a = 3 fm. For a < 3 fm, part of the potential is neglected
and therefore the R matrix does not give physical results. For
a > 3 fm, the Lagrange mesh technique, and particularly the
Gauss quadrature, cannot handle correctly the discontinuity in
the potential at r = 3 fm and therefore the R matrix is wrongly
estimated. Thus, choosing a = 3 fm, Table III displays the
absolute error for the first ten effective-range parameters for
s, p, d waves of SW.

Table III highlights a good estimation of the effective-range
parameters for N = 10 and a very good one for N � 20. This
is expected because the square well potential has a polynomial
form in the region r � 3 fm, and then the Lagrange mesh
technique and Gauss quadrature give better approximations
for the R matrix than for those potentials with a different
dependency on r .

A relevant feature in Table III is the remarkable increasing
of ε(Q1,9) in comparison with those of lower order. This
effect could be expected because Q1,9 is almost two orders
of magnitude smaller than the parameters of lower order,
which implies that its numerical calculation requires higher
computational precision. On the other hand, the ninth-order
correction in the ERE does not play a relevant role, which can
be corroborated by comparing the exact phase shift and its
calculation using the ERE up to eighth and ninth order. This

TABLE III. Absolute errors of the first ten effective-range
parameters for s, p, d waves of SW. The absolute error is written
in normalized scientific notation as ε = εsig × 10b, where εsig is the
significand and b is the order of magnitude. Here we report b only.
Units are shown in Table I.

s wave p wave d wave

N 10 20 30 10 20 30 10 20 30

b(al) −6 −9 −9 −3 −6 −6 −5 −8 −8
b(rl) −6 −9 −9 −6 −9 −9 −6 −9 −9
b(Pl) −7 −12 −12 −5 −9 −9 −5 −9 −9
b(Ql,3) −6 −9 −9 −6 −10 −10 −6 −10 −10
b(Ql,4) −6 −9 −9 −6 −9 −9 −6 −10 −10
b(Ql,5) −6 −9 −9 −6 −10 −10 −6 −10 −10
b(Ql,6) −6 −9 −9 −6 −10 −9 −6 −10 −10
b(Ql,7) −6 −9 −9 −7 −8 −7 −7 −11 −11
b(Ql,8) −6 −9 −9 −6 −8 −6 −7 −11 −11
b(Ql,9) −6 −9 −9 −4 −4 −4 −7 −12 −12

is another way to check whether an effective-range parameter
could require higher numerical precision than others of lower
order.

Note that in Table II the absolute values of the effective-
range parameters for the p wave of SW look similar to those
for the d wave but the estimation is worse for the p wave as
Table III shows. It leads us to think that there is an extra
feature that makes poorer estimation for the p-wave case
(especially for high order parameters). This feature is related to
the presence of a weakly bound state, virtual state, or resonance
at low energy. We shall discuss their effects later in this section.

At this point we have shown that our method in combination
with the Lagrange mesh technique works very well for simple
potentials. Now we wish to move on to more sophisticated
and realistic shapes for the short-range potential. Let us first
consider the W-S system. In this case we do not know the
exact values of the effective-range parameters to compare
with our estimations, therefore in order to have a check point,
we shall start with potentials close to the SW potential as
Fig. 1 shows.

The W-S potential does not vanish for a finite distance,
which implies that there is not a precise value for a.
However, the Gauss quadrature should work correctly from
the mathematical point of view because this potential has no
discontinuity for d > 0.

As we discussed at the beginning, the restriction on a is that
the short-range potential could be neglected for r > a. Thus, in
order to obtain acceptable results, we scan the channel radius
from a minimal value ā obtained from |VN (ā)| = |VN (0)/100|.
We also scan the diffuseness in the interval d � 0.6 fm and
choose N = 30 for all cases.

In general, we observe a smooth and slow change in the
effective-range parameters when the diffuseness increases.
Even more, they reach a stable value for channel radii close to
ā. An exception to this behavior occurs when a weakly bound
state, virtual state, or resonance at low energy is present. It is
shown in Fig. 2 where we have chosen the scattering length as
an example.
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d
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V
N

+
V

l
s

FIG. 1. Short-range potential VN plus centrifugal potential Vl for
the SW (d = 0) and W-S systems. Three examples are shown for the
W-S system. Labels give the diffuseness in fm.

Remember that the choice of the channel radius implies
a truncation of the potential range for potentials that do not
vanish at a finite distance. This fact in practice, leads to a kind
of domino effect, i.e., channel radius → narrower potential
→ slight rise of the energy levels → chance to modify a
weakly bound state making it a virtual state or resonance
at low energy → incorrect estimation of the effective-range
parameters. Thus, in order to prevent wrong predictions, the
channel radius should be large enough to keep the spectrum
unchanged, especially when a weakly bound state is present.

In order to discuss the impact of virtual states and
resonances at low energy and to contrast their effects with
those given by weakly bound states, we show the energy levels
of the W-S system for different values of d in Fig. 3.

From Fig. 3, the most evident cases when a weakly bound
state is present are d = 0.1 fm for the p wave and d = 0.6 fm
for the s wave (we skip the case d = 0 for the s wave, which

d

a

pa
l

2
l+

1

s

d

a

p

a
l

2
l+

1

s

FIG. 2. Prediction of al for the W-S system by choosing different
channel radii. For all cases N = 30 except for the diamonds in the
middle-left plot where N = 40. Labels give the diffuseness in fm.
The lines are included to guide the eye.

0.60.50.40.30.20.10

FIG. 3. Scheme of energy levels for the systems W-S and SW
(d = 0). The diffuseness is shown in parenthesis and is given in fm.
Solid line: l = 0. Dashed line: l = 1. Dashed-dotted line: l = 2.

corresponds to the SW system). Looking at Fig. 2 for these
two cases, one infers that weakly bound states do not introduce
new restrictions for the channel radius compared to those based
on the domino effect discussed previously, but may demand
a better approximation of the wave function, as illustrated by
both curves in the case d = 0.1 and p wave in Fig. 2.

On the other hand, comparing the s-wave cross sections at
zero energy of the W-S system for d = 0.4 fm [σ0(0) ≈ 0.1 b],
d = 0.5 fm [σ0(0) ≈ 104 b], and d = 0.6 fm [σ0(0) ≈ 10 b]
one sees a remarkable increase of this for the case d = 0.5 fm.
Taking into account that there is no weakly bound state for
d = 0.5 fm as Fig. 3 shows, then this increase is due to the
presence of a virtual state at low energy. The effect of that
virtual state on the estimate of a0 is shown on the top-right
panel of Fig. 2, where the channel radius must be larger than
the range that could be chosen by simple inspection of Fig. 1.
The same effect is seen for the d wave and a diffuseness
of 0.6 fm. In this case, the d-wave cross section shows a
resonance around 66 keV which leads to large values of a as
the bottom-right panel of Fig. 2 shows.

Note that, for the cases where there is neither a weakly
bound state, nor a virtual state or resonance at low energy,
Fig. 2 shows that the estimation of al (and in general the
effective-range parameters) is more stable. This leads us to
summarize the constraints on the channel radius to correctly
compute effective-range parameters as follows: (1) the pres-
ence of a weakly bound state can demand a channel radius
larger than the typical range of the potential (see for instance
the definition of ā) and (2) if a virtual state or resonance at
low energy is present the channel radius must be much larger.

We wish to clarify that the previous constraints are based
on short-range potentials which are not null but are negligible
for r > a. For potentials strictly vanishing beyond a finite
distance, a very good estimation is expected when a is equal
to the potential range (see for instance Table III and Fig. 3 for
the p wave of the SW system).

For the n-p system we also know the exact value of
each effective-range parameter. It makes this system a good
candidate to test our method. In Fig. 4 we show the potential
shape for the n-p system and for the three charged cases which
will be analyzed later.
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TABLE IV. Absolute errors of the first ten effective-range parameters for the n-p system. The absolute error is written in normalized
scientific notation as ε = εsig × 10b, where εsig is the significand and b is the order of magnitude. Here we report b only. Units are shown in
Table I.

a (fm) 8 10 12 15 17 19

N 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40 20 30 40

b(a0) −3 −3 −3 −4 −4 −4 −5 −5 −5 −4 −7 −7 −3 −7 −9 −4 −7 −9
b(r0) −3 −3 −3 −5 −5 −5 −6 −6 −6 −6 −8 −8 −5 −9 −10 −5 −9 −9
b(P0) −4 −4 −4 −5 −5 −5 −6 −6 −6 −7 −7 −7 −7 −9 −10 −7 −9 −8
b(Q0,3) −2 −2 −2 −2 −2 −2 −3 −3 −3 −5 −5 −5 −6 −6 −7 −6 −6 −6
b(Q0,4) −1 −1 −1 −2 −2 −2 −2 −2 −2 −4 −4 −4 −5 −5 −5 −5 −5 −4
b(Q0,5) −1 −1 −1 −1 −1 −1 −2 −2 −2 −3 −3 −3 −2 −4 −2 −3 −3 −3
b(Q0,6) −1 −1 −1 −1 −1 −1 −1 −1 −2 0 −1 −1 0 0 0 0 0 1
b(Q0,7) 0 −1 0 1 1 1 1 2 1 2 2 1 2 2 2 3 3 3
b(Q0,8) 1 1 2 2 2 3 3 4 4 3 5 5 5 5 5 6 6 5
b(Q0,9) 3 3 4 5 5 6 6 6 5 7 7 8 8 8 8 8 9 8

Table IV displays the absolute error of the first ten
effective-range parameters for the n-p system. Note that, for
N ∈ {20, 30} and a ∈ {10, 12, 15} fm, the scattering length,
the effective range, and the shape parameter are in perfect
agreement or slightly better estimated than the results of
Ref. [9]. The estimation for the first six effective-range
parameters is very good if a = 17 fm and N = 40. However,
the precision for the last four parameters is very bad in
general, even when increasing the Lagrange mesh points. The
possibility of increasing a does not give us better results, as
one sees in Table IV for a = 19 fm.

The reader could think that a = 17 fm is very large
following Fig. 4, which shows that 4 to 6 fm seems good
enough. This increase in the channel radius is expected because
the Bargmann potential used for the n-p system provides a
virtual state at −66 keV. This makes the n-p system a good
example where the choice of the channel radius should take
into account the presence of a virtual state at low energy.

The wrong calculations for the last four parameters shown
in Table IV are explained from the numerical point of view. In
those cases, double precision is not enough to keep numbers
with a large set of digits, which are needed to compute small
quantities from subtractions of big ones. It can be illustrated by

12 +α

16 +

α+3

r

V
N

+
V

l

FIG. 4. Short-range potential VN plus centrifugal potential Vl for
systems n-p (s wave), α + 3He (s wave), 16O + p (p wave) and 12C
+ α (d wave).

comparing intermediate results from the numerical calculation
with those obtained analytically as Fig. 5 shows for the R
matrix and its derivatives.

In this figure (Rl)
(j )
0 is computed analytically by using the

scattering wave function for a Bargmann potential [5,16] and
numerically by using the Lagrange-mesh technique.

Figure 5 highlights that the R matrix at zero energy (j = 0)
is very well computed numerically for different Lagrange
meshes. It agrees with the results for a0 shown in Table IV,
where one can deduce that the difference between the value
of a0 for N = 20 and N = 40 is given beyond the fourth digit
(remember, the exact value is a0 = −23.765 . . . fm). Similarly
for the R-matrix derivatives at zero energy, the bottom three

3 1015

j = 9

a

1019

1012

105

10−2

4 109

j = 6

(R
l)

(j
)

0
−j

1013

108

103

10−2

2 104

j = 3

107

103

10−1

10−5

2.4 j = 0

FIG. 5. R-matrix derivatives at zero energy obtained from the
scattering s-wave function for the n-p system (solid line) and from
numerical calculation of Eq. (48) (square points). Black (white) points
correspond to N = 40 (N = 20). Four different derivative orders are
shown as examples.
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panels of Fig. 5 show that the numerical results are in a good
agreement with the exact values.

As the R-matrix derivatives are well computed and
the numerical calculation of the (Hi l)

(n)
0 is accurate, the

wrong estimation of the effective-range parameters should
come from computational processes. In order to explain it,
we wish to emphasize that these parameters are obtained
in three steps. First, compute (Hi l)

(n)
0 and (Rl)

(j )
0 . Second,

calculate Eqs. (19), (20), and (18). Third, determine the
effective-range parameters via Eq. (15). Let us detail the third
step by expandig Eq. (15) as

cl,n = 1

n!(	1l)2
0

[
(H1l)

(n)
0 (H2l)0︸ ︷︷ ︸
τ1

− (H2l)
(n)
0 (H1l)0︸ ︷︷ ︸
τ2

+ a(Rl)
(n)
0 (H′

2l)0(H1l)0︸ ︷︷ ︸
τ3

− a(Rl)
(n)
0 (H′

1l)0(H2l)0︸ ︷︷ ︸
τ4

+ · · ·
]
. (49)

Equation (49) shows that numerical limitations can occur
if large values of τ1, τ2, τ3, or τ4 (or any of the remaining
terms) appear for a given numerical precision. For instance,
by using double precision and choosing a = 17 fm for the n-p
system, one finds that, to calculate c0,9, whose exact value is
zero, the terms τ1 ≈ 2 × 10−3 fm

MeV9 , τ2 ≈ 4 × 10−2 fm
MeV9 , and

τ3 = 0 fm
MeV9 do not contribute to the numerical imprecision as

the term τ4 ≈ 5 × 1016 fm
MeV9 does [the reader can check these

values by using Eqs. (21) and (22) and Fig. 5]. Comparing τ3

and τ4 one sees that double precision is not enough to compute
correctly c0,9 and then Q0,9. This imprecision together with the
fact that (Rl)

(n)
0 is an approximation [see Eq. (48)] explain the

large absolute errors in Table IV for parameters of high order.
We shall detail the effects of the approximation of (Rl)

(n)
0 later

in the charged case.
As we have illustrated for the n-p system the numerical

imprecision comes from big numbers given by R-matrix
derivatives (see the previous value of τ4). This is not a general
rule. Sometimes this kind of numbers comes from (Hi l)

(n)
0

making large values for τ1 or τ2. There are three features to get
these big numbers for the neutral case [see Eqs. (21) and (22)]:
(1) large channel radius, (2) big reduced mass, and (3) high
order of the effective-range parameter.

When numerical inaccuracies appear for the effective-range
parameters of high order, one can give a gross approximation
of these parameters. Let us illustrate it using Table IV. For the
last four effective-range parameters the imprecision decreases
for small channel radii. It is totally expected following the
argument number 1 presented previously. On the other hand,
the precision for the first six parameters decreases for small
channel radii (e.g., N ∈ {30, 40} and a � 17 fm), which is
due to the approximation for the potential at r > a and not to
numerical limitations. These two behaviors allow us to predict
the order of magnitude for the first nine or ten effective-range
parameters. It is achieved by choosing a small channel radius
to avoid numerical inaccuracies for parameters of high order,
but not too small to keep the correct order of magnitude for

those of low orders. If an effective-range parameter is zero its
order of magnitude is indeterminate, and therefore we suggest
to report the absolute error (e.g., for a = 5 fm and N = 40,
the absolute error falls in the range [0.007, 0.7] fm2n−1 for the
first nine effective-range parameters of the n-p system).

B. Charged cases

Comparing Fig. 1 and Fig. 4, one expects that the channel
radius for the 3He + α, 16O + p, and 12C + α systems will be
larger than the channel radius of the W-S system. This intuitive
prediction has been corroborated in Ref. [9] for the 3He + α
and 16O + p systems, where, varying the channel radius from
10 fm up to 14 fm, the scattering lengths, the effective ranges,
and the shape parameters are stable. Therefore, starting with
the values of N and a which give us the best prediction
according to Ref. [9], and using the method described in
Sec. II B, we display in Table V the numerical results for the
first ten effective-range parameters of the systems 3He + α and
16O +p.

For both systems, the estimation of al , rl , and Pl are
in good agreement with the results of Ref. [9]. The next
three parameters are stable and their values agree with the
description of the phase shifts at low energies, which can be
checked by using Eqs. (7) and (9). These facts indicate that Ql,i

is correctly estimated for i < 6. The last three parameters are
evidently greater than those of lower order, which indicates that
numerical limitations are present by using double precision
calculations.

The 3He + α and 16O + p systems do not have weakly
bound states (our potential models provide bound states at
−34.2 MeV and −5.7 MeV for 3He + α and −3.6 MeV for
16O + p) and the phase shits at low energies do not show
indication about possible resonances. It is coherent with the
stability of al in Table V, and corroborates that the imprecisions
come from the numerical limitations.

In order to detail the numerical limitations, we should
track where the large numbers come from in the numerical
calculation. To do that we need to evaluate the contribution
of the R-matrix derivatives and the renormalized Coulomb
functions, in a similar way as we have shown in Eq. (49). Note
that this equation is not valid for the charged case, but removing
the term n! from the denominator on the right side, one gets
(D−1

l )(n)
0 [see Eq. (15)], which has the same structure for the

neutral and charged cases. Thus, we can compute the terms
τ1, τ2, τ3, and τ4 and see if numerical imprecisions appear for
determining (D−1

l )(9)
0 .

For the 3He + α system one finds (a = 14 fm, N = 40)

τ1 ≈ −0.2 fm/MeV9, τ2 ≈ 5 × 1011 fm/MeV9,

τ3 ≈ −5 × 106 fm/MeV9, and τ4 ≈ 6 × 106 fm/MeV9.

For the 16O + p system one finds (a = 16 fm, N = 40)

τ1 ≈ 103 fm/MeV9, τ2 ≈ 4 × 108 fm/MeV9,

τ3 ≈ −7 × 103 fm/MeV9, and τ4 ≈ 9 × 103 fm/MeV9.

In Fig. 6 we present numerical results of (Rl)
(j )
0 for

j ∈ {3, 6, 9}. This figure shows that the contribution of
(Rl)

(j )
0 to form big numbers increases with j , as one could

expect. However, despite rather large values of the R-matrix
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TABLE V. Results for the first ten effective-range parameters for 3He + α and 16O + p. Units are shown in Table I.

3He + α (s wave) 16O + p (p wave)

a (fm) 12 14 14 16

N 30 40 30 40 30 40 30 40

al 36.8849 36.8863 36.8847 36.8862 401.99 401.91 401.77 401.89
rl 0.97262 0.97263 0.97262 0.97262 −0.02909 −0.02910 −0.02912 −0.02910
Pl −0.09010 −0.09009 −0.09009 −0.09008 10233 10217 10193 10212
Ql,3 0.04972 0.04970 0.04972 0.04971 −0.75049 −0.750595 −0.75044 −0.75045
Ql,4 0.09278 0.09281 0.09281 0.09282 −0.69557 −0.69538 −0.69557 −0.69619
Ql,5 −0.07573 −0.07571 −0.07581 −0.075771 4.83493 4.836839 4.83510 4.83321
Ql,6 −3.12 × 10−1 −3.12 × 10−1 −7.45 × 10−2 −7.46 × 10−2 14.8754 14.8789 14.6309 14.6329
Ql,7 6.92 × 101 6.92 × 101 −4.93 × 102 −4.93 × 102 2.37 × 102 2.37 × 102 4.61 × 102 4.61 × 102

Ql,8 6.21 × 106 6.21 × 106 3.39 × 106 3.39 × 106 4.67 × 106 4.67 × 106 −1.20 × 106 −1.19 × 106

Ql,9 −1.65 × 1010 −1.65 × 1010 −3.41 × 108 −3.41 × 108 −2.33 × 1010 −2.33 × 1010 2.47 × 109 2.47 × 109

derivatives at zero energy [(Rl)
(j )
0 � 107 MeV−j if j � 9 and

a � 16 fm for both systems], the values of τ3 and τ4 indicate
that there is not a relevant influence of these derivatives for
numerical inaccuracies. Of course, this argument is valid if
(Rl)

(j )
0 is computed precisely (we shall discuss it later).

In contrast, Table VI shows that the values of the renor-
malized Coulomb functions and their derivatives can be large
enough to create numerical inaccuracies, as seen by the large
values of τ2 with respect to those of τ3 and τ4.

Note that the results for τ1, τ2, τ3, and τ4 can be obtained
partially by using Fig. 6 and Table VI (the numbers in Table VI
are rounded).

Following Table V, numerical inaccuracies appear calcu-
lating Q0,6 for the 3He + α system and calculating Q1,7 for
the 16O + p system, i.e., to higher order for the latter. It is
not surprising from the numerical point of view because the
numbers involved in the calculation of the effective-range
parameters are smaller for the 16O + p system. We think that
this could be part of the explanation about why the parameter
Q1,6 seems more stable than the parameter Q0,6 in Table V.

j = 9

a

108

105

102

10−1

j = 6

(R
l)

(j
)

0
−j

103

101

10−1

j = 3

101

100
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10−2

FIG. 6. Numerical results of (Rl)
(j )
0 for 3He + α (square points)

and 16O + p (circle points). Black (white) points correspond to N =
40 (N = 30).

It is clear that the numerical inaccuracies are stronger for
the 3He + α system than for the 16O + p system, and if the
R-matrix derivatives are well computed, it is also clear that
the most significant contribution to make big numbers comes
from the renormalized Coulomb functions for both systems.
Let us suppose for a moment that the numerical calculations
were performed by using single precision. In this case, single
precision cannot handle correctly additions and subtractions
of τ1, τ2, τ3, and τ4 for the 3He + α and 16O + p systems,
and then we could stop the discussion at this point. However,
all results shown here are obtained by using double precision,
which can handle correctly those additions and subtractions.
Therefore, the only possibility to get numerical imprecision
comes from the approximation of (Rl)

(j )
0 , which can also be

understood as a numerical limitation.
As Eq. (48) stresses, a better estimation of the R-matrix

derivatives at zero energy is achieved by increasing the
Lagrange mesh points, N . It means that there exists a value of
N , N̄ , for which one gets a “stable” approximation of (Rl)

(j )
0 .

Here, “stable” means that for N � N̄ the value of (Rl)
(j )
0 does

not change up to a specific digit in its fractional part.

TABLE VI. Values for the renormalized Coulomb functions and
some of their derivatives at zero energy for 3He + α, 16O + p, and
12C + α. Hi

(n)
l is given in fm1/2/MeVn.

3He + α 16O + p 12C + α

(s wave) (p wave) (d wave)
a (fm) 14 16 17
aN (fm) 4.22 3.83 0.81

(H1l)
(0)
0 186 170 1.3 × 105

(H2l)
(0)
0 0.02 0.02 1.4 × 10−5

(H1l)
(3)
0 −299 108 −1.8 × 105

(H2l)
(3)
0 1.68 0.1 1.6 × 10−4

(H1l)
(6)
0 83.6 −1016 −5.8 × 105

(H2l)
(6)
0 9698 81.6 1.1 × 10−2

(H1l)
(9)
0 −7.4 6.6 × 104 5.9 × 106

(H2l)
(9)
0 2.8 × 109 2.1 × 106 4.9
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TABLE VII. Results for the first ten parameters in the ERE for
12C + α. Units are shown in Table I.

a (fm) 15 17

N 30 40 30 40

a2 58926 58903 58899 58903
r2 0.15797 0.15797 0.15797 0.15797
P2 −65.964 −65.964 −65.964 −65.964
Q2,3 0.14105 0.14105 0.14105 0.14105
Q2,4 −0.00986 −0.00986 −0.00987 −0.00986
Q2,5 −0.02996 −0.02997 −0.02997 −0.02997
Q2,6 −0.02971 −0.02973 −0.02975 −0.02973
Q2,7 −0.00154 −0.00155 −0.00157 −0.00158
Q2,8 0.05553 0.05557 0.05550 0.05547
Q2,9 0.13318 0.13393 0.13035 0.12977

Let us illustrate the role that the previous effect plays
for the 16O + p system. Figure 6 shows that there is not a
significant difference in the estimation of (Rl)

(j )
0 by using

N = 30 or N = 40. For these Lagrange meshes and a =
16 fm, we obtain (R1)(9)

0 = 656.590 . . . MeV−9 and (R1)(9)
0 =

656.565 . . . MeV−9 respectively, which means that we have
a precise determination of (R1)(9)

0 up to the first digit in the
fractional part. Our internal calculations have shown that a
precise determination of the second digit in the fractional
part of (R1)(9)

0 is possible for N > 120. This effect makes
a clear numerical limitation to determine the effective-range
parameters by using the technique in Sec. III, where, in order
to compute correctly a large set of digits for (Rl)

(j )
0 , one should

implement high-precision in the numerical calculation because
of the large mesh required.

It is important to stress that the previous numerical
limitation is remarkably strong when the values of (Rl)

(j )
0 are

large, which is often the case for determining effective-range
parameters of high order (see n-p system as an example).

On the other hand, in the charged case there is an extra
parameter, which is the nuclear Bohr radius aN or the nuclear
Rydberg energy EN . Remember that EN can be written in
terms of aN [see Eq. (3)]. Hence, in order to explore the impact
of aN , we have introduced the 12C + α system, which has a
nuclear Bohr radius five times smaller (approximately) than
the nuclear Bohr radius of 3He + α or 16O + p.

Table VII shows that the first ten effective-range parameters
associated with 12C + α are stable, which agrees with the
results presented in Table VI and the description of the
phase shifts following Eqs. (7) and (9) at low energies. This
stability and description are also expected from Eqs. (35)
and (40), where one sees that derivatives of the renormalized
Coulomb functions are inversely proportional to some power
of the nuclear Rydberg energy [see for instance Eq. (36),
which is necessary to compute Eqs. (35) and (40)] or directly
proportional to some power of the nuclear Bohr radius. It
leads us to infer that the numerical limitations introduced by
the renormalized Coulomb functions will be more important
when aN is large or when EN is low.

Finally, we wish emphasize that the R matrix and its
derivatives for 12C + α do not have large values to introduce

strong numerical inaccuracies. For instance, for a = 17 fm
and N = 40, (Rl)

(3)
0 ≈ 0.1 MeV−3, (Rl)

(6)
0 ≈ −5 MeV−6, and

(Rl)
(9)
0 ≈ 3 × 105 MeV−9. This means that for computing

(D−1
l )(9)

0 there will be numbers such as τ1 ≈ 85 fm
MeV9 , τ2 ≈ 6 ×

105 fm
MeV9 , τ3 ≈ −4 × 106 fm

MeV9 and τ4 ≈ 4 × 106 fm
MeV9 , which

can be checked partially, by using Table VI and (Rl)
(9)
0 .

V. CONCLUSIONS AND PERSPECTIVES

Calculations of the effective range parameters for neutral
and charged nuclear systems are accurately carried out by
solving the Schrödinger equation at zero energy for a given
interaction potential, using the R-matrix and Lagrange-mesh
methods. The expressions developed here show an easy path
to go beyond the second order in the ERE without any
mathematical or physical limitation. In particular, the present
results are much more rigorous and systematic than methods
based on a fit of low-energy scattering phase shifts, which
typically lead to large error bars for high-order parameters [7].

Nevertheless, problems in the numerical calculation of the
present method can arise due to computational imprecisions, in
particular for large values of the channel radius a. In general,
choosing the minimal a such that the short range potential
is negligible at distances larger than a leads to a satisfactory
gross estimate of the effective-range parameters. However, to
improve the accuracy on the lowest-order parameters, larger
radii are needed which lead to numerical instabilities for the
high-order parameters. Using double numerical precision, the
expressions and methods explained here have worked very
well up to the fifth or sixth order in energy on all examples
considered above. In some cases, a high accuracy could even
be reached at least up to the ninth order.

For typical meshes (30 to 40 mesh points) the Lagrange-
mesh technique gives a fast convergence for the first digits of
the R-matrix derivatives at zero energy. However, the present
method requires a large set of digits for these derivatives
in order to compute the effective-range parameters precisely.
This implies a much larger mesh, which in general demands
an implementation with high numerical precision. If such
implementation is made, the numerical limitation given by
large channel radius should be also decreased.

When a weakly bound state is present a large channel radius
can be demanded in order to keep the physical meaning of this
state and the effective-range parameters. Similarly, if there
is a virtual or resonant state at energies very close to the
threshold, choosing a large channel radius is mandatory in
order to estimate the effective range parameters with a good
precision. This case can thus be particularly delicate to handle
since large radii can lead to numerical instabilities. However,
when applied to charged systems, our results have shown that
the Coulomb barrier partly solves this problem. We infer that
in general high-accuracy predictions of the effective-range
parameters can be obtained without numerical difficulty for
nuclear systems with a large nuclear Rydberg energy or a
small nuclear Bohr radius. The contribution of the centrifugal
barrier could also play a secondary role in this improvement
and would deserve a further study.
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The present work thus opens a window to get a better
description of elastic scattering for systems where the physical
interest is at the low-energy regime, for instance in nuclear
astrophysics. With this new tool, the problem of the connection
between low-energy scattering phase shifts and weakly-bound-
state asymptotic normalization constants (ANCs) could be
revisited, at least for given interaction potentials. This is for
instance important in systems of astrophysical interest such
as 12C + α [7]. Once this connection is well understood for
theoretical models, the possibility to directly extract ANCs
from experimental data could be considered.

Another perspective is the use of Padé expansions rather
than Maclaurin expansions for the effective-range function.

These expansions are expected to be valid on a wider energy
range and to allow the description of resonances, two useful
features for a direct fit of experimental data [18]. These
expected features could be checked on theoretical models first,
hopefully leading to general prescriptions to prefer one type
of expansion to another.
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