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Analytical transformed harmonic oscillator basis for three-body nuclei of astrophysical interest:
Application to 6He
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Recently, a square-integrable discrete basis, obtained performing a simple analytical local scale transformation
to the harmonic oscillator basis, has been proposed and successfully applied to study the properties of two-body
systems. Here, the method is generalized to study three-body systems. To test the goodness of the formalism
and establish its applicability and limitations, the capture reaction rate for the nucleosynthesis of the Borromean
nucleus 6He (4He + n + n) is addressed. Results are compared with previous publications and with calculations
based on actual three-body continuum wave functions, which can be generated for this simple case. The obtained
results encourage the application to other Borromean nuclei of astrophysical interest such as 9Be and 12C, for
which actual three-body continuum calculations are very involved.
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I. INTRODUCTION

The study of three-body Borromean nuclei is known to be
important for astrophysical questions such as stellar nucle-
osynthesis. Borromean nuclei are three-body systems whose
binary subsystems are unbound [1]. One of the Borromean
nuclei which has attracted more interest is 12C (α + α + α)
due to the relevance of the triple-α reaction in the red giant
phase of stars [2]. This process allows the formation of heavier
elements in stars, where mainly α particles and nucleons
are present, overcoming the A = 5 and A = 8 instability
gaps [3]. The production rate of such process has not yet been
determined accurately for the entire temperature range relevant
in astrophysics [4]. This is due to experimental problems
to measure these processes as well as to discrepancies in
the theoretical predictions about the structure of 12C. The
formation of 12C has traditionally been studied as a sequential
process [5–7]. But, at low temperatures, the three α particles
have no access to intermediate resonances and therefore they
fuse directly [4]. The description of this process requires an
accurate three-body model.

Other Borromean nuclei are also important for nucle-
osynthesis in different astrophysical scenarios. For instance,
massive stars usually end up with the explosion of a supernova
and the possible formation of a neutron star. These neutron-rich
environments, with low density and high temperature (hot
bubbles), are an ideal medium for nucleosynthesis by rapid
neutron capture (or r process) [8,9]. Among these processes
one finds the formation of 6He (α + n + n) or 9Be (α + α + n)
that could also overcome the A = 5, 8 gaps [7]. Therefore, as
in the case of the triple-α capture, understanding of these
processes requires a very accurate description of the states of
6He and 9Be in a three-body model as well as the corresponding
electromagnetic transition probabilities.
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In particular, the 6He nucleus has a halo structure. The halo
nuclei are weakly bound exotic systems in which one or more
particles have a large probability of being at distances far away
from typical nuclear radii [10]. A common characteristic of
these systems is their small separation energy and hence their
large breakup probability. This process can be understood as
an excitation of the nucleus to unbound or scattering states that
form a continuum of energies [11]. For that reason, the study
of weakly bound three-body systems, such as 6He, demands a
proper treatment of the three-body problem with a reasonable
description of their continuum structure. In this work a method,
which includes these characteristics, is proposed and then
applied to 6He as a benchmark calculation. It is worth noting
that more fundamental few-body methods can be applied to
6He considered as a six-nucleon system, such as the resonating
group [12] or the Lorentz integral transform [13,14] methods.

From the theoretical point of view, the treatment of
unbound states of a quantum-mechanical system deals with
the drawback that the corresponding wave functions are not
square normalizable and their energies are not discrete values.
Solving this problem is a difficult task, especially as the
number of charged particles increases, since one needs to know
the asymptotic behavior of the unbound states. Nevertheless,
there are various procedures to address this problem such as
the R-matrix method [15–17], not without difficulties. Another
approach to solve the continuum problem consists in using the
so-called discretization methods. These methods replace the
true continuum by a finite set of normalizable states, i.e., a
discrete basis that can be truncated to a relatively small number
of states and nevertheless provides a reasonable description of
the system. Several discretization methods have been proposed
[1]. For instance, one can solve the Schrödinger equation in
a box [18], being the energy level density governed by the
size of the box. As this is larger, the energy level density
increases but numerical problems begin to appear. Another
method is the binning procedure, used traditionally in the
continuum-discretized coupled-channels (CDCC) formalism
[19]. In this method the continuum spectrum is truncated
at a maximum energy and divided into a finite number of
energy intervals or bins. For each bin, a normalizable state
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is constructed by superposition of the scattering states within
that interval. This approach requires, first the calculation of
the unbound states and then the matching with the correct
asymptotic behavior. As mentioned above, the calculation of
this asymptotic behavior for a three-body system with charged
particles is by no means an easy task.

An alternative method to obtain a discrete representation
of the continuum spectrum is the pseudostate (PS) method,
which consists in diagonalizing the three-body Hamiltonian in
a complete set ofL2 wave functions (that is, square integrable).
The eigenstates of the Hamiltonian are then taken as a discrete
representation of the spectrum of the system. The advantage
of this procedure is that it does not require going through
the continuum wave functions and the knowledge of the
asymptotic behavior is not needed. A variety of bases have
been proposed for two-body [20–23] and also for three-body
calculations [24–26].

In previous works, a PS method based on a local scale
transformation (LST) of the harmonic oscillator (HO) basis
has been proposed [27]. When the ground state of the system
is known, a useful procedure to discretize the continuum
consists in performing a numerical LST that transforms the
actual ground-state wave function of the system into the HO
ground state. Once the LST is obtained, the inverse trans-
formation is applied to the HO basis, giving rise to the
transformed harmonic oscillator (THO) basis. This method
has been used to describe the two-body continuum in structure
[22] and reactions [28,29] studies, showing that the THO
method together with the CDCC technique is useful to describe
continuum effects in nuclear collisions. The method was also
applied to 6He [26,30], showing that the numerical THO
method is appropriate to describe three-body weakly bound
systems with a relative small THO basis. In most recent
works [11,23] an alternative prescription to define the LST was
proposed, introducing an analytical transformation taken from
Karataglidis et al. [31]. This analytical transformation keeps
the simplicity of the HO functions, but converts their Gaussian
asymptotic behavior into an exponential one, more appropriate
to describe bound systems. This analytical THO method has
been applied to study two-body systems, providing a suitable
representation of the bound and unbound spectrum to calculate
structure and scattering observables within the CDCC method
[23]. The analytical THO presents several advantages over
the numerical THO. (i) It is not needed to know previously
the ground-state wave function of the system considered. (ii)
Due to the analytical form of the transformation, it can be
easily implemented in a numerical code. (iii) The parameters
of the transformation govern the radial extension of the THO
basis allowing the construction of an optimal basis for each
observable of interest.

In this work, we extend the analytical THO method to
study three-body systems. We start with the construction of the
basis, then we diagonalize the three-body Hamiltonian, and we
compute the transition probabilities needed for the calculation
of the reaction rate. As a simple example of application, we
check the formalism for the Borromean nucleus 6He. For
this, a rich variety of data is available [32–38] and can be
used to benchmark theoretical models. Finally, the structure
calculation allows us to determine the rate of the radiative

capture reaction 4He + n + n → 6He + γ . It is known this
reaction is not of great astrophysical interest but provides a
robust test for our three-body model. In this case, with just
one charged particle, one can generate easily the continuum
wave functions and our model results can be compared to
actual continuum calculations. The study of this reaction will
validate our formalism so as to make it reliable when applied
to cases in which such comparisons with the true continuum
cannot be easily done. This will be the case of 9Be, 12C, or
17Ne, that are subjects for future research.

The manuscript is structured as follows. In Sec. II the
analytical THO method for three-body systems is completely
worked out: basis, matrix elements, and calculation of tran-
sition probabilities. In Sec. III the expressions and concepts
involved in the calculation of the radiative capture reactions of
three particles into a bound nucleus are discussed. In Sec. IV
the full formalism is applied to the case of 6He. Finally, in
Sec. V, the main conclusions of this work are summarized.

II. PS METHOD: ANALYTICAL THO
FOR THREE-BODY SYSTEMS

Jacobi coordinates {x, y}, illustrated in Fig. 1, are used to
describe three-body systems [six-dimensional problems]. The
variable x is proportional to the relative coordinate between
two of the particles and y is proportional to the coordinate
from the center of mass of these two particles to the third
one, both with a scaling factor depending on their masses
[26]. Please, note that there are three different Jacobi systems.
From the Jacobi coordinates, one can define the hyperspherical
coordinates {ρ, α, x̂, ŷ}, where ρ =

√
x2 + y2 is the hyper-

radius and tan α = x/y defines the hyperangle.
The PS method consists in diagonalizing the Hamiltonian of

the system of interest in a discrete basis of L2 functions. Using
hyperspherical coordinates, and introducing � ≡ {α, x̂, ŷ} for
the angular dependence, the state wave functions of that basis
can be expressed as

ψiβjμ(ρ,�) = Riβ(ρ)Yβjμ(�). (1)

Here Yβjμ(�) are states of good total angular momentum,

expanded in hyperspherical harmonics (HH) [1,39] ϒ
lxly
Klml

(�)

4

n

n

xy
He

FIG. 1. (Color online) The Jacobi T-coordinate system used to
describe the 6He nucleus.
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as

Yβjμ(�) =
∑
νι

〈jabνI ι|jμ〉κι
I

×
∑
mlσ

〈lmlSxσ |jabν〉ϒlxly
Klml

(�)χσ
Sx

, (2)

and β ≡ {K, lx, ly, l, Sx, jab} is a set of quantum numbers
called a channel. In this set, K is the hypermomentum, lx
and ly are the orbital angular momenta associated with the
Jacobi coordinates x and y, respectively, l is the total orbital
angular momentum (l = lx + l y), Sx is the spin of the particles
related by the coordinate x, and jab results from the coupling
jab = l + Sx . If we denote by I the spin of the third particle,
which we assume to be fixed, the total angular momentum
j is j = jab + I . With that notation, χσ

Sx
is the spin wave

function of the two particles related by the Jacobi coordinate
x, and κι

I is the spin function of the third particle. The HH are
eigenfunctions of the hypermomentum operator K̂2, and can
be expressed in terms of the spherical harmonics as

ϒ
lxly
Klml

(�) =
∑
mxmy

〈lxmxlymy |lml〉ϒlxlymxmy

K (�), (3)

ϒ
lxlymxmy

K (�) = ϕ
lx ly
K (α)Ylxmx

(̂x)Ylymy
(̂y), (4)

ϕ
lx ly
K (α) = N

lxly
K (sin α)lx (cos α)ly P

lx+ 1
2 ,ly+ 1

2
n (cos 2α), (5)

where P a,b
n is a Jacobi polynomial with order n =

(K − lx − ly)/2 and N
lxly
K is the normalization constant.

On the other hand, Riβ(ρ) are the hyperradial wave
functions, where the label i denotes the hyperradial excitation.
The form of these functions depends on the PS method used.
Then, the states of the system are given by diagonalization
of the three-body Hamiltonian in a finite basis up to imax

hyperradial excitations in each channel,

�njμ(ρ,�) =
∑

β

imax∑
i=0

Ciβj
n ψiβjμ(ρ,�)

=
∑

β

(
imax∑
i=0

Ciβj
n Riβ(ρ)

)
︸ ︷︷ ︸

Rnj
β (ρ)

Yβjμ(�), (6)

being C
iβj
n the diagonalization coefficients and Rnj

β (ρ) the
hyperradial wave function corresponding to the channel β.
The label n enumerates the eigenstates.

A. Analytical THO method

As stated in the introduction, several PS bases have been
proposed for three-body studies [24–27]. Here, we use the
THO method based on a LST of the HO functions, so the
hyperradial wave functions are obtained as

RTHO
iβ (ρ) =

√
ds

dρ
RHO

iK [s(ρ)]. (7)

Note that meanwhile the THO hyperradial wave functions
depend, in general, on all the quantum numbers included in a
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FIG. 2. (Color online) Different LSTs with parameter b = 0.7 fm
and three values of γ : 2.0, 1.4, and 1.0 fm1/2.

channel β, the HO hyperradial wave functions only depend on
one of them, the hypermomentum K . The transformation s(ρ)
is not unique, and in this work we adopt the analytical form of
Karataglidis et al. [31],

s(ρ) = 1√
2b

⎡⎣ 1(
1
ρ

)ξ + (
1

γ
√

ρ

)ξ

⎤⎦
1
ξ

, (8)

depending on the parameters ξ , γ , and the oscillator length
b. The HO hyperradial variable s is dimensionless according
to the transformation defined above [Eq. (8)]. In this way,
we take the oscillator length b as another parameter of the
transformation.

The function s(ρ) behaves asymptotically as γ

b

√
ρ
2 and

hence the THO hyperradial wave functions obtained behave at
large distances as exp (−γ 2ρ/2b2). Therefore, the ratio γ /b
governs the asymptotic behavior of the THO functions: as γ /b
increases, the hyperradial extension of the basis decreases
and some of the eigenvalues obtained by diagonalizing the
Hamiltonian explore higher energies [11]. That is, γ /b
determines the density of PSs as a function of the energy.
Concerning the parameter ξ , the authors of Ref. [31] found
a very weak dependence of the results on this parameter.
Because of that, we have fixed for all calculations ξ = 4 as
in Refs. [11,23].

The freedom to control the hyperradial extension of the
THO basis is an advantage of the analytical THO method.
Depending on the observable of interest, one is able to choose
either a basis with a finer description of the low-energy region
(close to the breakup threshold) or a basis carrying more
information on the high-energy spectrum. In Fig. 2 the LSTs
for a fixed b and different γ values are presented.

B. Hamiltonian matrix elements

The three-body Hamiltonian in hyperspherical coordinates
is written as

Ĥ(ρ,�) = T̂ (ρ,�) + V̂ (ρ,�). (9)
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The kinetic energy operator is [26,40]

T̂ (ρ,�) = − h̄2

2m

[
∂2

∂ρ2
+ 5

ρ

∂

∂ρ
− 1

ρ2
K̂2(�)

]
, (10)

where m is a normalization mass that we take as the nucleon
mass and K̂2(�) represents the hyperangular momentum or
hypermomentum operator. T̂ (�) does not connect different
channels β or states with different total angular momentum
j . The Hamiltonian matrix elements have to be calculated be-
tween states given by Eq. (1), which separates the hyperradial
and hyperangular parts. The hyperradial wave functions are
constructed with Eq. (7) and satisfy the same normalization
condition as the HO functions in six dimensions [39],∫ ∞

0
dρρ5RTHO

iβ (ρ)RTHO
i ′β (ρ) = δii ′ . (11)

For convenience, we introduce the hyperradial wave functions
UTHO

iβ (ρ) as

UTHO
iβ (ρ) = ρ5/2RTHO

iβ (ρ), (12)

which satisfy the orthonormality relationship∫ ∞

0
dρUTHO

iβ (ρ)UTHO
i ′β (ρ) = δii ′ . (13)

With these functions, the kinetic energy operator can be
rewritten as

T̂U (ρ) = − h̄2

2m

[
d2

dρ2
− 15/4 + K(K + 4)

ρ2

]
(14)

and its matrix elements are

〈iβj |T̂ (ρ,�)|i ′β ′j 〉
= 〈iβj |T̂U (ρ)|i ′βj 〉δββ ′

= δββ ′
h̄2

2m

[∫ ∞

0
dρ

dUTHO
iβ (ρ)

dρ

dUTHO
i ′β (ρ)

dρ

+
(

15

4
+ K(K + 4)

) ∫ ∞

0
dρUTHO

iβ (ρ)
1

ρ2
UTHO

i ′β (ρ)

]
,

(15)

where the antihermiticity of the derivation operator has been
taken into account.

The potential energy operator does connect, in general,
different channels within the same j . The hyperangular
integration is performed by using a set of subroutines from the
code FACE [41] that provides the hyperangular matrix elements
V

j
ββ ′(ρ), depending on ρ. These functions are then integrated in

the hyperradial variable, obtaining the potential energy matrix
elements as

〈iβj |V̂ (ρ,�)|i ′β ′j 〉 =
∫ ∞

0
dρUTHO

iβ (ρ)V j
ββ ′(ρ)UTHO

i ′β ′ (ρ).

(16)

Once the kinetic energy and potential matrix elements are
computed, the Hamiltonian is diagonalized in a truncated THO
basis with imax and the eigenstates of the system are obtained.

C. Transition probabilities B(Eλ)

As in Ref. [26], we follow the notation of Brink and Satchler
[42]. The reduced transition probability between states of a
system is defined as

B(Eλ)nj,n′j ′ ≡ B(Eλ; nj → n′j ′)

= |〈nj‖Q̂λ‖n′j ′〉|2
(

2λ + 1

4π

)
, (17)

where Q̂λ is the electric multipole operator of order λ.
When a three-body system with only one charged particle,

such as 6He (4He + n + n), is considered and the Jacobi
system T illustrated in Fig. 1 is used, the operator Q̂λ reads as

QλMλ
( y) =

(
4π

2λ + 1

)1/2

Ze

(√
may

mc

)λ

yλYλMλ
(̂y). (18)

In this expression Z is the atomic number of the system, e is
the electron charge, m the mass of the nucleon, ay the reduced
mass of the subsystem related by the Jacobi coordinate y and
mc the mass of the charged particle (the core in the case of 6He).
The reduced matrix elements of this operator can be expanded
in terms of the THO basis obtaining the expression [30,39]

〈nj‖Q̂λ‖n′j ′〉 = (−1)j+2j ′
ĵ ′Z e

(√
may

mc

)λ ∑
ββ ′

δlx l′x δSxS ′
x
δjjab

δj ′j ′
ab

(−1)lx+Sx l̂y l̂
′
y l̂l̂

′W (ll′ly l′y ; λlx)W (jj ′ll′; λSx)

×
(

ly λ l′y
0 0 0

) ∑
ii ′

Ciβj
n C

i ′β ′j ′
n′

∫∫
dαdρ(sin α)2(cos α)2UTHO

iβ (ρ)ϕ
lx ly
K (α)yλϕ

lx l
′
y

K ′ (α)UTHO
i ′β ′ (ρ). (19)

Since n and n′ enumerate the different eigenstates, tran-
sition probabilities given by Eq. (17) are a set of discrete
values. In order to obtain continuous energy distributions from
discrete values, the best option is to do the overlap with the
continuum wave functions [43], if they are known. In this
case the smoothed THO B(E1) distribution must coincide

perfectly with the actual continuum B(E1) distribution. When
the continuum states are not available, it is considered that, in
general, a PS with energy εn is the superposition of continuum
states in the vicinity. There are several ways to assign an energy
distribution to a PS [44,45]. In this work, for each discrete
value of B(Eλ)(εn), a Poisson distribution D(ε, εn, w) with
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the following form is assigned,

D(ε, εn, w) = (w + 1)(w+1)

εw+1
n �(w + 1)

εw exp

(
−w + 1

εn

ε

)
, (20)

which is properly normalized. The parameter w controls the
width of the distributions; as w decreases, the width of the
distributions increases. Finally, the B(Eλ) distribution is given
by the expression

dB(Eλ)

dε
(ε,w) =

∑
n

D(ε, εn, w)B(Eλ)(εn). (21)

The B(E1) distribution so obtained can be compared easily
in the case of 6He with the continuum distribution in order to
check the smoothing procedure.

One can also calculate the sum rules for electric transitions
from the ground state (g.s.) to the states (n, j ) in order to test
the completeness of the basis used. Using Eq. (17)∑

n

B(Eλ)g.s.,nj =
(

2λ + 1

4π

) ∑
n

|〈g.s.‖Q̂λ‖nj 〉|2, (22)

a closed expression is obtained∑
n

B(Eλ)g.s.,nj = 2λ + 1

4π

Z2e2mλaλ
y

m2λ
c

〈g.s.|y2λ|g.s.〉. (23)

III. RADIATIVE CAPTURE REACTION RATE

The formalism introduced above allows calculations of
astrophysical interest. As stated in the introduction, some Bor-
romean nuclei are important in the nucleosynthesis processes,
and an accurate knowledge of their reaction and production
rates in different scenarios is essential to understand the origin
of the different elements in the Universe. We focus on radiative
capture reactions of three particles, (abc), into a bound nucleus
A of binding energy |εB |, i.e., a + b + c → A + γ . The
energy-averaged reaction rate for such process, 〈Rabc(ε)〉, is
given as a function of the temperature T by the expression [46]

〈Rabc(ε)〉(T ) =
∫

Rabc(ε)FB(ε, T )dε. (24)

The function FB(ε, T ) is the Maxwell-Boltzmann distribu-
tion and Rabc(ε) is the radiative capture reaction rate at
a certain excitation energy ε. It can be obtained from the
inverse photodissociation process [18,46] and is given by the
expression

Rabc(ε) = ν!
h̄3

c2

8π

(axay)3/2

(
εγ

ε

)2 2gA

gagbgc

σγ (εγ ), (25)

where ε = εγ + εB is the initial three-body kinetic energy, εγ

is the energy of the photon emitted, εB is the ground-state
energy, gi are the spin degeneracy of the particles, ν is the
number of identical particles in the three-body system, and
ax and ay are the reduced masses of the subsystems related
to the Jacobi coordinates {x, y}. The photodissociation cross
section σγ (εγ ) of the nucleus A can be expanded into electric

and magnetic multipoles [18,47]

σ (Oλ)
γ (εγ ) = (2π )3(λ + 1)

λ[(2λ + 1)!!]2

(
εγ

h̄c

)2λ−1
dB(Oλ)

dε
, (26)

which are related to the transition probability distributions
dB(Oλ)/dε, for O = E,M .

From Eqs. (24) and (25), we write the energy-averaged
capture reaction rate expression for the contribution of order
λ as

〈Rabc(ε)〉(T ) = ν!
h̄3

c2

8π

(axay)3/2

gA

gagbgc

1

(kBT )3

×
∫ ∞

0
(ε + |εB |)2σ (Oλ)

γ (ε + |εB |)e −ε
kB T dε.

(27)

This integral is very sensitive to the dB(Oλ)/dε behavior at
low energy and, for that reason, a detailed description of the
transition probability distribution in that region is needed to
avoid numerical errors. Accordingly to the traditional literature
[48], in absence of low-energy resonances, the first multipole
contribution is the dominant one and the electric contribution
dominates over the magnetic one at the same order.

IV. APPLICATION TO 6HE

The 6He nucleus can be explained as a three-body system,
formed by an inert α core and two valence neutrons. This
is the simplest case to test the formalism developed in
this work since there is just one charged particle and the
three-body continuum wave functions can be generated easily.
Comparison with actual continuum wave functions may serve
as a reference for any other calculation. In addition, valuable
experimental information is available on the ground state: total
angular momentum jπ = 0+, experimental binding energy of
0.975 MeV [49], and rms point nucleon matter radius within
2.5−2.6 fm [50]. It has also a well-known 2+ resonance at
0.824 MeV over the breakup threshold.

To describe 6He, we use a model Hamiltonian that includes
the two-body n-n and α-n potentials, and also a simple central
hyperradial three-body force. These potentials are those used
in Ref. [26]; the n-α potential taken from Refs. [16,51],
with central and spin-orbit components, and the GPT n-n
potential [52] with central, spin-orbit, and tensor components.
These two-body potentials are kept fixed for any total angular
momentum and parity jπ . However, this Hamiltonian does not
include all possible potential contributions. To include them
effectively, a three-body force is usually introduced. In this
work we have used the simple power form

V3b(ρ) = v3b

1 + (
ρ
r3b

)a3b
. (28)

The parameters v3b, r3b, and a3b have been chosen to adjust the
energy of the 0+ ground state and the position of the known
2+ resonance to the experimental values.

In three-body models of halo nuclei, such as 6He, the
Pauli principle treatment is important to block occupied core
states to the valence neutrons. That is, Pauli blocking is
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needed to remove forbidden states, which would disappear
under antisymmetrization. This can be taken into account
by several methods. In this work, a repulsive core in the
s-wave component of the α-n subsystem is introduced with
the requirement that the experimental phase shifts are correctly
calculated. This method is referred in the literature as the PC
method [16].

The radiative capture of two neutrons by an α particle
producing 6He is dominated by a dipolar process from the
1− continuum of 6He to the 0+ ground state [18]. For 6He,
low-energy dipolar resonances have not been observed, then
the electric dipole dominates over the magnetic dipole. A
low-energy quadrupole resonance does exist (as mentioned
above). We have calculated both dipolar and quadrupolar
electric contributions, concluding the quadrupole is several
orders of magnitude lower than the dipole. This means that
the reaction rate for this capture process is mainly governed
by the dipolar electric transition distribution dB(E1)/dε of
6He. Then, to compute this distribution we need to generate
the THO basis for states 0+ and 1−. The 0+ THO basis must
provide a well-converged ground state. The 1− THO basis
must have enough states close to the breakup threshold to
get a smooth and detailed B(E1) distribution in that region.
Using the parameters b and γ from the analytical LST one
can find the most suitable THO basis for each total angular
momentum (0+ and 1−). The THO bases were truncated at
maximum hypermomentum Kmax = 20, as it was sufficient to
have a good description of the system and provide converged
results.

A. States jπ = 0+

The 0+ states are described with an analytical THO basis
defined by parameters b = 0.7 fm and γ = 1.4 fm1/2, trying
to minimize the size of the basis needed to reach convergence
of the ground state. We found that a basis with larger γ /b has a
too large energy distribution to provide a fast convergence for
the ground state. On the other hand, a basis with smaller γ /b
has a very large hyperradial extension and does not describe
properly the interior region of the potential where the ground
state probability is larger. The three-body force parameters are
taken as v3b = −2.45 MeV, r3b = 5 fm, and a3b = 3 in order
to adjust both the ground-state energy and the matter radius of
6He.

In Fig. 3 we show the first THO hyperradial wave functions
for the channel β ≡ {2,0,0,0,0,0}, using the given LST and
three-body force parameters. This channel is the most impor-
tant ground-state channel, with a 78.6% contribution to the
total norm. We can see in the figure that as i increases, the
functions are more oscillatory and explore larger distances.

In Fig. 4 the Hamiltonian eigenvalues for jπ = 0+, for
an increasing number of hyperradial excitations, imax, are
presented up to 10 MeV. The calculated ground state is stable,
has a binding energy of 0.9749 MeV and a rms point nucleon
matter radius of 2.554 fm. Calculations assume an α radius
of 1.47 fm. In Table I the ground-state energy εB and matter
radius rmat are shown as a function of the maximum number
of hyperradial excitations imax. We observe a fast convergence
of this two ground-state observables within this THO basis.

0 5 10 15 20
ρ (fm)

-0.4

-0.2

0

0.2

0.4

0.6

U
iβ

T
H

O
(ρ

)

β = (2,0,0,0,0,0)
i=0

i=2
i=4

i=1
i=3

FIG. 3. (Color online) First five THO hyperradial wave functions
for the channel β ≡ {2,0,0,0,0,0}, the most important channel in the
g.s. wave function.

The first three hyperradial components of the ground-state
wave function for imax = 25 are presented in Fig. 5. The
curves match a reference calculation of the ground-state
wave function corresponding to the same model Hamiltonian.
By reference calculation we mean the procedure presented
in Ref. [16] and implemented in the codes FACE [41] and
STURMXX [53], using a suitable basis for bound states, the
so-called Sturmian basis.

Once the 0+ ground state is obtained, the 1− states in
the continuum have to be generated. However, no reference
is available to fix the 1− three-body force. For the 2+
continuum states there is a resonance experimentally observed
at 0.824 MeV over the breakup threshold. Thus, usually
the three-body force is fixed to set the 2+ resonance at the
experimental value and it is accepted the same three-body
force for the 1− states. So we generate first the THO basis for
2+ states and adjust the position of the 2+ resonance by using

5 10 15 20 25
i
max

-2
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10
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 (

M
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)

j
π
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+

FIG. 4. Eigenvalues for jπ = 0+ up to 10 MeV.
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TABLE I. Ground-state energy εB and matter radius
rmat as a function of imax. A fast convergence is observed.

imax εB (MeV) rmat (fm)

5 −0.9452 2.511
10 −0.9744 2.552
15 −0.9748 2.554
20 −0.9749 2.554
25 −0.9749 2.554

a particular three-body force. Then we use the same force for
the 1− states.

B. 2+ states

The 2+ states were described with a basis defined by
b = 0.7 fm and γ = 2.0 fm1/2. This basis has a small
hyperradial extension and spreads the eigenvalues obtained
upon diagonalization at higher energies. This choice allows us
to have only one pseudostate presenting the characteristics of
the resonance, since the rest of states are sufficiently above
the resonance energy position for medium-size bases. In this
way we can adjust the resonance energy, setting the energy of
this state to the experimental value. Then, the three-body force
parameters are taken as v3b = −0.90 MeV, r3b = 5 fm, and
a3b = 3.

In Fig. 6, the eigenvalues of the Hamiltonian for jπ = 2+
states, for an increasing number of hyperradial excitations,
are shown. The lowest state is rather stable and close to the
energy of the known 2+ resonance, 0.824 MeV. In Fig. 7, we
present the probability density for this first 2+state, compared
with the 0+ ground-state probability. The contributions of the
three most important channels for each one are shown. We can
see the PS representing the resonance is a state with a large
probability in the interior part, similar to a bound state.

C. 1− states

The preceding calculation on 2+ states with the low-lying
resonance as reference allows us to select the three-body force

0 10 20 30
ρ (fm)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

ρ5/
2 

R
βg.

s.
(ρ

)

β={0,0,0,0,0,0}
β={2,0,0,0,0,0}
β={2,1,1,1,1,0}

FIG. 5. (Color online) Hyperradial wave function, Rg.s.
β (ρ), for

the first three channels included in the ground state of 6He.
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FIG. 6. Eigenvalues for jπ = 2+ up to 10 MeV.

(v3b = −0.90 MeV, r3b = 5 fm, a3b = 3) to be included in the
calculation of the required 1− states.

To get a well-defined B(E1) distribution near the origin,
we need, for 1− states, a basis which has a large hyperradial
extension to concentrate many eigenvalues close to the breakup
threshold. For this purpose we use a THO basis with b =
0.7 fm and γ = 1.0 fm1/2. The eigenvalues of the Hamiltonian
for jπ = 1− states are presented for different imax values in
Fig. 8. If we compare this 1− spectrum with the 0+ and 2+
spectra for a fixed imax, it is clear the difference in eigenstates
density depending on the extension of the basis, that is,
depending on the LST parameters b and γ .

Next we can calculate the discrete transition probabilities
B(E1) from the 0+ ground state to the 1− eigenstates. We
have first checked the completeness of the basis for a given
imax comparing the sum of the discrete B(E1) transition
probabilities with the sum rule Eq. (23). This is given in
Table II. The summation converges to the exact value given by
the sum rule, 1.493 e2fm2.
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β={2,1,1,1,1,0}
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FIG. 7. (Color online) Ground-state (a) and resonance state (b)
probabilities.
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FIG. 8. Eigenvalues for jπ = 1− up to 10 MeV.

For the evaluation of the transition probabilities, we use a
THO basis with imax = 35 in order to obtain a detailed behavior
for the low-energy part of the B(E1) distribution. In Fig. 9
we show, up to 6 MeV, a reference calculation obtained by
using the actual three-body continuum wave functions which,
in this simple case, can be computed easily [16] (dash red
line). To generate the continuum wave functions we have
used the codes FACE [41] and STURMXX [53] with the same
model Hamiltonian. If the smoothing of our THO calculation
is done using the overlap with the continuum wave functions,
the obtained B(E1) distribution is indistinguishable from the
reference one. This guarantees that the formalism presented
here is working correctly. However, since our interest is to
extend this formalism to other systems for which the true
continuum wave functions are difficult to obtain, we propose
an alternative smoothing procedure following Eqs. (20) and
(21). In Fig. 9 the THO distribution for B(E1), using this
alternative smoothing, is shown (full black line). We have
used Poisson distributions with parameter w = 30

√
εn, such

that it ensures a smooth B(E1) distribution without spreading
it unphysically. Due to the large number of basis states we have
near the threshold, the energy dependence of w is convenient to
produce a smooth distribution in that region. The total B(E1)
strength is the same for both calculations (solid and dashed
lines) and the behavior is similar, although small differences
are observed in the medium energy range.

TABLE II. Sum of B(E1) as a function of imax.

imax
∑

B(E1) (e2fm2)

5 1.402
10 1.489
15 1.492
20 1.492
25 1.493
30 1.493
35 1.493
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ε (MeV)
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0.2
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e2 fm
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-1

) THO i
max

=35
continuum
de Diego et al. (2010)

FIG. 9. (Color online) B(E1) distribution up to 6 MeV: this work
(full black line), a calculation using the actual continuum wave
functions, that in this case can be calculated, (dashed red line), and
Ref. [54] (dotted blue line).

It is also included in Fig. 9 a calculation taken from Ref. [54]
(dotted blue line). In that work, the hyperspherical adiabatic
expansion method is used instead of the HH method. Then, the
three-body states are calculated by box boundary conditions,
obtaining a discrete spectrum. The discrete B(E1) values are
smoothed using the finite energy interval approximation. This
calculation clearly has a different behavior at low energies.
The difference comes from the difficulty to have a large energy
level density at low energies solving the problem in a box. It
is also apparent that the total B(E1) from this calculation is
considerably lower than ours. In our calculation the smoothed
B(E1) energy distribution is very well defined close to the
breakup threshold since we have been able, using the analytical
THO, to build a basis for 1− states concentrating many
eigenvalues close to the breakup threshold. In the literature,
one can find other B(E1) distributions for 6He using different
three-body formalisms. We would like to cite Refs. [55] and
[56], globally both compare reasonably well with our results
but have not been included in Fig. 9 since it is not possible
to extract from the plots presented in those publications the
detailed behavior at low energies. Without this information,
one cannot calculate converged reaction rates below 1–2 GK.

It is worth mentioning that the available experimental data
[35] (not shown in Fig. 9) differ significantly from all published
theoretical calculations. In particular the data do not show the
enhancement at energies around 1 MeV. Either new experiment
or reanalysis of the existing data is clearly needed.

In order to show the convergence of calculations with Kmax

and that Kmax = 20 is sufficient to provide converged results,
we present in Fig. 10 the B(E1) distribution for different Kmax

values. In these calculations the same two- and three-body
forces are kept fixed. It is clear from the figure that the
calculations for Kmax = 20, 22, and 24 are very close together.

Once obtained the B(E1) energy distribution, we can finally
calculate the reaction rate [Eq. (27)] for the radiative capture
reaction α + n + n →6He +γ . In Fig. 11, we present the
result for the low-temperature region of astrophysical interest
(0–5 GK). Our calculation is the full black line. In the same
figure the reaction rate obtained using the actual three-body
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FIG. 10. B(E1) distribution up to 6 MeV as Kmax increases.

continuum wave functions and the corresponding B(E1) is
represented with a dashed red line. The dotted blue line is
the calculation of Ref. [54]. We can see from the figure that
our calculation agrees very well with the reference calculation
for low and high temperatures. In the region between 0.1 and
1.5 GK, there are differences at most by a 3 or 4 factor. These
differences with respect to the reference (red dashed line)
calculation are more than one order of magnitude in the same
temperature region for the calculation of Ref. [54]. This is due
to the already referred different behavior of the corresponding
B(E1) distributions at low energies (below 0.5 MeV). We
have checked that this region is crucial for the computation
of the reaction rates, especially at low temperatures (below
1–1.5 GK). We have also checked that small differences in the
B(E1) distributions between 0.5 and 3.5 MeV do not affect
the calculated reaction rate provided the same total strength.

In Fig. 11, we have also included the results from a
sequential model for the radiative capture [7] (dot-dashed
orange). This calculation presents the same behavior as ours
but is a factor of two larger above 0.2 GK. It is worth
mentioning that this sequential calculation assumes first the
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seq. Bartlett et al. (2006)

FIG. 11. (Color online) Reaction rate for the radiative capture
α + n + n →6He +γ with different models: this work (full black
line), a reference calculation using the actual three-body continuum
wave functions (dash red line), the results from Ref. [54] (dotted blue
line), and the results from a sequential calculation [7] (dot-dashed
orange line).

formation of a dineutron, which is controversial, and then
the capture of this by an α particle. An alternative sequential
process, presented also in Ref. [7], starts from a neutron capture
by the α particle to give 5He followed by the capture of a second
neutron. This provides a reaction rate more than two orders of
magnitude smaller in all studied ranges of temperatures.

We would like to stress our calculation is based on a
full three-body model that makes no assumptions about the
reaction mechanism. In this sense all the physical sequential
processes are implicitly included.

V. SUMMARY AND CONCLUSION

We have extended the analytical THO method for the study
of three-body systems. There are several advantages of the
analytical over the numerical THO method: (i) The previous
knowledge of the ground state of the system is not needed.
(ii) The analytical transformation is easy to be implemented
in programming languages. (iii) The versatility of the LST
depending on the parameters b and γ allows one to design the
best basis for the observable under study.

We have applied the formalism to the well-known Bor-
romean nucleus 6He. This nucleus can be described as an α
particle and two valence neutrons. We have seen that the use
of the analytical THO method allows a specific basis selection
depending on the needs for each angular momentum of the
system and on the observable under study. We have calculated a
well-converged 0+ ground state and a rather stable 2+ resonant
state. For 1− states we have chosen a basis concentrating many
energy levels close to the breakup threshold in order to have a
fine description for that region.

With these ingredients we have computed the B(E1)
transition probabilities from the 0+ ground state to the 1−
states. We have checked that the smoothing, using the overlap
with the actual continuum wave functions, produce the same
B(E1). The smoothing using Poisson distributions produces
a similar result with small differences in the medium-energy
region. In this case, the obtained B(E1) distribution is well
defined at low energies (below 0.5 MeV), which is crucial to
estimate properly observables such as the reaction rate of the
radiative capture α + n + n →6He +γ .

We have calculated the reaction rate of the radiative
capture α + n + n →6He +γ from the B(E1) distribution for
temperatures of astrophysical interest. The result with Poisson
smoothing for the B(E1) provides a reasonable approach to
the continuum reaction rate. However it differs by a factor of
2 from the sequential mechanism presented in Ref. [7], which
assumes the dineutron preformation, which is controversial.
The differences with the reaction rate calculated in Ref. [54],
using also a full three-body model, come from the different
behaviors at low energies of the B(E1) distributions (below
0.5 MeV) and the different total B(E1) strengths.

The present results encourage the application of this
formalism to more interesting astrophysical cases, such as
9Be, the triple-α process to produce 12C, or 17Ne. In the
study of these systems, one of the major problems is the
proper treatment of the Coulomb interaction at large distances.
However, this problem is absent in the PS methods, such as
the analytical THO presented here.
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Bernal, R. Crespo, and F. Nunes, Phys. Rev. C 65, 011602(R)
(2001).
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