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Relation between Wigner energy and proton-neutron pairing
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The linear term proportional to |N − Z| in the nuclear symmetry energy (Wigner energy) is obtained in a model
that uses isovector pairing on single-particle levels from a deformed potential combined with a �T 2 interaction.
The pairing correlations are calculated by numerical diagonalization of the pairing Hamiltonian acting on the six
or seven levels nearest the N = Z Fermi surface. The experimental binding energies of nuclei with N ≈ Z are
well reproduced. The Wigner energy emerges as a consequence of restoring isospin symmetry. We have found
the Wigner energy to be insensitive to the presence of moderate isoscalar pair correlations.
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I. INTRODUCTION

The nuclear ground-state energy, E(N,Z), as a function of
the proton number (Z) and neutron number (N ) or atomic mass
number (A = N + Z) is very well described by the celebrated
empirical mass formula (see, e.g., [1]):

E(N,Z) = EV + ES + EC + EA + EW + EP + ESHELL.

(1)

The various terms have a clear physical meaning. The volume
term, EV = −aV A, describes the constant binding energy of a
nucleon in saturated nuclear matter. The surface energy, ES =
aSA

2/3, accounts for the lack of neighbors in the surface. The
term, EC = aCZ2/A1/3, is the electrostatic Coulomb energy.
The (a-)symmetry energy, EA = aA(N − Z)2/A, consists of
two approximately equal contributions. The “kinetic” part
accounts for the Pauli principle, which requires the nucle-
ons to occupy higher single-particle levels with increasing
asymmetry |N − Z|. The “interaction” part originates from
the difference between the proton-proton, neutron-neutron,
and proton-neutron interactions. The pairing energy (EP )
describes the energy gain by forming pairs of protons or
neutrons. The shell energy (ESHELL) is a manifestation of
the level bunching around the Fermi level. The term, EW =
aW |N − Z|/A, is called the Wigner energy, because Wigner
[2] gave a first interpretation in terms of his supermultiplet
theory. However, its physical origin was the subject of a
long debate, which was recently reviewed by [3]. Modern
mean-field approaches reproduce the ground-state energies
very well, except the Wigner energy, which has to be added as
an ad hoc phenomenological term (see, e.g., [4]). This means
that the physics behind the Wigner energy is not taken into
account by present mean-field theories.

In this letter we demonstrate that the Wigner energy is ob-
tained, without introducing any new parameters, by including
the isovector proton-neutron pair correlations determined by
numerical diagonalization of an isorotational invariant pairing
Hamiltonian.

Experimentally, the coefficients aA and aW are not very dif-
ferent. The ground-state isospin (T ) of most nuclei is equal to
their isospin projection (Tz = N−Z

2 ). The sum of the symmetry
and Wigner energies is approximately proportional to T (T +

1). The T dependence is suggestive, because the isospin
operators obey the same SU2 algebra as the angular momentum
operators. Spontaneous breaking of the rotational symmetry by
the deformed mean field leads to the appearance of rotational
bands. The energies of the rotational levels are proportional to
I (I + 1), with I being the angular momentum. The analogy
between nuclear spin and isospin led Frauendorf and Sheikh
[5,6] to suggest that the T (T + 1) dependence of the ground-
state energy is a manifestation of an isorotational band.

The band appears because the isovector pair field, which
is a vector, spontaneously breaks rotational symmetry in
isospace. Glowacz, Satula, and Wyss discussed the analogy
of the cranking model in isospace [7,8]. In the limit of
strong symmetry breaking, simply the isorotational energy
T (T + 1)/2� is added to the intrinsic energy of the symmetry
breaking mean field, the orientation of which can be taken
such that the proton-neutron pair field is zero [5,6]. Afanasjev
et al. [9–11] successfully used this simple limit to interpret the
excitation spectra of nuclei with N ≈ Z.

In a series of papers, Jänecke and coworkers [12] and earlier
work cited therein [13,14], demonstrated that the global N − Z
dependence of the binding energies, including the Wigner term
and the inversion of the T = 0 and T = 1 states in odd-odd
N = Z nuclei with A > 40, can be well understood in terms
of the competition between the familiar pair gap � and a
symmetry energy term of the form T (T + 1).

Applying the mean field and random phase approximation
to an isorotational invariant isovector pairing interaction,
Neergård has reproduced the experimental observation aA ≈
aW [3,15,16]. The virtue of such an approach is that the Wigner
energy appears without introducing any new parameter, be-
cause the strength of the proton-neutron pair correlation is
fixed by the isorotational invariance of the isovector pairing
Hamiltonian.

However, this approach only works well when sufficiently
far from the critical coupling strength for the appearance of the
isovector pair field. This cannot be expected to be always the
case in the medium mass nuclides, where the Wigner energy
plays an important role. To avoid these problems, in this paper
we treat the pair correlation into account by numerically diago-
nalizing the isovector pair Hamiltonian within a configuration
space spanned by seven single-particle levels nearest the Fermi
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surface. We demonstrate that the detailed values of the Wigner
energy depend on the level spacing at the Fermi surface, and
that its variations with particle number can be reproduced using
single-particle energies of the Nilsson potential. In addition,
we test the robustness of the results with respect to the presence
of isoscalar pair correlations.

Section II presents the separation of the Coulomb energy
from experimental total binding energies and describes how
the experimental values of the Wigner energy, symmetry
energy, and even-even odd-odd pair gaps are derived. The
model is presented in Sec. III and its parameters are fixed in
Sec. IV. Section V contains the results for a pure isovector
pair interaction. The consequences of an additional isoscalar
pair interaction are discussed in Sec. VI. The consequences of
using a small number of single-particle states when calculating
pair correlations are discussed in Sec. VII.

II. EXTRACTION OF THE RELEVANT
EXPERIMENTAL DATA

A. Coulomb energy

As a starting point we assume that the isospin mixing caused
by the Coulomb interaction can be neglected. Reference [17]
estimated the admixture of components with T > Tz to the
ground state to be of the order of 0.9% for A ∼ 70. With this
assumption, the Coulomb energy can be separated from the
energy caused by the strong interaction. Following [12] we
subtract the Coulomb energy from the experimental energies
and compare the resulting energies with our model. Because
the mass tables have been revised, meanwhile, we repeated the
extraction of the strong interaction part of the binding energies.

The expression for the Coulomb energy given in Ref. [18]
is adopted:

EC = 3

5
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4πε0r0
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(
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,

(2)

where the two unknowns are the equivalent radius (r0) and
diffuseness (d).

This expression for Coulomb energy begins with the
approximation that the nucleus is a homogeneously charged
sphere. The first correction takes into account diffuseness of
the nuclear surface. The second is the exchange correction
which is necessary because protons obey the Pauli principle
and wave functions cannot completely overlap (e.g., [19]).

Using the finite difference approximation evaluated at an
average value of proton number (Z̄), a more useful expression
involving energy differences results:
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For mirror nuclei, Z̄/A = 1/2 the two corrections, which
depend on powers of Z̄/A become constants. Experimental

FIG. 1. (Color online) Linear fit to experimental binding energy
differences of mirror nuclei plotted as a function of Z̄A−1/3. The color
indicates the isospin of the pair of mirror nuclei used.

binding energies for 69 pairs of mirror nuclei in the region
20 � A � 100 are found in the 2012 Atomic Mass Evaluation
(AME) [20]. The fit shown in Fig. 1 determines the two
unknowns r0 = 1.224 fm and d = 0.281 fm. The diffuseness is
not consistent with other estimates because other higher order
contributions to the Coulomb energy have been combined [18].

The atomic binding energies used in these calculations also
contain a small contribution accounting for the binding of the
electrons, which was found to be [21]

Bel(Z) = 14.4381Z2.39 + 1.555 × 10−6Z5.35 eV. (4)

Each of the comparisons discussed here involve differences
between neighboring nuclei. For these differences the term
contributes at most about 15 keV. Nonetheless these contribu-
tions are taken into account.

Applying the finite difference approximation to the pairs of
mirror nuclei reduces Eq. (2) to two terms because Z̄ = A/2.
It can be fit with a root-mean-squared deviation of 104 keV as
shown in Fig. 1, with

�EC

�Z
= 0.706(±0.007)A2/3 − 0.876(±0.068)[MeV], (5)

which is comparable to previous fits (cf., e.g., [22–24]). The
A-independent correction is determined by the radius, which
was taken from fit of the slope. The remaining term depends on
the diffuseness, which was adjusted. The resulting expression
for the differences of the Coulomb energy, in steps of �Z = 2,
within an isobaric chain was used to calculate the differences
between the strong interaction energies:

ES(Z + 1, A) − ES(Z − 1, A)

= EExp(Z + 1, A) − EExp(Z − 1, A)

− 2

[
1.412(±0.014)

Z

A1/3
− 0.610(±0.048)

Z

A

− 0.719(±0.007)
Z1/3

A1/3

]
[MeV], (6)

which are needed in the expressions given in the next section.
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The uncertainties of our fit are given in parentheses.
They are propagated together with the quoted errors of the
experimental binding energies to estimate the total error of the
“experimental” quantities shown in the following figures.

B. Experimental isorotational bands

In accordance with the concept of isorotational bands, we
write the energy of an isobaric chain, with constant A, in the
form,

E(N,Z) = Eint + T (T + X)

2�
, T = |Tz|, (7)

where Eint is the energy of the intrinsic (N = Z) configuration.
As discussed in [5,6], the Bardeen-Cooper-Schrieffer (BCS)
ground state without proton-neutron pairs is a legitimate
intrinsic state. It is a mixture of only even N and Z, which
implies that Tz must be even if A/2 is even or Tz must be odd
if A/2 is odd. Hence, the ground-state isorotational bands of
even-even nuclei are composed of even values of T = Tz if
A/2 is even and odd values of T = Tz if A/2 is odd.

The term 1/2� is a combination of the coefficient aS of the
symmetry energy and a contribution from the shell energy
ESHELL(Z,N ), which depends on Tz. Likewise, X/� is a
combination related to the coefficient aW of the Wigner energy,
which also contains a contribution from ESHELL. We introduce
the experimental isorotational frequency,

ω(T + 1) = E(T + 2) − E(T )

2
= T + 1 + X

�
. (8)

The slope and intercept with the ω axis determine 1/�
and X. We take the experimental ground-state energies of
the three nuclei with Tz = 0, 2, 4 if A/2 is even and with
Tz =1, 3, 5 if A/2 is odd and calculate two points of ω(T )
be means of Eq. (8). Note that this is just a recombination
of the experimental ground-state energies, which aims at
exposing the Wigner energy. The explicit expressions for the
experimental X are

XE(A) =
(

6ES(Tz = 0) − 8ES(Tz = 2) + 2ES(Tz = 4)

−ES(Tz = 0) + 2ES(Tz = 2) − ES(Tz = 4)

)
,

(9)

for even values of Tz and

XO(A) =
(

8ES(Tz = 1) − 12ES(Tz = 3) + 4ES(Tz = 5)

−ES(Tz = 1) + 2ES(Tz = 3) − ES(Tz = 5)

)
,

(10)

for odd Tz.
Figure 2 shows the experimental values of X, where the

experimental binding energies are taken from the most recent
mass evaluation from [20]. The small error bars for the lower
mass region are primarily caused by the uncertainty in the
spherical Coulomb energy fit. The large error bars in the
A > 80 region are mainly caused by the error in binding energy
of the nucleus nearest to or at N = Z.

A first determination of X based on the 2003 AME [25]
generally reproduced the features described by Jänecke et al.
including an apparent shift from X ≈ 1 to X ≈ 4 for A > 80.
However, one new feature occurred near A = 92 where X ≈ 2.

FIG. 2. (Color online) The experimental Wigner X, derived from
(9) and (10). The isobaric chains were evaluated using experimental
data from [25] and [20] with the Coulomb contributions removed. The
X values from Jänecke et al. have been included from a comparable
figure in [13]. Open symbols indicate values with at least one binding
energy from an extrapolation. If not visible, the error bars are smaller
than the size of the symbols.

A new observation is that as A approaches a doubly magic
nucleus, the value of X appears to decrease then increase.

Jänecke suggested that the A ≈ 80 region, the large values
of X might be caused in part by the substantial uncertainties
in the masses used [13]. This speculation appeared to be
in agreement with the reevaluation of X based on the 2012
AME [20], upon which this paper is based. There are several
changes in the A = 80 − 90 region, which come from a
combination of new mass measurements, specifically for
(86Mo and 90Ru) and new extrapolations (82Zr, 84Mo, 88Ru,
and 92Pd) [20]. The systematic nature of the reduction of
the value of X in the A = 82 − 92 chains is a result of the
fact that the binding energy of the TZ = 0, 1 nuclides has
decreased by approximately 0.5–1 MeV [20]. The lowering
of these points leads to smaller values of X.

Further changes of the earlier evaluations result from new
masses at Tz = 5 (22C, 26O, 34Mg, and 38Si) and N = Z (100Sn)
which have changed by a few hundred keV or more. Elsewhere
the difference in X between AME 2003 and 2012, results from
the different Coulomb fits for the two data sets. The results
based on the 2012 masses have an average value of X = 1.64
for 24 � A � 100.

III. THE MODEL

A monopole isovector pairing Hamiltonian is used to
describe the pair correlated ground state,

HV =
∑

k

εkN̂k − GV

∑
kk′,τ

P̂ +
k,τ P̂k′,τ + C �T · �T , (11)

N̂k = p̂+
k p̂k + p̂+

k̄
p̂k̄ + n̂+

k n̂k + n̂+
k̄
n̂k̄, (12)

P̂ +
k,0 = 1√

2
(n̂+

k p̂+
k̄

+ p̂+
k n̂+

k̄
), (13)

P̂ +
k,−1 = p̂+

k p̂+
k̄
, and P̂ +

k,1 = n̂+
k n̂+

k̄
, (14)

014322-3



I. BENTLEY AND S. FRAUENDORF PHYSICAL REVIEW C 88, 014322 (2013)

where p̂+
k and n̂+

k create a proton and a neutron, respectively,
on the level k, and k̄ denotes the time reversed state of k.
Identical single-particle energies ε are used for protons and
neutrons, which are derived from the Nilsson potential as
described in Sec. IV. This Hamiltonian is invariant under
rotations in isospace, i.e., it conserves isospin.

The many-body problem is solved via matrix diagonaliza-
tion. The space comprises the single-particle configurations
that are generated from the lowest configuration with T = Tz

by multiple application of the interaction. The subsequent
applications are carried out by a computer code, which stops
when no new configurations are generated. As the dimension
of the configuration space grows quickly with the number
of active single-particle levels, it is assumed that the pair
correlations are restricted to the configurations within the
set of seven levels centered about Fermi level εk=N of the
N = Z nuclide within the considered isobaric chain. All levels
εk<N−3 are assumed to be occupied and all levels εk>N+3

to be free. Because the matrix is constructed by successive
application of the isospin conserving pairing interaction onto
the uncorrelated ground state, the configuration space contains
only states with T = Tz. The isobaric chains Tz = 0, 2, 4 are
studied if A/2 is even or Tz = 1, 3, 5 if A/2 is odd. The
respective dimensions are 3647, 1890, 210 or 3647, 1001,
70. In the case of odd-odd N = Z nuclei, the lowest T = 1
energy is equal to the energy of the T = Tz = 1 isobar. As a
test of the code, we also generated the configuration matrix for
the odd-odd nucleus by starting from the configuration with
the odd proton-neutron pair on the Fermi level in the T = 1
state and diagonalized it. As it has to be, the two energies
agreed. The lowest T = 0 state in odd-odd N = Z nuclei
was obtained by generating the configuration matrix starting
from the configuration with the odd proton-neutron pair on
the Fermi level in the T = 0 state and diagonalizing it. This is
equivalent with blocking the Fermi level from the correlations
because the isovector interaction cannot scatter the isoscalar
pair onto other levels nor scatter isovector pairs onto the
Fermi level.

The diagonalization was carried out disregarding the levels
εk<N−3 and εk>N+3. To the energies resulting from the
diagonalization the sum of the single-particle energies for
all occupied proton and neutron levels below the seven-level
window was added. As discussed in the next section, this
ensures that the shell correction to the binding energies is
properly taken into account.

As suggested by Neergård [3], the term C �T · �T is a simple
way to take into account the isospin dependence of the single-
particle levels. The relation between the isospin dependence of
the nuclear potential and the “interaction” part of the symmetry
energy was discussed by Bohr and Mottelson [19]. It needs to
be added, because we carry out the diagonalization of the
pairing Hamiltonian for a fixed set of single-particle levels
along an isobaric chain. This means that only the “kinetic” part
of the symmetry energy is taken into account. The difference
between the proton and neutron nuclear potentials generates
an orientation in isospace. Hence it must be included in the
isorotational energy. It appears in a natural way if one carries
out “isocranking” about the z axis, which is just the standard

procedure of fixing 〈N〉 and 〈Z〉 in self-consistent Hartree-
Fock-Bogoliubov calculations.

IV. DETERMINATION OF THE MODEL PARAMETERS

The single-particle energies are calculated by means of the
micro-macro method using a Nilsson Hamiltonian as described
in Ref. [26]. For each nucleus the equilibrium deformation
was calculated. In these calculations BCS pairing was used
with �Z = 13.4[MeV]/A1/2 and �N = 12.8[MeV]/A1/2 as
suggested in [27]. Reference [28] discusses this procedure
of determining the equilibrium deformation called AutoTAC
in more detail. The resulting deformations are comparable
with those from Ref. [29]. The single-particle energies used
in the diagonalization of the pairing Hamiltonian are taken as
the average of the proton and neutron energies calculated by
the Nilsson model at equilibrium deformation.

The use of the averaged energies is justified as follows.
The premise of our model is that isospin is conserved, i.e., the
relative energies of the proton levels and the relative energies
of the neutron levels must be the same. That is, the proton
levels can only be shifted by a constant energy relative to the
neutron levels. The experimental studies of nuclei belonging
to an isospin multiplet shows that the relative energies of
exited states agree with each other within about 100 keV.
These Coulomb shifts are not properly accounted for by the
differences between the proton and neutron single-particle
energies of the Nilsson model (or other potentials). For this
reason, we chose to take the average. An overall shift of the
proton levels by a constant energy results in a constant shift
of the average single-particle energy, which does not matter,
because we only consider energy differences.

The bunching of the single-particle levels generates the
shell effects in the binding energies. In the framework of
the micro-macro method the shell correction is the sum of
the single-particle energies of all occupied levels minus the
Strutinsky average of this sum. The latter term is a smooth
function of N and Z. For the energy differences investigated
in this paper, it either (nearly) cancels out or can be considered
being incorporated in the CT (T + 1) term of the model
(cf. Sec. V A). Thus adding the sum of the single-particle en-
ergies below the seven-level window will correctly reproduce
the shell correction to the energy differences.

The model contains two parameters, strength of the isovec-
tor pair interaction GV , and the parameter C of the “symmetry”
interaction, which have been determined by simultaneously
fitting the even-even odd-odd mass differences and the energy
difference between the T = 0 and T = 1 states in the odd-odd
nuclei.

As well known from BCS theory, the value of GV has to
be adjusted to the number of levels taken into account. We
adopt the standard procedure to reproduce the experimental
values of the even-odd mass differences, which scatter around
the smooth dependence on the atomic mass number of

� ≈ 12

A1/2
[MeV], (15)
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for both protons and neutrons (e.g., [27], [18]). Because
our computer code can only handle even-A nuclei, we
use the mass differences between the even-even and odd-
odd N = Z nuclides derived by means of the three-point
formula:

2�(N,Z)

= BE(N − 1, Z − 1) − 2BE(N,Z) + BE(N + 1, Z + 1)

2
,

(16)

to determine GV (A). Coulomb, surface, volume, and symme-
try terms in the binding energy approximately cancel out using
this difference. The mass differences have a global dependence
on A roughly twice that given by Eq. (15) [30]. Equation (16)
was evaluated using the binding energies of the even N = Z
nuclides and the binding energies of the T = 0 states of the
odd N = Z nuclides. The following fit was adopted:

GV = 13.9

A3/4
[MeV]. (17)

The values based on experimental binding energies were
compared with the ones obtained from calculated energies
using GV (A) as given by Eq. (17) and Nilsson levels
corresponding to AutoTAC equilibrium deformation. In
calculating the odd-odd nuclei, the fourth (middle) level was
blocked, because the T = 0 states have two quasiparticle
character with respect to isovector pair correlations. The
blocking procedure is described in detail in [31]. In essence, the
blocked level was disregarded in constructing the matrix and
twice its energy was added after the diagonalization. Figure 3
compares the experimental with the calculated values. Overall,
there is good agreement. The deviations are likely a result of
inaccuracies of the Nilsson levels. The deformations resulting
from the AutoTAC calculation are often substantially smaller
than those determined experimentally using B(E2) values.

The competition of the first T = 0 and first T = 1 states
of odd-odd N = Z was then used to fix the parameter C.

FIG. 3. (Color online) The even-even odd-odd mass difference
2� obtained from (16) using modified energies from [20] with the
Coulomb energy removed. The solid line shows the calculations. The
purple dashed line is the global fit of 2� = 24A−1/2[MeV]. If not
visible, the error bars are smaller than the size of the symbols.

FIG. 4. (Color online) Energy difference of the first T = 1 from
the first T = 0 states in odd-odd N = Z nuclei. The solid line shows
the calculations. Experimental data from NNDC [32]. The green
dashed line indicates where inversion occurs.

The theoretical energy difference E(T = 1) − E(T = 0) was
obtained by a seven-level calculation for the T = 1 state and
for the T = 0 state by the “blocked” calculation described
in the preceding paragraph. Without the symmetry interaction
term, the fully correlated T = 1 state lies at least 2� below the
blocked T = 0 state. However, the inclusion of the symmetry
interaction term (2C is added to the T = 1 state) results in
comparable energies for the two states. With increasing A,
the levels switch order, which is seen experimentally [32] (as
discussed in [14]).

Requiring the smooth 1/A dependence of the symmetry
energy, the fit of the calculated differences E(T = 1) −
E(T = 0) to the experimental ones gave

C = 58.9

A
[MeV]. (18)

As already discussed, odd-odd N = Z nuclei with A > 40
have a ground state that has T = 1 > Tz = 0. The inversion
of the isospin order was explained by Refs. [23,30]. The
T = 0 state in the odd-odd nucleus is lifted relative to the
T = 0 ground state of the even-even neighbors, by the two
quasiparticle excitation energy 2�. The T = 1 state is lifted
by the isorotational energy 1/�, which is somewhat smaller
than 2�.

Figure 4 shows that calculations well reproduce energy
difference between the lowest T = 1 and T = 0 states, which
measures to relative strength of the isovector pair correlation
and the isorotational energies. There are large fluctuations
in the theoretical calculations caused by the uneven level
spacings, which are roughly reproduced. The deviations are
of the same order as the ones of 2� and have the same origin.

The coefficient of the symmetry energy in the liquid
drop model 4aA = 1/2θLD = 100 MeV/A. The value of C =
58.9 MeV/A is consistent with the general estimates [19] that
the interaction part of the symmetry energy amounts to about
50% of its total value.
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FIG. 5. Slope of the isobar energies obtained from (19) using
modified energies from [20] with the Coulomb energy removed. If
not visible, the error bars are smaller than the size of the symbols.
The solid line shows the calculations.

V. RESULTS—PURE ISOVECTOR PAIRING

A. The isorotational moment of inertia

Combining the energy differences as

1

θ
= ES(Tz = 0, 1) − 2ES(Tz = 2, 3) + ES(Tz = 4, 5)

4
,

(19)

the local slope for both the even and odd chains of Tz was
calculated. It has the meaning of the inverse moment of inertia
of the isorotational sequence. Figure 5 displays a comparison
between experiment and theoretical calculation of the slope.

The calculated values of 1/θ are systematically somewhat
larger than the experimental ones. We believe that this reflects
a fringe effect of our small single-particle space. The number
of configurations decreases from 3647 to 1001 and finally to
70 for T = 0, 2, 4, respectively. This results in a decrease of
the pair correlation energy, which is reflected by an increase of
1/θ . The consequences of the small number of single-particle
levels will be discussed in more detail in Sec. VII.

B. The Wigner X

Figure 6 demonstrates that the calculations reproduce well
the observed values of X, both the average, which is somewhat
larger than 1, and the pronounced fluctuations. As seen in
Fig. 2, the X values derived from the most recent mass tables
agree much better with the calculation than the ones derived
by Jänecke et al. [12] from the 2002 mass tabulations. In
the region A ≈ 58, the X values based on the AutoTAC
deformations overestimate the amplitude of the oscillation.
As shown in the schematic calculations discussed below, the
amplitude of the fluctuations is largest for strong bunching
of levels that occurs near a doubly magic nucleus. The static
AutoTAC deformations in this region are mostly zero. The
degeneracy of the spherical levels will be partially lifted by
shape vibrations, which will damp the fluctuations.

FIG. 6. (Color online) The Wigner X obtained from (9) and (10)
using modified energies from [20] with the Coulomb energy removed.
If not visible, the error bars are smaller than the size of the symbols.
Solid line shows the calculations. The orange dashed line indicates
X = 1.

There is a tendency that the calculations underestimate X
for 74 � A � 92. There are two possible justifications for the
discrepancies seen in this region. The experimental uncertain-
ties are large in this mass region and several binding energies
are extrapolated. Additionally, the AutoTAC deformations are
moderate and fairly constant, which results in X values close
to one. Experimental yrast energies of these nuclei indicate
a change from more vibrational to more rotational behavior
as Tz increases, which should be caused by an increasing
deformation.

The fluctuations of the calculated quantities reflect the
irregular level spacings. Figure 7 illustrates the effects on the
observed X caused by changes in level density. The system
with even level spacing is intended to simulate well-deformed
nuclei. The gaps in the spectrum simulate the bunching of

FIG. 7. (Color online) Wigner X for various level arrangements.
For G = 0 and Tz = 0, the levels 1,2,3 are occupied and 4,5,6 empty.
Configurations with larger Tz are generated by removing proton pairs
and placing neutron pairs according to the Pauli principle. The average
spacing of the energy levels is 1 MeV. Note C = 0.
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FIG. 8. (Color online) Linear fits corresponding to energy differ-
ences for the levels shown in Fig. 7 without pair correlations. The
slope and intercept are related to 1/θ and X, respectively.

levels for nuclei with a nearly spherical shape. In the strong
pairing limit, the isorotational band structure is restored
and X = 1. To approach the limit, the pair field � must
be several times the average level spacing, such that local
fluctuations of the latter are averaged. The interaction strength
GV < 1.5 MeV is not strong enough to averaging out fluctua-
tions of X about 1. The same holds for the fluctuations of 2�
and 1/θ .

The deviations from the smooth trends can be understood
by considering the limit GV = 0, when the energy is simply
the sum of the energies of the occupied levels. Figure 8
illustrates that the various level distributions generate different
values of X and 1/θ for GV = 0, which are still apparent in
the calculations with realistic GV values. In particular, the
strong up-down of X, which is seen experimentally around
A = 40, 56 and possibly A = 100, is caused by moving
through the respective shell gaps.

VI. INFLUENCE OF THE ISOSCALAR INTERACTION

We have also studied the possible influence of isoscalar
proton-neutron pair correlation on the Wigner X by supple-
menting the Hamiltonian (11) with the term,

HV +S = HV − GS

∑
kk′

Ŝ+
k Ŝk′ , Ŝ+

k = 1√
2

(n̂+
k p̂+

k̄
− p̂+

k n̂+
k̄

),

(20)

where GS is the isoscalar interaction strength. The isoscalar
pair operators create proton-neutron pairs in states with
opposite projection of the angular momentum. The rational for
using such an interaction is that the strong spin-orbit coupling
generates this type of degenerate time-reversed states, which
are expected to be correlated. This was used by Chasman
before [33], and the inclusion of this type of interaction into
our model is straightforward, however, it generates many
more configurations. For example, a six-level calculation using
the pure isovector Hamiltonian (11) with six protons and
six neutrons has 1001 configurations, while including the
isoscalar contributions results in 1992 configurations. As a
result, only six levels could be used for the isovector plus

isoscalar calculations. The dimensions are 1992, 825, 66 for
T = 0, 2, 4, respectively.

The calculations were carried out for fixed ratios of
GS/GV = [0, 1

8 , 1
4 , 1

2 , 1, 2, 4, 8], using the six Nilsson levels
nearest the Fermi surface, which were determined as described
above. The parameters GV (A) and C(A) were determined as
before by fitting the experimental values of 2� and E(T = 1)
− E(T = 0). The results are summarized in Fig. 9. Note that
the GS = 0 calculation differs from the previously discussed
calculations because the number of levels has changed. This
reduction of the number of levels from seven to six requires
a renormalization of GV , which increased by about 5%. The
C(A) values are also renormalized and decreased by about
4%. The actual fit values used are included in the figure.
As a whole, the results only insignificantly change within
the displayed range of the ratio between the interactions. For
GS > GV /2 it was not possible to simultaneously fit 2� and
E(T = 1) − E(T = 0).

Figure 10 shows schematic calculations of the four quan-
tities of interest for six equidistant levels. The value of
C = 1 MeV was chosen with the intention to simulate nuclei
near A = 60. As expected, for GS substantially larger than
GV , the even-even odd-odd mass differences approach zero
and become slightly negative. This is the signature of an
isoscalar pair condensate, where even-even and odd-odd
N = Z nuclides merge into a pair-rotational band [6,34]. To
remain within the experimental band of 2�, the isovector
correlations must prevail. That is, the stripe of experimental
values of 2� lies always below the diagonal. Note that the
value of 2� does not depend on C, because it involves a
comparison of T = 0 states only.

Comparing the four panels in Fig. 10, one notices that the
quantities E(T = 1) − E(T = 0), X and 1/θ do not change
much along a contour of constant 2�, as long as one stays
within the band of experimental values delineated by the
dashed lines and the interval 0 < GS/GV < 0.5, which is
the range of ratios shown in Fig. 9. This helps to explain
why the experimental data could be equally well reproduced
within this range. Hence, the coexistence of a moderate
amount of isoscalar pair correlations is consistent with the
data, which, however, does not provide evidence for its
existence. Large-scale shell-model calculations with realistic
effective interactions find moderate isoscalar pair correlations
coexisting with strong isovector correlations [35,36].

Our results do not concur with Refs. [37–40] which relate
the Wigner energy to the presence of isoscalar proton-neutron
pair correlations. However, they are consistent with the find-
ings of Ref. [35], which pointed out that although the Wigner
term is related to the T = 0 part of the residual interaction in
shell-model calculations this does not necessarily imply that it
is generated by proton-neutron pair correlations.

VII. FRINGE EFFECTS

The small number of single-particle levels among which the
pair correlations are allowed to act causes artifacts that will be
quantified now. As discussed in Sec. V A, the number of con-
figurations available for pair correlations strongly decreases
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FIG. 9. (Color online) 2�, E(T = 1) − E(T = 0), XE , and 1
θ
, using the fixed interaction strength ratios, and listed as GV (A) and C(A)

(both in units of MeV), compared to experiment. If not visible, the error bars are smaller than the size of the symbols.

with T (by a factor of 50) when the Fermi level approaches
the upper single-particle level, because the combinatorial
possibilities are reduced. This results in an artificial reduction
of the pair correlations, which we called the fringe effect.
The reduction of the pair correlation energy increases 1/θ ,
which is in our view the reason why this quantity comes out
systematically somewhat too large.

The fringe effect on 1/θ can be estimated on the basis of
Fig. 10, which shows calculations for six equidistant levels.
The slope 1/θ increases from 3.00 to 3.32 MeV when GV

changes from 0 to a realistic value of 1 MeV, while holding
GS = 0. This puts a scale on the fringe effects, because 1/θ
should not change with the strength of the pair correlations
for a sufficiently large set of equidistant levels. Instead, it
should stay equal to the value without pair correlations. More
specifically, it should be d + 2C, with d = 1 MeV being the
average level spacing and C = 1 MeV being the strength
of the symmetry interaction for this case. The difference of
0.32 MeV is consistent with the systematic overestimation of
1/θ in Figs. 5 and 9 around A = 80.

The six-level and seven-level calculations give nearly the
same values of 1/θ . This can be seen by comparing Fig. 5
with Fig. 10. Note, in the latter, only even T chains have been
evaluated. More quantitatively, the respective mean values
of 1/θ are 3.49 MeV and 3.47 MeV, and the respective
mean square deviations are 0.90 MeV and 0.93 MeV. The
contribution of the symmetry interaction to 1/θ is equal to

2C. The fact that a smaller C in six-level calculation gives the
same values of 1/θ as the seven-level calculation means that
the fringe effect must be larger for six than for seven levels,
which is compensated by the reduction of C. For A = 80 the
difference of 2C between the seven- and six-level cases is
0.06 MeV. This increase of 2C compensates a decrease of
the fringe effect in the seven-level calculations by the same
amount. This value is 20% of the 0.32-MeV estimate in the
preceding paragraph.

Using approximately 60% the value for C(A) would
reconcile the discrepancy in 1/θ between experiment and
theory. However, it would result in a systematic overestimate
of E(T = 1) − E(T = 0). This fringe effect, which is a
limitation of our few-level approach, leads us to use E(T =
1) − E(T = 0) in the odd-odd N = Z to adjust the C parame-
ter nuclei, where the effect is weakest, instead of determining it
from the experimental slope of the symmetry energy. The main
focus of our work is the study of the Wigner X, which impacts
the nuclei near N = Z strongest. The studies of Refs. [12,30]
demonstrated that the experimental values of 1/θ and 2�
are consistent with E(T = 1) − E(T = 0) = 2� − 1/θ on
average. We expect that including more single-particle levels
into the beyond-mean-field description of the pair correlations
will resolve the modest inconsistency. Unfortunately, direct
diagonalization of the pairing Hamiltonian will not be feasible
because of the combinatorial explosion of the dimensions. A
shift of the single-particle window to have the same number
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FIG. 10. (Color online) Isovector plus isoscalar calculation for equidistant levels. The dotted purple lines indicate the smoothed trends of
2� in Fig. 3 around A = 20 and A = 100, respectively, the dotted green line E(T = 1) = E(T = 0), and the dotted orange line X = 1. The
level spacing is 1 MeV and C = 1 MeV.

of levels on both sides of the Fermi level violates isospin
conservation, which is a crucial ingredient. Clearly one has to
employ some approximation scheme that ensures good isospin.
Work along this line is on the way.

VIII. CONCLUSIONS

We have demonstrated that a model based on single-particle
levels in a deformed potential, isospin conserving isovector
monopole pairing, and a schematic “symmetry” interaction
proportional to �T 2 reproduces the term linear in |N − Z|
in the nuclear binding energy. The pairing correlations were
treated exactly by numerical diagonalization in a space of
seven single-particle levels, which ensured that isospin was
conserved. Isospin invariance requires the coupling constants
of the proton-proton, proton-neutron, and neutron-neutron
interaction to be equal.

The Wigner term appears as a result of breaking isospin
invariance on the mean-field level. The deformation in isospace
gives rise to an isorotational band with energies ∝T (T + 1).
The deformation is caused by the isovector pair field and the
differences between the proton and neutron nuclear potentials
to about equal parts.

The model does not introduce new parameters as compared
to standard mean-field approaches. The two model parameters
are the pairing strength, which is fixed by the even-even to

odd-odd mass difference, and the strength of the symmetry
interaction, which is determined by the energy difference
between the lowest T = 0 and T = 1 states in odd-odd N = Z
nuclei. Using this approach it is possible to get roughly the
correct order (T = 0 below T = 1 for A < 40 and T = 1
below T = 0 for A > 40).

Merging the symmetry term and the Wigner term of the
binding energy into one expression of the form T (T + X)/2θ ,
the values of X are found to scatter around 1. The limit X = 1
corresponds to a regular isorotational band, which emerges
if isospin is strongly broken by the pair field. Because the
realistic pair field has only moderate strength the bunching of
the single-particle levels, resulting from shell structure, causes
strong fluctuations of the Wigner energy which are fairly
well described by the model. The remaining deviations can
be attributed to inaccuracies of the calculated single-particle
energies.

A combination of an isorotational invariant effective in-
teraction in the particle-hole channel with isovector pairing
interaction is capable of reproducing the Wigner energy,
provided the pairing correlations are treated beyond the
mean-field approximation and isospin is conserved. How to
accomplish this for the present standard mean-field approaches
remains to be studied. In a future study we will address this
question by comparing our results with approximations as,
e.g., isospin projected mean-field solutions.
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In addition, we investigated how including a monopole
isoscalar pairing interaction would modify the results. As
long as the ratio between the isoscalar and isovector coupling
constants remained smaller than 0.5, the experimental values
of the Wigner energy and of the T = 0 − T = 1 energy
difference in odd-odd N = Z nuclei could be equally well
reproduced after a slight readjustment of the two model
parameters. The results turned out to be insensitive to moderate
isoscalar pair correlation of this scale and, thus, did not

provide any clue about their possible presence. Ratios of
the isoscalar-isovector coupling constants larger than 0.8
contradict the experimental values of the even-even odd-mass
mass differences.
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