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The cranked relativistic Hartree-Bogoliubov theory has been applied for a systematic study of pairing and
rotational properties of actinides and light superheavy nuclei. Pairing correlations are taken into account by the
Brink-Booker part of finite-range Gogny D1S force. For the first time, in the covariant density functional theory
(CDFT) framework, the pairing properties of deformed nuclei are studied via the quantities (such as three-point
�(3) indicators) related to odd-even mass staggerings. The investigation of the moments of inertia at low spin and
the �(3) indicators shows the need for an attenuation of the strength of the Brink-Booker part of the Gogny D1S
force in pairing channel. The investigation of rotational properties of even-even and odd-mass nuclei at normal
deformation, performed in the density functional theory framework in such a systematic way for the first time,
reveals that in the majority of the cases the experimental data are well described. These include the evolution
of the moments of inertia with spin, band crossings in the A � 242 nuclei, the impact of the particle in specific
orbital on the moments of inertia in odd-mass nuclei. The analysis of the discrepancies between theory and
experiment in the band crossing region of A � 240 nuclei suggests the stabilization of octupole deformation at
high spin, not included in the present calculations. The evolution of pairing with deformation, which is important
for the fission barriers, has been investigated via the analysis of the moments of inertia in the superdeformed
minimum. The dependence of the results on the CDFT parametrization has been studied by comparing the results
of the calculations obtained with the NL1 and NL3* parametrizations.
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I. INTRODUCTION

Starting from the dawn of the 21st century, there is an
increased interest in a detailed spectroscopic study of the
heaviest actinides and light superheavy nuclei. Rotational,
single-particle and other properties of these nuclei were and are
studied both in experiment and in theory (see Refs. [1,2] and
references therein). There is a hope that detailed spectroscopic
information on such nuclei will allow us to better test and
constrain theoretical models so that the location of the island
of enhanced stability of spherical superheavy nuclei can be
predicted with a higher level of confidence.

A continuing experimental effort to study rotational proper-
ties of such nuclei is driven in part by the fact that in odd-mass
nuclei they provide an important additional fingerprint for the
Nilsson configuration assignment for the bandheads on which
the rotational structures are built [3]. The investigation of high-
spin structures also provides important information on stability
of nuclei against fission [4]. Among recent surprises is the
observation of a rotational band in the Z = 104 256Rf nucleus
up to very high spin of I = 20+ [5]; this is the highest-Z
nucleus is which such structures were observed. In addition,
there is a revival of theoretical interest in the description
of such structures. This is illustrated by recent systematic
investigations of rotational properties in heavy actinides and
light superheavy nuclei performed within a total Routhian
surface (TRS) approach [6] and a particle-number conserving
method based on a cranked shell model (PNC + CSM) [7,8].
These approaches are based on phenomenological Woods-
Saxon and Nilsson potentials, respectively.

Alternative and more microscopic approaches are based
on nonrelativistic and relativistic density functional theories

(DFT) [9,10]. Unfortunately, these approaches1 were only
occasionally used for the description of rotational structures
in the pairing regime and no systematic assessment of their
errors and the sources of these errors are available. It turns
out that within these approaches more efforts were dedicated
to the investigation of superdeformed (SD) rotational bands in
different mass regions (see Refs. [9,10] and references therein)
than to the study of rotational bands at normal deformation.
However, in contrast with normal-deformed (ND) bands,
neither spin nor parity are known for absolute majority of
the SD bands. The studies of the ND bands over observable
frequency ranges have been performed only in a few nuclei
within the cranked Hartree( + Fock) + Bogoliubov (HB or
HFB) frameworks based on DFT. These are 72,74,76Kr [14],
74Rb [15], 76Sr [16], and 80Zr [14] studied in covariant DFT
(CDFT) as well as 48,50Cr [19]; a few even-even Er and Yb
nuclei [17–19]; and 240Pu [18] studied in Gogny DFT (GDFT).
Somewhat more attention has been paid to rotational structures
of actinides within Skyrme DFT (SDFT) [20,21], but even
these investigations are far from being systematic.

The situation is even worse in odd-mass nuclei where
only a few rotational bands across the nuclear chart have
been studied in the DFT framework so far (see Sec. V
for a detailed overview). However, rotational properties of
one-quasiparticle configurations give important information
on their underlying structure, thus providing an extra tool
for a configuration assignment. This is especially important

1We consider here only the calculations which include approximate
particle number projection since it is needed for a proper description
of rotational properties [11–13].
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for light superheavy nuclei at the edge of the region where
spectroscopic studies are still feasible (the nuclei with masses
A ∼ 255 and proton number Z � 102) [3] since alternative
methods of configuration assignment are either unreliable
and/or questionable or cannot be employed because of the
limitations of the experimental measurements.

Covariant density functional theory [10] is well suited
for the description of rotational structures. It exploits basic
properties of QCD at low energies, in particular symmetries
and the separation of scales [22]. Built on the Dirac equation,
it provides a consistent treatment of the spin degrees of
freedom [22,23] and spin-orbit splittings [24,25]; the latter
has an essential influence on the underlying shell structure.
It also includes the complicated interplay between the large
Lorentz scalar and vector self-energies induced on the QCD
level by the in-medium changes of the scalar and vector quark
condensates [23]. Lorentz covariance of CDFT leads to the
fact that time-odd mean fields of this theory are determined as
spatial components of Lorentz vectors and therefore coupled
with the same constants as the timelike components [26],
which are fitted to ground-state properties of finite nuclei. This
is important for the description of odd-mass nuclei [26], the
excitations with unsaturated spins, magnetic moments [25],
and nuclear rotations [10,27,28]. The successes of the CDFT
in the description of rotating nuclei both in paired and unpaired
regimes and at different extremes {superdeformation (see
Ref. [10] and references therein), ultrahigh spins [29] and the
limits of angular momentum in nuclear configurations [10,30]}
are well documented.

One should note that our understanding of the pairing
properties in the CDFT framework is far from being sat-
isfactory. Although it has been shown in Ref. [31] that a
relativistic bare potential (Bonn potential) reproduces pairing
correlations at the Fermi surface in the CDFT application to
infinite nuclear matter, its mathematical properties make a
numerical solution of the relativistic Hartree + Bogoliubov
(RHB) equations with this potential in the pairing channel
extremely difficult task. This task has not been solved so far. On
the other side, the relativity does not affect pairing significantly
[32]. As a consequence, simpler versions of phenomenological
nonrelativistic pairing such as constant gap pairing, monopole
pairing, zero-range δ-pairing (see Ref. [33] and references
therein), separable pairing [34], and the pairing based on the
Brink-Booker part of finite-range Gogny force [13,35] are used
in the CDFT calculations.

In all CDFT applications of the first three types of pairing
the selection of the pairing strength has been guided either
by nonrelativistic results (see, for example, Refs. [33,36]) or
by the local fits to experimental or empirical pairing gaps
(see, for example, Ref. [37]). The strengths of separable
pairing have been fitted to the properties of the Brink-Booker
parts of finite-range Gogny D1S and D1 forces in nuclear
matter [34]. However, to our knowledge, the results of the
calculations with these types of pairing have not been directly
confronted with experimental observables sensitive to pairing
such as the moments of inertia and/or the indicators related to
odd-even mass staggerings (such as three-point �(3) indicators,
see Sec. III D below for details). Thus, at present, it is not
clear how accurately these types of pairing perform. Global

investigations of the pairing in the CDFT framework that
are similar to those performed in the nonrelativistic SDFT
framework (see Refs. [38,39]) are not available yet.

Somewhat more is known in the CDFT about the properties
of the pairing force based on the Brink-Booker part of
the finite-range Gogny D1S force via the studies of rota-
tional structures. Available investigations within the cranked
RHB theory with approximate particle number projection by
means of the Lipkin-Nogami method (CRHB + LN) show
that it performs rather well in nuclei with masses A � 200
[10,13,14,40], but its strength has to be decreased by ap-
proximately 10% in actinides [1]. On the contrary, available
applications of the RHB theory with pairing force based on the
Brink-Booker part of finite-range Gogny D1S force in pairing
channel to the ground-state properties across the nuclear chart
follow the prescription of Ref. [35], in which the strength of
the Brink-Booker part is increased by a factor of 1.15. This
difference in the selection of the pairing strength definitely
requires clarification.

To our knowledge, the detailed analysis of pairing indicators
(such as the �(3) indicators) has not been performed so far
in the relativistic mean field + BCS, RHB or CRHB(+LN)
frameworks because of the complexity of the definition of the
ground states in odd-mass nuclei. In order to define the ground
state in odd-mass nucleus, the binding energies have to be
calculated for a number of one-quasiparticle configurations
based on the orbitals active in the vicinity of the Fermi level
and only then the lowest in energy state is assigned to the
ground state. This nontrivial problem has been solved, first,
for only a few nuclei in Ref. [1] and then in the systematic
studies of actinides and rare-earth nuclei in Ref. [41].

The current paper aims to provide a detailed and systematic
study of the pairing properties of actinides in the RHB
and CRHB(+LN) frameworks via simultaneous investigation
of the moments of inertia and the �(3) indicators. Such
an investigation covers not only normal-deformed but also
superdeformed structures. The rotational structures in the SD
minimum provide only available information on the evolution
of pairing with deformation in actinides. This is important
for an understanding of fission barriers which, according to
Ref. [33], sensitively depend on the pairing properties. In
addition, the rotational properties of even-even and odd-mass
actinides are studied in a systematic way up to high spin
in order to see the typical accuracy of the description of
rotational and band crossing features, the impact of blocked
orbital on rotational properties, and the feasibility of the
use of rotational features in configuration assignment of
light odd-mass superheavy nuclei. The systematic analysis is
restricted to reflection symmetric nuclei. As a consequence,
light octupole deformed actinides [42] are omitted. Based on
the results obtained in actinides, the deformation and rotational
properties of superheavy nuclei are also studied.

The manuscript is organized as follows. The CRHB(+LN)
theory and its details are discussed in Sec. II. Section III is
devoted to the pairing properties of actinides. In this section,
the pairing strength is defined and the calculated deformation,
low-spin rotational properties and the �(3) indicators are
compared with experiment. Rotational properties of even-
even and odd-mass nuclei are considered up to high spin
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in Secs. IV and V, respectively. Deformation, pairing and
rotational properties of actinide fission isomers are discussed
in Sec. VI. We report the results for deformation and rotational
properties of even-even superheavy nuclei in Sec. VII. Finally,
Sec. VIII summarizes the results of our work.

II. THEORETICAL FORMALISM

The CRHB + LN equations for the fermions in the rotating
frame (in one-dimensional cranking approximation) are given
by [13](

ĥ′
D − λ′ − �xĴx �̂

−�̂∗ −ĥ′ ∗
D + λ′ + �xĴx

∗
)(

U (r)
V (r)

)
k

= E′
k

(
U (r)
V (r)

)
k

, (1)

where

ĥ′
D = ĥD + 4λ2ρ − 2λ2Tr(ρ), (2)

λ′ = λ1 + 2λ2, (3)

E′
k = Ek − λ2, (4)

where ĥD is the Dirac Hamiltonian for the nucleon with mass
m, λ1 is defined from the average particle number constraints
for protons and neutrons, ρτ = V ∗

τ V T
τ is the density matrix,

Uk(r) and Vk(r) are quasiparticle Dirac spinors, Ek denotes
the quasiparticle energies, and Ĵx is the angular-momentum
component. The LN method corresponds to a restricted
variation of λ2〈(�N )2〉 (see Ref. [13] for definitions of λ1

and λ2), where λ2 is calculated self-consistently in each step
of the iteration. The form of the CRHB + LN equations given
above corresponds to the shift of the LN modification into the
particle-hole channel.

The Dirac Hamiltonian ĥD contains an attractive scalar
potential S(r),

S(r) = gσσ (r), (5)

a repulsive vector potential V0(r),

V0(r) = gωω0(r) + gρτ3ρ0(r) + e
1 − τ3

2
A0(r), (6)

and a magnetic potential V (r),

V (r) = gωω(r) + gρτ3ρ(r) + e
1 − τ3

2
A(r). (7)

The last term breaks time-reversal symmetry and induces
currents. In rotating nuclei, the time-reversal symmetry is
broken by the Coriolis field. Without rotation, it is broken
when the time-reversal orbitals are not occupied pairwise. In
the Dirac equation, the spacelike components of the vector
mesons ω(r) and ρ(r) have the same structure as the spacelike
component A(r) generated by the photons. Since A(r) is the
vector potential of the magnetic field, by analogy the effect
due to presence of the vector field V (r) is called nuclear
magnetism [43]. It has considerable influence on the magnetic

moments [44] and the moments of inertia [27,28] and affects
the properties of odd- and odd-odd nuclei [26]. In the present
calculations the spatial components of the vector mesons are
properly taken into account in a fully self-consistent way. The
detailed description of the mesonic degrees of freedom in the
CRHB + LN theory is presented in Ref. [13].

The CRHB(+LN) equations are solved on the basis of an
anisotropic three-dimensional harmonic oscillator in Cartesian
coordinates. The same basis deformation β0 = 0.3, γ = 0◦
and oscillator frequency h̄ω0 = 41A−1/3 MeV were used in
the calculations. All fermionic and bosonic states belonging to
the shells up to NF = 14 and NB = 20 were taken into account
in the normal-deformed minimum in the diagonalization of the
Dirac equation and the matrix inversion of the Klein-Gordon
equations, respectively. As follows from a detailed analysis
of Refs. [1,41], this truncation of the basis provides sufficient
accuracy of the calculations. In order to have similar accuracy
in the superdeformed minimum, NF was increased to 16 in the
calculations.

The calculations were performed as a function of rotational
frequency in the frequency range �x = 0.01–0.45 MeV in
steps of 0.02 MeV outside the band crossing regions and
0.01 MeV in the band crossing regions and their vicinities.
Note that full convergence is not always obtained at all fre-
quencies; for these frequencies, no calculated curve is shown
in the figures below. This typically happens in the regime of ex-
tremely week pairing at high rotational frequencies in the Z =
90–102 nuclei (see Figs. 10 and 9 below). Alternatively, no
convergence takes place in the band crossing region or above
of some Rf and Sg nuclei (see Figs. 10 and 9 below), most likely
because the solution jumps between two closely lying in energy
minima.

The calculations have been performed with the NL1 [45]
and NL3* [46] parametrizations of the RMF Lagrangian. The
selection of the parametrizations has been dictated by the
following considerations:

(i) The accuracy of the description of single-particle
properties. The description of rotating nuclei is more
complicated as compared with that of the ground-state
properties (such as binding energies, radii, etc.) of
even-even nuclei. This is because it depends not only
on the calculated deformations of nuclei but also on the
energies and alignment properties of the single-particle
orbitals. For example, the alignments of proton or neu-
tron angular momenta in the upbending/backbending
region and whether it proceeds smoothly or in a
abrupt way strongly depend on the accuracy of the
description of the excitation energies of high-j aligning
orbitals with respect to the quasiparticle vacuum [47].
So far, the accuracy of the description of deformed
one-quasiparticle states has been systematically studied
only with the NL1 and NL3* parametrization in
Ref. [41]; this study covers all one-quasiparticle states
in the actinide region. It is interesting that the overall
accuracy of the description of the energies of deformed
one-quasiparticle states in Ref. [41] is slightly better
in the NL1 parametrization which was fitted 25 years
ago, mostly to the nuclei at the β-stability line, than in

014320-3



A. V. AFANASJEV AND O. ABDURAZAKOV PHYSICAL REVIEW C 88, 014320 (2013)

the recent NL3* parametrization. This suggests that the
inclusion of extra information on neutron-rich nuclei
into the fit of the NL3* parametrization may lead to
some degradation of the description of single-particle
states along the valley of β stability.

So far the calculated alignment properties of single-
particle orbitals have only been confronted with exper-
iment in the unpaired regime at normal deformation
in the A ∼ 80 [14] region and at superdeformation in
the A ∼ 60 [48] and 150 [49] mass regions. These in-
vestigations have been mostly performed with the NL1
parametrization, which describes well the alignment
properties of the single-particle orbitals.

(ii) The accuracy of the description of the moments of
inertia in unpaired regime. The pairing has a significant
impact on the moments of inertia which is much
stronger than its impact on other physical observables.
As a consequence, it is very difficult to disentangle
pairing and rotational alignment contributions to the
moments of inertia. Fortunately, the pairing is very
weak at high spin and, thus, can be neglected there
[10,49,50]. As a result, it becomes possible to bench-
mark the performance of different CDFT parametriza-
tions with respect to the description of the moments of
inertia in unpaired regime.

So far such detailed benchmark calculations across
the nuclear chart are available only for the NL1
parametrization. They include the investigations of the
moments of inertia of superdeformed bands in the A ∼
60 [48] and 150 [10,50] mass regions and in 108Cd [51].
Moreover, the rotational properties of smooth terminat-
ing bands in the A ∼ 110 mass region [10] and triaxial
superdeformed bands both at ultrahigh spin in 158Er
[29] and at moderate/high spin in the A ∼ 170 mass
region [52] have been successfully studied with this
parametrization. These detailed investigations showed
that the NL1 parametrization provides a very good
description of rotational and deformation properties
of studied nuclei which in many cases is similar but
frequently better than the one obtained with newer
parametrizations such as NL3 and NLSH (for later
comparison see Refs. [48,49]). These results give us
strong confidence that the NL1 parametrization should
perform reasonably well also in actinides.

Limited benchmark calculations in the unpaired
regime are available also for the NL3* parametrization
but only for a few nuclei (58Cu, 143Eu, 109Sb, and
74Kr [46] and 158Er [29]) across the nuclear chart.
However, these studies cover different types of bands
such as near-axial and triaxial superdeformed bands
and smoothly terminating bands.

(iii) The accuracy of the description of pairing properties
by the Brink-Booker part of the finite-range Gogny
D1S force. As discussed in the Introduction, our
knowledge of pairing properties of the Brink-Booker
part of Gogny D1S force comes mostly from the
CRHB + LN calculations. One interesting observation,
born in the studies of few rotational bands, is the need
for an attenuation of this pairing force in the nobelium

region [1]. To validitate this observation, the systematic
calculations of the moments of inertia and the �(3)

indicators in actinides have to be confronted with
available systematic studies in lighter nuclei employing
the same CDFT parametrization. Such studies of the
moments of inertia are available only for normal-
deformed proton-rich A ∼ 70 [14] and rare-earth [40]
nuclei and for superdeformed nuclei in the A ∼ 190
region [13]. The later two studies are performed with
the NL1 parametrization, while the former one with
NL3. However, it was verified that the results for
rotational structures in the A ∼ 70 mass region with
the same pairing are similar for the NL1 and NL3
parametrizations.

Thus, two different parametrizations, namely NL1, fitted
to the nuclei in the valley of β stability, and NL3*, tailored
towards the description of neutron-rich nuclei, are used in
the current study. This selection allows us to study the
dependence of the results on the CDFT parametrization. In
addition, the use of two parametrizations allows us, in many
cases, to circumvent the convergence problems for specific
blocked orbitals in odd-mass nuclei which can show up in
one parametrization but will not affect the solution in another
parametrization (see Sec. V for details). For example, the
calculations for the moments of inertia of the π5/2[523] and
π3/2[521] rotational bands in 214Am are possible only with the
NL1 parametrization, while the ones for the ν9/2[734] bands
in 247Cm and 249Cf are possible only with NL3* (see Figs. 16,
21, and 22 below). Other examples of complementarity
of the calculations with NL1 and NL3* can be found in
Sec. V.

It is clear that the NL3* parametrization is less tested than
the NL1 one in respect to the description of rotating nuclei.
However, it has been successfully applied to the description of
binding energies [46], ground-state properties of deformed
nuclei [53], single-particle spectra of spherical odd-mass
nuclei [25], fission barriers [37], giant resonances [46], and
breathing mode [54].

The NL1 and NL3* parametrizations are representatives
of the meson-exchange models with nonlinear meson-nucleon
couplings [55]. This type of model can be supplemented, for
example, by isoscalar-isovector coupling as is done in the
FSUGold model [56]. There are two other classes of covariant
density functional models such as density-dependent meson-
exchange [57] (represented, for example, by the DD-ME2
[58] parametrization) and density-dependent point-coupling
[59,60] (represented, for example, by the DD-PC1 [61]
and PC-PK1 [62] parametrizations) models. However, these
parametrizations have not been benchmarked with respect to
the description of rotational structures in the unpaired regime
and nothing is known about their accuracy of the description
of one-quasiparticle deformed states in odd-mass nuclei. Thus,
they are not employed in the current study.

Nuclear configurations of deformed odd nuclei [one-
quasiparticle (1-qp) configurations] are labeled by means of
the asymptotic quantum number �[Nnz�] (Nilsson quantum
number) of the dominant component of the wave function of
blocked single-particle orbital at low rotational frequency.
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III. PAIRING PROPERTIES

A. Formalism

The pair field �̂ in CRHB(+LN) theory is given by

�̂ ≡ �ab = 1

2

∑
cd

V
pp
abcdκcd, (8)

where the indices a, b, . . . denote quantum numbers which
specify the single-particle states with the space coordinates r ,
as well as the Dirac and isospin indices s and τ . It contains the
pairing tensor κ ,

κ = V ∗UT , (9)

and the matrix elements V
pp
abcd of the effective interaction in the

particle-particle (pp) channel, for which the Brink-Booker part
of phenomenological nonrelativistic Gogny-type finite-range
interaction

V pp(1, 2) = f
∑
i=1,2

e−[(r1−r2)/μi ]2

× (Wi + BiP
σ − HiP

τ − MiP
σP τ ) (10)

is used. The clear advantage of such a force is that it provides
an automatic cutoff of high-momentum components. The
motivation for such an approach to the description of pairing is
given in Ref. [13]. In Eq. (10), μi , Wi , Bi , Hi , and Mi (i = 1, 2)
are the parameters of the force and P σ and P τ are the exchange
operators for the spin and isospin variables, respectively. The
D1S parametrization of the Gogny force [63,64] is used here.
Note that a scaling factor f is introduced in Eq. (10), the role
of which is discussed in Sec. III B.

As a measure for the size of the pairing correlations in
Hartree(-Fock)-Bogoliubov calculations, we use the pairing
energy

Epairing = − 1
2 Tr(�κ). (11)

B. The selection of the scaling factor f

In the CRHB + LN framework, the original strength [scal-
ing factor f = 1.0 in Eq. (10)] of the Brink-Booker part of
the Gogny D1S force provided a good description of the
moments of inertia in the A ∼ 75 [14], A ∼ 160–170 [40], and
A ∼ 190 [13] mass regions. However, as discussed in detail in
Ref. [1], it produces pairing correlations in the A ∼ 250 mass
region that are too strong in the CRHB + LN calculations, and,
thus, it has to be attenuated (f < 1.0) in order to reproduce the
observed moments of inertia. The cranked HFB calculations in
the Gogny DFT also show the same problem (see discussion
in Sec. III A of Ref. [1]). The need for attenuation of the
strength of the Brink-Booker part within the framework of
the CRHB + LN theory is not surprising since its pairing
properties were adjusted by fitting only the odd-even mass
differences of the Sn isotopes [63,64] which are far away from
actinides. In addition, this fit was done in the framework of
the HFB theory completely based on the Gogny force, while
only the Brink-Booker part of the Gogny force is used in the
pairing channel of the CRHB + LN theory.
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FIG. 1. (Color online) Scaling factors as a function of neutron
number for individual nuclei of different isotope chains. The dotted
line corresponds to the average scaling factor fav for a given
parametrization of the CDFT. The results of the calculations with
the NL1 and NL3* parametrizations are presented.

In Ref. [1], the scaling factor f of the Brink-Booker part
of finite-range Gogny D1S force [see Eq. (10)] has been
chosen to reproduce the experimental kinematic moment of
inertia of the ground-state rotational band in 254No at rotational
frequency �x = 0.15 MeV. For example, the value f = 0.893
has been obtained for the CRHB + LN calculations with the
NL1 parametrization (see Table I in Ref. [1]). It provided
good description of the moments of inertia of rotational bands
in 252,254No [1], 250Fm [65], 253No [66], and 255Lr [67].

However, considering the more systematic character of the
current investigation, the scaling factor f has been defined
by the fit to the moments of inertia extracted from the Iπ =
2+ states of ground-state rotational bands in all even-even
actinides for which such experimental data were available
by the end of June 2012. If not explicitly specified, the
experimental data have been taken from Refs. [68,69]; the
nuclei used in the fit are shown in Fig. 1. The advantage of
such an approach, in which the scaling factor f is defined at
very low frequency �x ∼ 0.02 MeV, as compared with the one
used in Ref. [1], is twofold. First, the definition of scaling factor
f in Ref. [1] at �x = 0.15 MeV is affected by the accuracy
of the description of the alignments of specific single-particle
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FIG. 2. (Color online) Calculated and experimental moments of inertia at low spin. Experimental moments of inertia are extracted from
the energies of the 2+ states. Calculated values are obtained in the CRHB + LN calculations with fav specific to a given parametrization at
the rotational frequency corresponding to experimental energy of the 2+ → 0+ transition. Experimental data are shown by filled black circles,
while calculated values are shown with red triangles (the NL1 parametrization) and green squares (the NL3* parametrization). Theoretical
results are shown at �x = 0.02 MeV in the cases when experimental data are not available.

orbitals (in particular, the ones emerging from proton i13/2 and
neutron j15/2 subshells). This factor affects the definition of
f at �x = 0.02 MeV to a much smaller extent. As a result,
the current calculations test the predictive power of the model
with respect to rotational response in a more straightforward
way. Second, such a definition of f allows us to verify whether
the fit of pairing strength to the moments of inertia leads to a
consistent description of three-point indicators �(3) (extracted
from experimental odd-even mass staggerings), which are
defined at no rotation.

Figure 1 shows individual scaling factors fi for the nuclei
used in the fit; these factors exactly reproduce the moments
of inertia extracted from the 2+ states of the ground-state
rotational bands. In addition, the average scaling factor

fav =
∑K

i=1 fi

K
, (12)

where K is the number of nuclei used in the fit, is shown
by dotted lines. The fav is equal to 0.9147 and 0.899 in the
NL1 and NL3* parametrizations, respectively. Similarly to
Ref. [1] these scaling factors only weakly depend on the CDFT
parametrization. For the NL1 parametrization, the obtained
value of fav = 0.9147 is reasonably close to f = 0.893
obtained for 254No in Ref. [1]. These average scaling factors
fav will be used in systematic calculations of rotational bands
in the actinides and superheavy elements.

C. Rotational and deformation properties at low spin

The kinematic moments of inertia at low spin obtained with
average scaling factors fav are shown in Fig. 2. One can see that
the moments of inertia are described with an accuracy better
than 10%. However, the use of average scaling factors leaves
some unresolved trends as a function of particle number in both
parametrizations. Figures 1 and 2 show that the pairing has to
be slightly weaker (stronger) in the nuclei with high Z and high
N (low Z and low N ) relative to the calculations performed
with fav. Similar deviations from experiment exists at low spin
also in the CRHB + LN calculations in the rare-earth region
(see Fig. 1 in Ref. [40]).

Direct experimental information on the deformations of
nuclei from Coulomb excitation and lifetime measurements
is quite limited [70]. An alternative method is to derive a
quadrupole moment from the 2+ → 0+ transition energy by
employing the relation given by Grodzins [71] or by later
refinements [72]. The prescription of Ref. [72] has an accuracy
of about 10%. From the calculated and experimental charge
quadrupole moments Q, the deformation parameters β2 are
derived by the relation

Q =
√

16π

5

3

4π
ZR2

0β2, where R0 = 1.2A1/3. (13)

The simple linear expression is used to maintain consistency
with earlier papers [70]. It is sufficient for comparison between
calculations and experiment because the same relation is used.
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FIG. 3. (Color online) The calculated (lines) and experimental (circles) quadrupole deformation parameters β2. The experimental values
of β2 obtained in the direct measurements [70] are shown by solid circles, while those deduced from the 2+ → 0+ transition energies, with the
prescription of Ref. [72], are given by open circles. The results of the calculations with the NL1 and NL3* parametrizations are shown by red
dashed and green solid lines, respectively.

Including higher powers of β2, e.g., as in Ref. [73], yields
values of β2 that are ≈10% lower.

Experimental quadrupole deformations of the nuclei under
study are rather well reproduced in the CRHB + LN calcula-
tions (Fig. 3). Thus, they do not represent a major source of
the deviations between theory and experiment for kinematic
moments of inertia. Considering typical uncertainties of the
extraction of quadrupole deformation either in direct [70] or
indirect [72] methods, it is difficult to give a preference to
either NL1 or NL3* parametrization based on this observable.

D. Three-point indicators �(3)

The strength of pairing correlations can also be accessed
via the three-point indicator [74]

�(3)
ν (N ) = πN

2
[B(N − 1) + B(N + 1) − 2B(N )] , (14)

which is frequently used to quantify the odd-even staggering
(OES) of binding energies. Here πN = (−1)N is the number
parity and B(N ) is the (negative) binding energy of a system
with N particles. In Eq. (14), the number of protons Z is fixed,
and N denotes the number of neutrons, i.e., this indicator gives
the neutron OES. The factor depending on the number parity
πN is chosen so the OES centered on even and odd neutron
number N will both be positive. An analogous proton OES
indicator �(3)(Z) is obtained by fixing the neutron number N
and replacing N by Z in Eq. (14). The impact of time-odd
mean fields on this quantity has been discussed in detail in
Ref. [26].

In order to extract the ground state in the odd-mass nucleus,
the binding energies are calculated for a number of the 1-qp
configurations based on the orbitals active in the vicinity of
the Fermi level and then the lowest in energy state is assigned
to the ground state. Such calculations are very complicated
and time-consuming. As a result, they were done only in a
few cases (see Ref. [41] and references therein) on the H(F)B
level of the DFT framework. To our knowledge, the detailed
analysis of the �(3) indicators has not been performed so far in
the RHB framework because of the complexity of the definition
of the ground states in odd-mass nuclei. Thus, this manuscript
represents a first attempt of the systematic analysis of pairing
correlations via fully self-consistent calculations of the �(3)

indicators in the RHB framework.
The �(3) indicators are analyzed in the CRHB and

CRHB + LN frameworks. There are several reasons for a
such comparative study. First, the HFB [RHB] calculations
without approximate particle number projection by means
of the LN method are still used in the study of rotational
bands [75,76], one-quasiparticle states [41], fission barriers
[33,76], and fission half-lives [77] of actinides and superheavy
nuclei in the methods which employ the Brink-Booker part of
finite-range Gogny force in the pairing channel. Second, the
calculations with the LN method are more time-consuming and
frequently less numerically stable than the ones without it. As
a consequence, it is important to understand the similarities
and differences between the CRHB and CRHB + LN results
related to pairing.

The CRHB calculations were performed with original
strength of the Brink-Booker part of the Gogny D1S force
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(scaling factor f = 1.0), which, according to Ref. [1], provides
good description of the moments of inertia in 254No over
experimentally measured spin range. These calculations also
reasonably well describe the moments of inertia at low
spin (Fig. 4). Systematic nonrelativistic investigations within
cranked HFB approach based on a Gogny D1S force also
give a reasonable description of the moments of inertia in
actinides [75,76,78]. For example, the results obtained in
Ref. [78] are close to the CRHB(NL3*) ones. Considering
the similarities of these two approaches (CRHB and Gogny
HFB) [40], this is not surprising.

Figures 5–8 show the �(3) indicators obtained in the
CRHB calculations using the results of the calculations of
odd-mass nuclei of Ref. [41]. In average, they are close
to experimental data. For the proton subsystem, the rms
deviations from experimental �(3)

ν indicators are 0.22 and
0.15 MeV in the CRHB calculations with the NL1 and NL3*
parametrizations, respectively. For the neutron subsystem,
these deviations are 0.10 and 0.125 MeV, respectively. This
compares favorably with global fits of pairings to the �(3)

indicators in the Skyrme DFT calculations of Refs. [38,39] in
which an rms accuracy of about 0.25 MeV has been obtained
for �(3).

The inclusion of the LN method into the calculations
leads to a decrease of the scaling factor by approximately
10% [to fav = 0.9147 and fav = 0.899 in the NL1 and
NL3* parametrizations, respectively (see Sec. III B)]. The
experimental moments of inertia at low spin are described
rather well with these scaling factors; see the discussion in
Sec. III C. Figures 5 and 6 show the �(3) indicators calculated

in the CRHB + LN approach. However, the convergence
problems in the calculations of one-quasiparticle states in
odd-mass nuclei, emerging from the interaction of the blocked
orbital with others, appear more frequently when approximate
particle number projection by means of the Lipkin-Nogami
method is employed. This is most likely due to additional
nonlinearities of the LN method. Note that such convergence
problems are typical for the methods employing iterative
diagonalization schemes for the solution of the mean-field
equations and appear both in the CRHB and CRHB + LN
calculations. As a consequence, it was not possible to obtain
the �(3) indicators in the CRHB + LN calculations in a
significant number of the cases since no reliable definition
of the ground state in some odd-mass nucleus is possible.
This is despite the fact that the CRHB + LN calculations of
low-energy spectra in odd-mass nuclei were restricted to the
three lowest-energy one-quasiparticle configurations obtained
in the CRHB calculations of Ref. [41]. Such a simplified
procedure (as compared with the one used in the CRHB
calculations of Ref. [41]) can be used since the quasiparticle
spectra calculated within CRHB [with original (f = 1.0)
strength of the Brink-Booker part of the Gogny D1S force] and
CRHB + LN (with attenuated strength of the Brink-Booker
part) are very similar; the difference in the energies of three
lowest-energy one-quasiparticle configurations is typically
less than 100 keV and the configuration ordering is the same
(see, for example, Fig. 23 in Ref. [1]). However, the lack of
convergence in either of these three configurations disqualifies
an odd-mass nucleus from consideration for the calculations
of the �(3) indicator.
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FIG. 5. (Color online) Experimental and calculated neutron three-
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results of the CRHB and CRHB + LN calculations with the NL1
parametrization are shown.

Because of these convergence problems and the time-
consuming nature of the CRHB + LN calculations for one-
quasiparticle configurations, the systematic analysis of the �(3)

indicators shown in Figs. 5 and 6 has been performed only
for the NL1 parametrization. The CRHB + LN calculations
rather well describe these observables; the rms deviations from
experiment are 0.11 and 0.084 MeV for proton and neutron
subsystems, respectively. For the same (as in CRHB + LN
calculations) set of nuclei, these deviations are 0.18 and
0.077 MeV in the CRHB calculations. As a result, for
the neutron subsystem the results of both calculations are
similar, while proton �(3) indicators are better described in the
CRHB + LN calculations. The fit of the strength of the pairing
force to experimental moments of inertia (see Sec. III C) and
the fact that the LN method leads to a better (on average)
description of the �(3) indicators [38] may be responsible for
observed differences in the CRHB + LN and CRHB results.
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CRHB framework.

The comparison of calculated moments of inertia, three-
point indicators �(3), and individual scaling factors fi allows
us to make a number of important conclusions. First, there is a
strong correlation between the definitions of pairing strengths
by means of the moments of inertia and three-point indicators.
For example, the calculations for both of these physical
observables show that pairing has to be slightly stronger at low
values of neutron number N . The definitions of pairing strength
via these two observables are complimentary. This is because
(i) it is difficult to disentangle proton and neutron contributions
to pairing when considering the moments of inertia and
(ii) the �(3) indicators are affected by particle-vibration
coupling and depend on correct reproduction of the ground
states in odd-mass nuclei (see Sec. III E for details).

Second, approximate particle number projection by means
of the LN method is important for a better description of
particle-number dependencies of the moments of inertia.
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FIG. 8. (Color online) The same as in Fig. 6 but for the NL3*
parametrization. Theoretical values have been obtained within the
CRHB framework.
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Although the average description of the moments of inertia
in the CRHB calculations seen in Fig. 4 can be improved by
an increase of the strength of pairing by few percentages, this
increase will not resolve wrong particle-number dependencies
for calculated J (1) and will not lead to the same level of
accuracy of the description of J (1) as seen in the CRHB + LN
calculations (Fig. 2).

Third, obtained results clearly show that the strength of
pairing in the CRHB calculations has to be by 10–15% larger
than the one in the CRHB + LN calculations in order to
reproduce the experimental observables sensitive to pairing
with comparable level of accuracy. This clarifies the problem
with different pairing strengths employed previously in the
CRHB and CRHB + LN approaches which was discussed in
the introduction. Considering the weak dependence of the
results of the CDFT parametrization, the results presented in
the current manuscript and the ones obtained in Refs. [14,40]
suggest that the scaling factors f of the Brink-Booker part
of the Gogny D1S force ∼0.9 and ∼1.0 (∼1.0 and ∼1.1)
have to be used in the actinides and rare-earth/lighter nuclei in
the CRHB + LN (CRHB) calculations, respectively. Although
this weak dependence on the CDFT parametrization has been
verified here only for the NL1 and NL3* parametrizations,
we believe that it will hold also for other modern CDFT
parametrizations. The pairing properties depend on single-
particle level densities which in turn are defined by the
Lorentz effective mass m ∗ (kF )/m of nucleons at the Fermi
surface. However, these effective masses are very similar for
all successful CDFT parametrizations [41,45,46,56,58,61,62].

E. The sources of the deviations between theory and experiment
for the �(3) indicators

The accuracy of the description of the �(3) indicators de-
pend on a number of factors, some of which were investigated
in Refs. [38,39,74]. Here, we will briefly discuss two factors
which have been ignored (and even not mentioned) in the
absolute majority of the studies of pairing based on odd-even
staggerings of binding energies. These are the correctness of
the reproduction of the ground states in odd-mass nuclei and
the impact of particle-vibration coupling (PVC). They clearly
affect the �(3) indicators and limit the accuracy with which the
experimental data can be described in model calculations.

The structure of the ground state in odd-mass nucleus is not
always correctly reproduced in model calculations and this
can have an impact on the calculated �(3) value. Indeed, the
calculations within the RHB theory with the NL1 and NL3*
parametrizations [41], the Hartree-Fock + BCS approach with
different parametrizations of the Skyrme forces [79] as well
as the FRDM model employing phenomenological folded-
Yukawa potential [79] show that only approximately 40% of
the ground states in odd-mass deformed nuclei are correctly
reproduced.

However, different single-particle states have different
polarization effects for quadrupole and hexadecapole moments
(this is clearly seen in the statistical analysis presented in Fig. 4
of Ref. [41]) and for time-odd mean fields (see Table IV in
Ref. [1]). These polarization effects will impact the binding

energies of odd-mass nuclei. If the structure of calculated
ground state differs from experimental one, the difference
in polarization effects of these two states contributes into
the discrepancy between calculated and experimental �(3)

values. This effect is expected to be minimal (maximal)
when these two states have similar (significantly different)
deformation-driving properties. The analysis of a number of
the cases suggests that the wrong ground state in an odd-mass
nucleus can sometimes modify the �(3) indicator by as much
as 150 keV.

Additional binding due to time-odd mean fields in odd-mass
nuclei is rather small in actinides and shows weak dependence
on the blocked orbital (see Ref. [26] and Table IV in Ref. [1]).
Thus, even if the ground state in an odd-mass nucleus is wrong
in model calculations, the difference in polarization effects
due to time-odd mean fields of the wrong and correct states
will only marginally (by less than 20–30 keV) affect the �(3)

indicators.
It is well known from the studies of spherical odd-mass

nuclei that particle-vibration coupling affects the binding ener-
gies (see Refs. [25,80]). So far, no similar studies are available
in deformed nuclei in the PVC models based on relativistic or
nonrelativistic DFT because of the complexity of the problem.
However, the calculations within the quasiparticle-phonon
model based on phenomenological Woods-Saxon potential
indicate that the lowest states of odd-mass actinides have
mainly quasiparticle nature [81,82] and that the corrections to
their energies due to PVC are typically less than 150 keV [83].
These corrections will definitely have an impact on the �(3)

indicators.
These two effects can be a source of the deviations between

theory and experiment seen in Figs. 5–8. However, the fact
that, on average, the moments of inertia and the �(3) indicators
are reasonably well described (especially in the CRHB + LN
calculations) with the same strength of pairing suggests that,
apart from some combinations of proton and neutron numbers,
these two effects do not contribute significantly. Note that the
moments of inertia of even-even nuclei are significantly less
affected by these two effects. Therefore, in some sense they
are a more robust measure of pairing correlations.

IV. ROTATIONAL PROPERTIES OF EVEN-EVEN NUCLEI

Figures 9 and 10 show the results of systematic calculations
for the kinematic moments of inertia of the ground-state
rotational bands in even-even actinides. Either a sharp or
more gradual increase of the kinematic moments of inertia is
observed at �x ≈ 0.2–0.30 MeV. Figure 11 shows the proton
and neutron contributions to the kinematic moments of inertia.
These increases in J (1) are due to the alignments of the neutron
j15/2 and proton i13/2 orbitals, which in many cases take place
at similar rotational frequencies (see Fig. 11). It is clear that the
situation in actinides is more complicated than in the rare-earth
region in which the h11/2 protons align substantially later than
the i13/2 neutrons. This simultaneous alignment of proton and
neutron orbitals is also present in a number of theoretical
models discussed below.
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FIG. 10. (Color online) The same as in Fig. 9 but for the calculations with the NL1 parametrization.
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FIG. 12. (Color online) The experimental and calculated kine-
matic moments of inertia J (1) of ground-state rotational bands in
242,244Pu and 248Cm as a function of rotational frequency �x . The
calculations are performed with the NL1 parametrization.

One can see that the CRHB + LN calculations rather well
describe the experimental kinematic moments of inertia and
their evolution with rotational frequency. The results obtained
with the NL1 and NL3* parametrizations are rather similar
in the majority of the cases (compare Figs. 9 and 10).
Only in the 238,240Pu, 236,238U, and 230,232Th nuclei. The
CRHB + LN(NL1) calculations predict a sharp upbending in
J (1) at �x ∼ 0.2 MeV which is not present in the experimental
data. The same problem exists also in the CRHB + LN(NL3*)
calculations, but in addition to the above-mentioned set of
nuclei an earlier alignment (as compared with experiment)
also is seen in the calculations for the 234U and 234Th nuclei.
This indicates that the calculated details of the band crossings
depend more on the CDFT parametrization than the kinematic
moments of inertia before band crossings.

A number of theoretical calculations based on the cranking
model discussed below also do not reproduce the rotational
properties of these nuclei at the highest spins. This suggests
that some effect not included in the model framework plays
a role at the spins at which sharp band crossing take place in
model calculations. As discussed below, the stabilization of
octupole deformation at high spin is most likely a candidate
for this effect.

So far, the observation of a sharp upbending has been
reported only in 242,244Pu.2 Figures 12 and 13 compare
experimental data with model calculations. The backbending
is complete in 244Pu and the CRHB + LN(NL3*) calculations
rather well describe it [Fig. 13(b)]; the sharp alignment of the
proton i13/2 orbitals is a source of this backbending and the
neutron j15/2 alignment proceeds gradually over an extended
frequency range. On the contrary, sharp alignments of the
proton and neutron pairs take place at the same frequency

2Similar sharp upbendings have also been observed in ground-state
rotational bands of 246,250Cm and 250Cf [84]. Their properties are well
described in the CRHB + LN calculations with the NL1 and NL3*
parametrizations.
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FIG. 13. (Color online) The same as in Fig. 12 but for the results
obtained with the NL3* parametrization.

in the CRHB + LN(NL1) calculations [Fig. 12(b)] and they
somewhat overestimate the kinematic moment of inertia above
the band crossing. The same situation with the alignments
of the proton i13/2 and neutron j15/2 pairs exists also in the
CRHB + LN(NL1) and CRHB + LN(NL3*) calculations for
242Pu. They accurately reproduce the evolution of kinematic
moments of inertia with frequency and the frequency of the
paired band crossing [Figs. 12(a) and 13(a)]. However, since
upbending is not complete in experiment it is impossible to
judge whether the simultaneous sharp alignments of proton and
neutron pairs really take place in nature. Smooth upbending
takes place in 248Cm [Fig. 12(c)]. The CRHB + LN(NL1)
[Fig. 12(c)] and CRHB + LN(NL3*) [Fig. 13(c)] calculations
suggests that this upbending is predominantly due to the
proton i13/2 alignment. However, the interaction between the
g and S bands in the band crossing region is too weak in
the proton subsystem, which leads to sharp upbending in model
calculations.

The calculated kinematic moments of inertia at the frequen-
cies below and above band crossing only weakly depend on
the CDFT parametrization (compare Figs. 9 and 10). On the
contrary, the rate of the increase of the kinematic moment of
inertia in the band crossing region of respective subsystem
(proton or neutron) depends more sensitively on employed
parametrization. Proton and neutron contributions to the kine-
matic moments of inertia obtained in the CRHB + LN(NL3*)
calculations are shown in Fig. 11. In the CRHB + LN(NL1)
calculations, the alignments of the proton and neutron pairs are
similar to the ones of the CRHB + LN(NL3*) calculations in
the majority of the cases; this is a reason why no figure similar
to Fig. 11 is presented for the CRHB + LN(NL1) results.
The largest dependence on the parametrization is seen in the
calculated alignments of the neutron j15/2 pairs for which the
increase of the neutron J (1) values in the band crossing region
is either sharper or more gradual in the CRHB + LN(NL1)
calculations as compared with the CRHB + LN(NL3*) ones
in 236,238Th, 238,240,242U, 236,240,242,244Pu, 240,244Cm, 246,254Cf,
248,256Fm, and 258No. On the contrary, such differences are
seen in proton subsystem only in 240,244Cm, 246Cf, and
246,248Fm. These differences between the CRHB + LN(NL3*)
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and CRHB + LN(NL1) results are in part due to the differences
in the single-particle structure obtained in the NL1 and NL3*
parametrizations [41].

Rotational properties of actinides have been in the fo-
cus of extensive studies within the cranked shell model
(CSM) [7,8,85–87], the rotating shell model [89], and the
cranked Hartree-Fock-Bogolibov (CHFB) [6,88] approach
based on the phenomenological potentials (Woods-Saxon
[6,87] and Nilsson [7,8,86,89]) or quadrupole-quadrupole
force Hamiltonian [85,88]). Similar to our calculations, the
simultaneous or near-simultaneous alignments of neutron
j15/2 and proton i13/2 orbitals define rotational and band
crossing properties. However, these calculations suffer from
a number of simplifications such as fixed deformations
[8,86–89], reduced or/and fixed pairing gaps [87,89], the
absence of particle number projection [85,87,88], the restric-
tion to axial symmetry [6–8,86] or extensive local fit of
model parameters to experimental data [8,89]. The cranked
HFB calculations based on the Gogny D1S force [75,76]
have also been performed without particle number projection.
Such simplifications are avoided in the current CRHB + LN
calculations.

Let illustrate a typical situation by an example of extensive
cranking calculations employing the universal parametrization
of the Woods-Saxon (WS) potential [87]. In these calculations,
for each nucleus the deformation was fixed at the value
calculated for the ground state. It was found that the pairing
gaps equal to 80% of the value defined from five-point
odd-even mass difference have to be used to better explain
observed properties. However, required quenching of pairing
gap has not been explained. The alignments of neutron j15/2

and proton i13/2 orbitals define rotational and band crossing
properties. However, there is no consistent explanation for
the absence of experimental neutron j15/2 band crossings in
a number of nuclei. It was also concluded that based on
available data it is difficult to determine how accurately the WS
calculations predict the crossing frequencies and interaction
strengths.

While the CRHB + LN calculations well describe the sharp
i13/2 proton alignment observed in the rotational sequences
of the 242−244Pu nuclei (see Sec. V B for 243Pu results),
they fail to reproduce the absence of such alignments in
238,240Pu, 234,236,238U, and 230,232,234Th (see Figs. 10 and 9).
Such problem exists in all cranking calculations; see ref-
erences cited above in this section for details. Although
the cranking calculations may not be completely adequate
for the band crossing region [90], a reasonable descrip-
tion of band crossings in 242−244Pu suggests that this is
not main source of the deviations between theory and
experiment.

It is quite likely that this problem is related to the
stabilization of octupole deformation at high spin which is
not taken into account in model calculations. Stable octupole
deformation has been shown to delay alignment processes [91]
and this may explain the differences between theory and
experiment. Indeed, the analysis of the spectra of the ground-
state positive-parity and lowest-negative-parity bands of 232Th,
238U, and 240Pu indicates a second-order phase transition from
reflection-symmetric to reflection-asymmetric shapes in these

bands (Ref. [92]). This phase transition takes place at spins
I ≈ 12–15h̄. This analysis is based on the mathematical tech-
niques of supersymmetric quantum mechanics, a two-center
octupole wave-function ansatz, and the Landau theory of phase
transitions.

It was also suggested that strong octupole correlations in
rotational bands of some actinides may be interpreted as the
rotation-induced condensation of octupole phonons having
their angular momentum aligned with the rotational axis [93].
When the rotation of the condensate and the quadrupole shape
of the nucleus synchronize, the collective motion becomes the
familiar rotation of a static octupole shape. The experimental
data on 238,240Pu [94] agrees with such an interpretation and
the experimental data in 238U show the indications of this
process [95]. Indeed, at the highest spins the yrast and the
octupole bands in 238,240Pu appear to merge into a single
sequence of levels with alternating spin and parity, and large
intrinsic dipole moments were inferred from the measured
B(E1)/B(E2) ratios [94]. In addition, there are indications of
the formation of parity doublets at high spin in 239Pu [96]. All
that suggests the stabilization of octupole deformation at the
highest spins in these nuclei. Furthermore, the systematics
of the lowered energies of the 1− states and the lowered
hindrance factors in α decay populating these 1− states suggest
an increased octupole correlations for Pu and U nuclei with
144 and 146 neutrons [97].

New experimental data on 230Th shows the signatures of
the stabilization of octupole deformation [98]. On the other
hand, the extension of ground state and especially octupole
vibrational rotational bands up to higher spin is needed in
order to see whether this is also a case in 234,236U and 232,234Th
nuclei.

In the context of the study of rotational properties of
actinides, it is interesting to mention that the same j15/2

neutron and i13/2 orbitals lie at the Fermi surface in the su-
perdeformed nuclei of the A ∼ 190 mass region. Remarkably,
most superdeformed nuclei of this region exhibit a surprisingly
smooth and gradual increase of their moments of inertia with
frequency emerging from the alignment of these orbitals and
this process is very well described in the CRHB + LN(NL1)
calculations [13].

V. ROTATIONAL PROPERTIES OF ODD-MASS NUCLEI

Rotational properties of one-quasiparticle configurations
provide important information on the impact of odd par-
ticle/hole on alignment and pairing properties. They can
also provide an additional constraint on the structure of
single-particle states, which is especially important for the
light superheavy nuclei at the edge of the region where
spectroscopic studies are still feasible (the nuclei with masses
A ∼ 255 and proton number Z � 102). This is because
alternative methods of configuration assignment either pro-
vide the results with a low level of confidence or are not
possible [3]. Unfortunately, our knowledge of the accuracy
of the description of rotational properties of one-quasiparticle
configurations in the DFT frameworks is extremely limited
since no systematic investigation of such properties has been
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performed so far. Across the nuclear chart they were studied
only in 251Md [3], 241Am [3], 253No [66], and 255Lr [67]
within the CRHB + LN approach, in 253No [20,21,66], 255No,
251Md, and 255Lr [21], as well as in superdeformed rotational
bands of 193Pb and 193Hg [100] in the cranked HFB approach
based on Skyrme forces. To our knowledge, such studies
have not been performed in the cranked HFB approach
based on the Gogny forces. It is also surprising that no
systematic investigation of rotational structures in odd-mass
actinides is available in the MM approach; the occasional
cranked shell model calculations characterized by a number
of parameters adjusted to experimental data should not be
considered as a replacement for full-fledged MM calculations.
In order to fill this gap in our knowledge, a systematic
investigation of rotational properties of odd-mass actinides
is performed. Even with present computational facilities, it is
still a nontrivial problem because of three reasons discussed
below.

First, a proper description of odd nuclei implies the loss
of time-reversal symmetry of the mean field, which is broken
both by the unpaired nucleon [26] and by the rotation [28]. As
a consequence, time-odd mean fields and nucleonic currents,
which cause the nuclear magnetism [43] have to be taken into
account.

Second, the effects of blocking due to odd particles have
to be included in a fully self-consistent way. This is done
in the CRHB + LN code according to Refs. [101–103]. The
blocked orbital can be specified by different fingerprints such
as the dominant main oscillator quantum number N of the wave
function, the dominant � quantum number (� is the projection
of the angular momentum on the symmetry axis) of the wave
function, the particle or hole nature of the blocked orbital, the
position of the state within specific parity/signature/dominant
N /dominant � block, or their combination. For a given
configuration, possible combinations of the blocked orbital
fingerprints were defined from the analysis of calculated
quasiparticle spectra in neighboring even-even nuclei and
the occupation probabilities of the single-particle orbitals of
interest in these nuclei.

Third, variational solutions with blocked orbital(s) are
numerically less stable than the ones for the ground-state bands
in even-even nuclei. This is because, at each iteration of the
variational procedure, the blocked orbital has to be properly
identified. This identification is complicated by the fact that
� is not a conserved quantum number in the CRHB + LN
code. As a consequence, closely lying orbitals within a given
parity/signature block can interact and exchange a character.
The convergence problems, emerging from the interaction of
the blocked orbital with others, appear quite frequently. The
interaction strength of these orbitals is one ingredient affecting
the convergence. Another is the relative energies of interacting
orbitals. Different CDFT parametrizations are characterized by
different single-particle specta [1] (see also Nilsson diagrams
presented in Fig. 15). As a result, the convergence problems for
specific blocked solution can show up in one parametrization
but will not affect the solution in another parametrization.
The structure of wave function of blocked orbital and the
energy of this orbital with respect to other orbitals change
as a function of rotational frequency. While converging in

N

Z

138 140 142 144 146 148 150 152 154 156 158 160

90(Th)

94(Pu)

92(U)

96(Cm)

98(Cf)

100(Fm)

102(No)

104(Rf)

106(Sg)

FIG. 14. (Color online) The chart of nuclei investigated in the
current work. Solid blue and red shaded circles indicate studied odd-
neutron and odd-proton nuclei, respectively. The nucleus has Z + 1
protons and N neutrons if its circle is located between the (Z, N ) and
(Z + 2, N ) boxes. Alternatively, it has Z protons and N + 1 neutrons
if its circle is located between the (Z,N ) and (Z, N + 2) boxes.

some frequency range the solution for a given blocked orbital
may face the convergence problems outside this range. The
convergence also depends on the initial conditions; for some
configurations the solution at given frequency converges if
we start from self-consistent solution of the neighboring
frequency point but does not converge if we start from the
fields generated by the Woods-Saxon potential and diagonal
� matrix. This feature has been used in the calculations.
The employed combination of blocked orbital fingerprints
also affects the numerical convergence; the solution can
converge for one combination but face the convergence
problems for another one. Thus, for a number of configurations
several combinations of blocked orbital fingerprints have been
used.

The results of systematic calculations are presented in
Figs. 16 and 18–27. All odd-mass nuclei with long rota-
tional sequences are considered in this investigation; the
only exception is the 255Lr nucleus since the configuration
assignment for observed rotational structure is still under
debate [67]. These nuclei are shown by circles in Fig. 14. Other
odd-mass nuclei, the rotational sequences of which contain
only few low-spin states, are ignored in this investigation
since we are interested in the evolution of rotational properties
with spin.

Figure 15 shows the Nilsson diagrams obtained for 244Cm
in the calculations with the NL1 and NL3* parametrizations.
This nucleus is located in the center of the region of odd-mass
nuclei under study (Fig. 14). The single-particle orbitals which
can be observed in odd-mass nuclei of the region under study
are labeled by the Nilsson labels. Moreover, long rotational
sequences built on some of these orbitals have been exper-
imentally observed (see discussion in Secs. V A and V B).
Although the general structure of the Nilsson diagrams is
the same in the NL1 and NL3* parametrizations, the relative
energies of different single-particle orbitals and their energies
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FIG. 15. (Color online) Proton and neutron single-particle energies in 244Cm as a function of quadrupole deformation β2 obtained in the
calculations with the NL1 and NL3* parametrizations. Solid black and red dashed lines are used for positive- and negative-parity states,
respectively. The energy of the Fermi level is shown by the blue dotted line. Deformed single-particle orbitals of interest are labeled by the
Nilsson quantum numbers �[Nnz�].

with respect to the Fermi level at the deformation β2 ∼ 0.3
typical for nuclei under study (see Fig. 3) depend strongly on
parametrization. For example, the π3/2[521] and π7/2[633]
orbitals are nearly degenerate in the NL3* parametrization
[Fig. 15(d)]. However, they are separated by 0.5 MeV gap
in the NL1 parametrization [Fig. 15(c)]. Such differences
in the energies of deformed states can be traced back to
the differences in the single-particle energies at the spherical
shape [1].

We compare experimental and calculated kinematic mo-
ments of inertia J (1) of one-quasiparticle configurations in
odd-mass nuclei and ground-state rotational band in the
reference even-even mass nucleus. Figure 16 is an example
of such a comparison and the figures for other nuclei follow
its pattern. Two parametrizations, namely NL1 and NL3*,
are used in the calculations in order to see how the results

depend on the parametrization. We drop the panel with
specific parametrization when it was not possible to obtain
the converged solution for it. The calculations were attempted
for all experimentally observed configurations of odd-mass
nuclei indicated in Fig. 14; the absence of calculated curve for
specific configuration indicates that no convergence has been
obtained for it.

A. Odd-proton nuclei

Long rotational bands based on different single-particle
orbitals have been observed in odd-proton 241Am, 235,237Np,
and 251Md nuclei. We discuss them below separately, nucleus
by nucleus.
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FIG. 16. (Color online) Calculated and experimental kinematic moments of inertia J (1) of the indicated one-quasiproton configurations in
the 241Am nucleus and ground-state rotational band in the reference even-even 240Pu nucleus. Experimental data are shown in the middle panel,
while the results of the CRHB + LN calculations with the NL1 and NL3* parametrizations are shown in the left and right panels, respectively.
The same symbols/lines are used for the same theoretical and experimental configurations. The symbols are used only for the configurations
in odd-mass nucleus; the ground-state rotational band in the reference even-even nucleus is shown by the solid black line. The label with the
structure “Odd nucleus = reference even+even nucleus + proton(π )/neutron(ν)” is used in order to indicate the reference even-even nucleus
and the type of the particle (proton or neutron) active in odd-mass nucleus. The experimental data are from Refs. [94,99].

1. The 241Am nucleus

The rotational bands based on the Nilsson orbitals
π5/2[642] (from the i13/2 spherical subshell), π5/2[523]
(from the h9/2 subshell), and π3/2[521] (from the f7/2

subshell) have been observed in this nucleus. As can be seen
in Fig. 16(b), at low frequencies they have distinctly different
kinematic moments of inertia J (1). Theoretical calculations
[Figs. 16(a) and 16(c)] describe well the absolute values of
the kinematic moments of inertia of different configurations
and their evolution with rotational frequency. In particular, the
splitting of two signatures of the π5/2[642] configuration is
well described in the model calculations. The results of the
CRHB + LN(NL1) and CRHB + LN(NL3*) calculations for
this configuration are similar.

On the contrary, the π5/2[523] and π3/2[521] bands
show (with the exception of very low frequencies in the
case of the π3/2[521] band) no signature splitting. The
CRHB + LN(NL1) calculations for the two signatures of
the π5/2[523] configuration show explicitly this feature.
Unfortunately, it was not possible to get a convergence in
the case of the π3/2[521](r = +i) configuration. However,
the analysis of the quasiparticle routhian diagram confirms
that the π3/2[521](r = ±i) configurations have to be de-
generate in energy up to rotational frequency �x ∼ 0.16
MeV in agreement with experimental observations. At higher
frequencies, small signature separation is expected in the
calculations.

In addition to the above-mentioned features, the relative
properties of different bands both with respect to each other
and with respect to the ground-state band in the reference
nucleus 240Pu are well described in the model calculations. The

increase of the kinematic moment of inertia in the bands of
241Am as compared with the one of ground-state band in 240Pu
is caused by the blocking effect which results in a decreased
proton pairing (see Fig. 17).
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FIG. 17. (Color online) Calculated proton and neutron pairing en-
ergies in ground-state rotational band of 240Pu and one-quasiparticle
rotational bands of 241Am. Thick and thin lines are used for the
(r = −i) and (r = +i) branches of one-quasiparticle configurations,
respectively. Note that neutron pairing almost does not depend on the
signature of blocked proton orbital. As a result, only the (r = −i)
branches are shown in panel (a).

014320-18



PAIRING AND ROTATIONAL PROPERTIES OF . . . PHYSICAL REVIEW C 88, 014320 (2013)

0 0.1 0.2
60

80

100

120

M
om

en
ts

  o
f 

 in
er

ti
a 

 J
 (

1)
 [

M
eV

-1
]

0 0.1 0.2
Rotational  frequency Ω

X
 [MeV]

0 0.1 0.2 0.3

CRHB+LN (NL1) CRHB+LN (NL3*)EXPERIMENT

π 5/2[523]

π 5/2[523]

236
U

π 5/2 [642]

r = +i - solid symbols
r = -i  - open symbols

237
Np=

236
U+π

236
Uπ 5/2[523]

236
U

(a)

(b)

(c)

FIG. 18. (Color online) The same as in Fig. 16 but for 237Np. The experimental data are from Ref. [99].

2. The 237Np nucleus

Similarly to 241Am, the π5/2[642] and π5/2[523] rota-
tional bands have been observed in this nucleus. Unfortunately,
it was possible to obtain a convergent solution only for the
π5/2[523](r = −i) configuration (Fig. 18). This configura-
tion rather well describes both its experimental counterpart
and the relative properties of the π5/2[523](r = −i) band in
237Np and ground-state band in 236U. The CRHB + LN(NL1)
and CRHB + LN(NL3*) results are very similar for this
configuration. In the quasiparticle routhian diagram, the
π5/2[523](r = ±i) orbitals are degenerate in energy up to
rotational frequency �x ∼ 0.15 MeV with small signature
separation developing at higher frequencies. These features
agree with experimental observations.

3. The 251Md nucleus

The π1/2[521](r = −i) configuration has been assigned to
the single decoupled band observed recently in the odd-proton
nucleus 251Md [104]. In the CRHB + LN(NL1) calculations,
this configuration accurately describes both its experimental
counterpart and the relative properties of the π1/2[521](r =
−i) band in 251Md and the ground-state band in 250Fm
[Figs. 19(a) and 19(b)]. On the contrary, it somewhat under-
estimates experimental J (1) values and the difference between
the J (1) values of the π1/2[521](r = −i) band in 251Md
and the ground-state band in 250Fm [Figs. 19(b) and 19(c)]
in the CRHB + LN(NL3*) calculations.

The results of the CRHB + LN(NL1) calculations for
this configuration obtained using an average scaling factor
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FIG. 19. (Color online) The same as in Fig. 16 but for 251Md. Experimental data are taken from Refs. [65,104].
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fav = 0.9147 defined in the current manuscript (open
red circles) are compared with the ones (dashed green
line) obtained employing the scaling factor f = 0.893
of Ref. [1] in Fig. 19(a). One can see that the re-
sults of the calculations are very sensitive to the actual
value of f ; the modification of the scaling factor by
2% leads to visible changes in the calculated J (1) values
but does not change much the slope of calculated J (1)

curve.
Note that the CRHB + LN(NL1) calculations of Ref. [3] for

251Md have been performed with f = 0.893. These calcula-
tions showed that the π7/2[633], π3/2[521], π9/2[624], and
π9/2[505] configurations cannot be theoretical counterparts
of the observed decoupled band because they lead either to
signature degenerate bands or to the bands with small signature
splitting. As a consequence, both signatures are expected to be
observed in experiment.

4. The 235Np nucleus

Two rotational sequences, presumably the two signatures of
the ground-state band, have been observed in Ref. [105]. The
authors of this reference proposed the π5/2[624] configuration
for this band. Figure 20(b) shows the kinematic moments of
inertia of these two sequences by solid and open red circles
under spin/parity assignments of Ref. [105]; these curves are
labeled “Alt. 1.” The origin of the disturbances visible at low
frequency in the J (1) values of the r = −i sequence is not clear.
However, these two sequences are signature degenerate above
�x � 0.1 MeV. This is in clear contrast with the behavior
of the π5/2[624] bands in 237Np [Fig. 18(b)] and 241Am
[Fig. 16(b)], the two signatures of which show substantial
signature splitting. The signature splitting is usually a robust
fingerprint of the configuration. In addition, the removal of two
neutrons from 237Np should not change the signature splitting
in the proton π5/2[642] band since this process will not change
the deformation substantially. Because of these two reasons,

we believe that the π5/2[642] configuration assignment is not
well justified.

The π5/2[523] configuration has also been mentioned as
a possible (but less likely) candidate for observed band in
Ref. [105]. The π5/2[523] band is signature degenerate in
241Am [Fig. 16(b)], but it develops small signature splitting
at high spin in 237Np [Fig. 18(b)]. From our point of view,
the π5/2[523] configuration assignment for observed band in
235Np is more likely than the assignment of the π5/2[642]
configuration because of the reasons discussed below. How-
ever, such reassignment would require the modification of the
level scheme in 235Np which is not prohibited since there is
neither firm evidence for the lowest member of each rotational
sequence nor firm parity assignment [105]. Thus, we suggest
the following modifications. The (78)-keV transition linking
the 9/2+ and 5/2+ states in the sequence labeled as 1 in Fig. 5
of Ref. [105] as well as the 5/2+ state have to be dropped
from the level scheme and the spins of observed states have
to be lowered by 1h̄ (so the sequence 1 runs from Iπ = 7/2−
up to Iπ = 51/2−). The spins of the states in sequence 2 must
also be lowered by 1h̄, so this sequence runs from Iπ = 5/2−
up to Iπ = 49/2−. With these modifications, this band looks
very similar to the π5/2[523] band in 237Np shown in Fig. 1
of Ref. [99].

The kinematic moments of inertia of observed sequences
under these spin/parity changes are shown by open and closed
green squares in Fig. 20(b); these curves are labeled “Alt.2.”
One can see that this alternative is rather well described
by the π5/2[523](r = −i) configuration both in terms of
absolute J (1) values and their evolution with spins (Fig. 20).
In addition, the relative properties of the bands in 235Np
and 234U are rather well reproduced in model calculations.
Unfortunately, it was not possible to obtain an opposite
signature configuration in the model calculations. However,
the analysis of the routhian diagrams in 235Np and the results
of the calculations for the π5/2[523](r = ±i) configurations
in 241Am (Fig. 16) suggest that the latter configurations should
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FIG. 21. (Color online) The same as in Fig. 16 but for 247Cm.
Experimental data are taken from Ref. [87].

either be signature degenerate or have small signature splitting
in 235Np.

B. Odd-neutron nuclei

Long rotational bands based on different single-particle
orbitals have been observed in odd-neutron 237U, 239,243Pu,
247,249Cm, 249Cf, and 253No nuclei. Considering that the
experimental systematics for odd-neutron systems is larger
than that for odd-proton ones, the discussion of the former
systems is performed here on a “band-by-band” basis.

1. The ν9/2[734] rotational band

This band has been observed in 247Cm, 249Cf, and 253No.
Figures 21–23 show the comparison between theory and
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FIG. 22. (Color online) The same as in Fig. 16 but for 249Cf.
Experimental data are taken from Ref. [87].

experiment for it. In all three nuclei, the signature degeneracy
of observed band is well reproduced.

In 247Cm, the CRHB + LN(NL3*) calculations accurately
reproduce the relative properties of the ν9/2[734] band and
the reference band in 246Cm. The absolute J (1) values of
experimental band are well described up to �x ∼ 0.15 MeV
(Fig. 21). However, the calculations underestimate the increase
of J (1) seen at higher frequencies. This is due to the
fact that the increase of J (1) with rotational frequency is
underestimated in the reference 246Cm ground-state band.
The CRHB + LN(NL3*) calculations accurately reproduce the
absolute J (1) values of the ν9/2[734] band in 249Cf and their
evolution with frequency as well as its relative properties (at
low frequency) with respect to the reference band in 248Cf
(Fig. 22).

The CRHB + LN(NL1) calculations reproduce very well
the ν9/2[734] band in 253No and its relative properties with
respect to the ground-state band in 252No [Figs. 23(a) and
23(b)]. Similar accuracy of the reproduction of the ν9/2[734]
band in 253No is achieved in the CRHB + LN(NL3*) calcu-
lations at �x � 0.12 MeV [Figs. 23(b) and 23(c)]. However,
at lower frequencies these calculations do not reproduce the
increase of the J (1) moments with decreasing �x .

2. The ν1/2[631] rotational band

This band has been observed in 237U and 239Pu (Figs. 24
and 25). There is a large separation between the J (1) values
corresponding to the (r = ±i) branches of the ν1/2[631]
band at low frequency which gradually decreases and finally
vanishes at high frequency. This feature and the fact that the
(r = −i) branch has lower values of J (1) at low frequency
are rather well reproduced in the model calculations. In
experiment, the J (1) values in the odd-mass nucleus are
higher than the ones in the reference band of the even-even
nucleus. However, this difference is underestimated in the
model calculations (see Figs. 24 and 25).

3. The ν7/2[743] rotational band

This band has been observed in 237U (Fig. 24). It is signature
degenerate at low rotational frequencies. A small separation
between the J (1) values of the (r = ±i) branches is seen
at medium and high frequencies; at these frequencies, the
(r = +i) branch has larger J (1) values. These features are
well reproduced in the model calculations with both CDFT
parametrizations. The model calculations also reproduce the
absolute J (1) values and their evolution with frequency as well
as their relative properties with respect to the reference band in
236U. However, the increase of J (1) in the band crossing region
is sharp in model calculations but more gradual in experiment.
This is similar to the situation seen in the reference 236U
nucleus. As discussed in Sec. IV, this discrepancy between
theory and experiment in 236U may be due to the stabilization
of octupole deformation at high spin which leads to the delay of
the alignment of the proton πi13/2 and neutron νj15/2 orbitals.
If that is the case in nature, a similar situation can be expected
also in 237U.
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FIG. 23. (Color online) The same as in Fig. 16 but for 253No. Experimental data are taken from Refs. [66,72].

4. The ν5/2[622] rotational band

This band has been observed in 237U (Fig. 24). It is
signature degenerate and this feature is reproduced in the
CRHB + LN(NL1) calculations. Only the r = +i branch of
this band has been obtained in the CRHB + LN(NL3*) calcula-
tions. However, the π5/2[523](r = ±i) orbitals are signature
degenerate in the frequency range of interest in the quasiparti-
cle routhian diagram obtained with the NL3* parametrization.
The absolute values of J (1) and their evolution with frequency
are reproduced in model calculations. The NL1 parametriza-
tion somewhat better reproduces the properties of this band
with respect to the reference band in 236U than the NL3*
parametrization, which underestimates the increase of the J (1)

values due to blocking of the ν5/2[622](r = ±i) orbitals.

5. The ν7/2[624] rotational band

This band has been observed in 243Pu (Fig. 27) and it is
the only odd-mass nucleus band in the whole actinide region
in which a sharp upbend is observed. The model calculations
reproduce the properties of this band extremely well, including
the absolute J (1) values and their evolution with rotational
frequency, signature degeneracy of the (r = ±i) branches, the
relative properties of this band, and the reference band in 242Pu
and the properties in the band crossing region. In experiment,
the band crossing in the ν7/2[624] band takes place earlier
(by 0.01 MeV) than the one in the ground-state rotational
band of the reference 242Pu nucleus [Fig. 27(b)]. However, in
the CRHB + LN(NL1) calculations, both crossings take place
at the same frequency [Fig. 27(a)].
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FIG. 24. (Color online) The same as in Fig. 16 but for 237U.
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6. The ν1/2[620] rotational band

This band has been observed in 249Cm (Fig. 26). It
was possible to obtain only the (r = +i) branch of the
ν1/2[620] configuration and only in the CRHB + LN(NL3*)
calculations. The slope of experimental J (1) curve as a function
of frequency is reasonably well reproduced before the band
crossing. However, the relative properties of this band and
the ground-state band in the reference 248Cm nucleus are
not completely reproduced. Dependent on frequency the J (1)

values of the former band are somewhat larger (or similar)
than that (to that) of the latter band in experiment. However,
the opposite situation is seen in the calculations. The band
crossing region is reproduced in general in the calculations.
However, in experiment the band approaches the band crossing
point in a more gradual way than in the calculations.
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FIG. 26. (Color online) The same as in Fig. 16 but for 249Cm.
Experimental data are taken from Ref. [87].

C. Rotational properties as a tool of configuration assignment

Ongoing experimental investigations of odd-mass light su-
perheavy nuclei at the edge of the region where spectroscopic
studies are still feasible (the nuclei with masses A ∼ 255 and
proton number Z � 102) [3] require reliable theoretical tools
for the assignment of one-quasiparticle configurations. This
is due to inherent restrictions of the studies at the limits of
experimental capabilities. Rotational properties have been oc-
casionally used for that purpose. However, it becomes possible
to reliably estimate theoretical errors of the description of
rotational properties of such nuclei and the robustness of the
configuration assignments based on such properties only by the
completion of this systematic study of the odd-mass nuclei.

Indeed, rotational properties of one-quasiparticle configura-
tions yield important information on their underlying structure,
thus providing an extra tool for configuration assignment.
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The rotational properties are reflected through the following
fingerprints

(a) the presence or absence of signature splitting,

(b) the relative properties of different configurations with
respect to each other and/or with respect to the ground-
state band in the reference even-even nucleus,

(c) the absolute values of the kinematic moments of inertia
(especially at low rotational frequencies) and their evolu-
tion with rotational frequency.

These fingerprints provide useful tools for quasiparticle
configuration assignments. Our systematic investigation shows
that with few exceptions these features of rotational bands are
well described in model calculations. The presence or absence
of signature separation and its magnitude is the most reliable
fingerprint which is reproduced in model calculations with
good accuracy. The moments of inertia and their evolution
with frequency are generally well described in model calcu-
lations. As a consequence, the relative properties of different
configurations with respect to each other and/or with respect
to the ground-state band in the reference even-even nucleus
provide a reasonably reliable fingerprint of configuration.
This fingerprint is especially useful at low frequencies where
the largest difference between the configurations is observed.
The calculations fail to describe their relative properties with
respect to the reference band in the even-even nucleus only in
the cases of the ν1/2[631] and ν1/2[620] configurations.

However, it is necessary to recognize that the configuration
assignment based on rotational properties has to be comple-
mented by other independent methods and has to rely on
sufficient experimental data. This is because such a method
of configuration assignment does not always leads to a unique
candidate configuration due to theoretical inaccuracies in the
description of the moments of inertia. The interpretation of
the rotational band in 253No is quite illustrative in this respect.
Initially, it was interpreted as based on the ν7/2[624] config-
uration [106]. However, improved experiments have allowed
us to identify the M1 transitions between opposite signatures
of the observed band [66] which then led to the ν9/2[734]
configuration assignment. The kinematic moments of inertia
of the observed band under two configuration assignments are
described within a typical theoretical uncertainty and, as a
result, the configuration assignment based only on rotational
properties cannot be fully reliable. The branching ratios of
observed M1 and E2 transitions have to be used in order to
distinguish different configuration assignments [66].

VI. ROTATIONAL AND DEFORMATION PROPERTIES
OF FISSION ISOMERS

The investigation of fission isomers provides valuable
information on rotational and pairing properties in the superde-
formed (SD) minimum of actinides. The latter is important for
an understanding of fission barriers which sensitively depend
on pairing properties (see Ref. [33] and references therein).
Although some attempts were made in the 1970s to extract
the information on pairing properties at fission saddles [109],
they did not lead to reliable estimates. Thus, fission isomers
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provide the only available tool to estimate the evolution of
pairing with deformation in actinides. Such an estimate is
available only through the study of rotational properties of
236,238U and 240Pu nuclei; these are the only nuclei for which
SD rotational bands were experimentally measured.3 Although
fission isomers in actinides have been observed since the
early 1960s, their rotational and single-particle properties are
significantly less known experimentally than in other regions
of superdeformation. For example, no reliable experimental
data on single-particle states in odd-mass actinides exist.

The experimental and calculated kinematic and dynamic
moments of inertia of the SD rotational bands in 236,238U and
240Pu are shown in Fig. 28. The calculated kinematic and
dynamic moments of inertia increase with increasing rotational
frequency �x (Fig. 1). In addition, the difference between these
moments grows with the increase of �x since J (2) rises faster
than J (1). In the calculations, these features are predominantly
due to gradual alignment of the N = 8 neutrons and N = 7
protons and a smooth decrease of pairing correlations with
increasing �x . They are similar to the ones observed in the A ∼
190 region of superdeformation; see Ref. [13] and references
therein.

The experimental data in 240Pu shows such features for
J (1) and J (2). However, the highest J (2) point deviates from
this trend most likely due to the fact that the energy of the
10+ → 8+ transition has been measured with lower accuracy
than that of other transitions within the SD band [68]. On the
other hand, such features are not seen in 236U. This again can
be related to insufficient accuracy of the measurements of the
γ -transition energies in the SD band of 236U; these energies
in the SD bands of 236U and 240Pu are measured with typical
accuracy of 1.0 and 0.1 keV, respectively [68].

3The information on pairing cannot be extracted from odd-even
mass staggerings in the SD minimum, since the inaccuracies of the
measuruments of excitation energies of fission isomers in odd-mass
nuclei are at least 200 keV but can reach 400 keV [108].
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The experimental kinematic moments of inertia are best
described by the NL3* parametrization; the deviation from
experiment does not exceed 3.4% (Fig. 28). Note that similar
to low-spin results in the ND minimum (see Sec. III B), the
minor variations in the experimental J (1) values with particle
number are not reproduced. The fact that the moments of
inertia of rotational structures in two different minima (ND and
SD) are accurately described with the same pairing strength
strongly suggests that the evolution of pairing correlations with
deformation is properly described in the CRHB + LN(NL3*)
framework by the Brink-Booker part of the Gogny D1S force.
This is important for the investigation of fission barriers,
the properties of which sensitively depend on the pairing
interaction employed [33].

However, this is not always the case, since the
CRHB + LN(NL1) calculations substantially overestimate the
experimental moments of inertia in the SD minimum [for
example, by 11.3% in 240Pu] (Fig. 28) while they reproduce the
low-spin moments of inertia in the ND minimum with the same
level of accuracy as the CRHB + LN(NL3*) calculations (see
Fig. 2). It turns out that reasonable description of the moments
of inertia at SD can be achieved in the CRHB + LN(NL1)

calculations only if the original strength of the Brink-Booker
part of the Gogny D1S force (scaling factor f = 1.0) is used in
the calculations (see Fig. 1 in Ref. [111]). This clearly indicates
that even the pairing force carefully fitted to experimental
data at normal deformation does not guarantee accurate
description of pairing at SD (and as a consequence also at
fission saddle). The origin of such behavior is not completely
clear but the difference between the CRHB + LN(NL3*)
and CRHB + LN(NL1*) results for J (1) at SD may also
partially originate from the differences in the single-particle
structures at superdeformation obtained with the NL3* and
NL1 parametrizations (Fig. 29). While the large N = 142 SD
shell gap exists in both parametrizations, a somewhat smaller
Z = 96 SD shell gap is seen only in the NL3* parametrization
(Fig. 29). In addition, the ordering of the single-particle levels
differs in these two parametrizations.

Table II shows that for a specific parametrization the
calculated pairing energies in the ND and SD minima are
comparable in a given subsystem (proton or neutron). They
are typically within 0.5 MeV. The only exception is the proton
subsystem for which the pairing energies in the SD minimum
are larger than those in the ND one by 1.4 MeV. Note that the
pairing is stronger in the NL1 parametrization. In part, this is
a consequence of the fact that the average scaling factor fav is
larger for the NL1 parametrization (see Sec. III B).

The calculated charge quadrupole moments Q are com-
pared with available experimental data in Table I. One should
note that the small error bars on the experimental values of
Q given for 238U and 240Am nuclei should be treated with
caution since even modern experiments do not provide an
accuracy of the absolute Q values better than 15%; see the
discussion in Ref. [13]. In addition, when comparing the
calculations with experiment, one should take into account
that (i) the Qexp values have been obtained with different
experimental techniques [109] and (ii) it is reasonable to expect
that an addition of one neutron to 239Pu will not change the Q

value considerably, and, thus, Qexp(239Pu) could be used for
comparison with the calculated Q(240Pu).

With these considerations in mind, it is clear that the
CRHB + LN(NL3*) results come reasonably close to ex-
periment. The CRHB + LN(NL1) results are also not far
away from experimental data but they substantially over-
estimate the experimental Q value in 238U. The Q values
obtained in the CRHB + LN(NL1) calculations are always
higher than the ones for CRHB + LN(NL3*), which also
may be a reason why the CRHB + LN(NL1) calculations
systematically overestimate kinematic moments of inertia
at SD.

TABLE I. Experimental and theoretical charge quadrupole moments Q of SD fission isomers. The results of the CRHB + LN calculations
with the NL1 and NL3* parametrizations are presented. Experimental data for the U and Pu isotopes are taken from Ref. [109], while that for
242Am is from Ref. [110].

236U 238U 236Pu 239Pu 240Pu 242Am

Qexp (eb) 32 ± 5 29 ± 3 37 ± 10 36 ± 4 35.5 ± 1.0st ± 1.2mod

QNL1 (eb) 35.8 37.3 36.1 38.2
QNL3∗ (eb) 33.9 33.7 34.8 34.9
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TABLE II. Averaged pairing energies Eν/π
pairing (in MeV) [Eq. (11)]

in the normal- (ND) and superdeformed (SD) minima for the NL3*
and NL1 parametrizations. These quantities are averaged over 236,238U
and 240Pu nuclei; the individual pairing energies in each of these nuclei
do not deviate from averaged ones by more than 0.5 MeV.

Parametrization Neutron Proton

ND SD ND SD

NL3* 4.99 5.51 6.56 6.90
NL1 6.26 6.52 6.97 8.35

The systematic analysis of low-spin properties of the
yrast SD bands presented in Fig. 30 is performed with
the NL3* parametrization since it describes better available
experimental data on deformation and rotational properties
of fission isomers. The Q values generally increase with
increasing proton number. For a given isotope chain they
stay nearly constant in the N = 142–150 range. There is a
gradual increase of Q at N > 150 in the Cm, Cf, and Fm
isotopes. In the Th, U, and Pu isotopes, the Q values drop by
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FIG. 30. (Color online) Charge quadrupole moments Q [panel
(a)] and kinematic moments of inertia J (1) [panel (b)] of the yrast SD
bands as a function of neutron number N . The results are obtained in
the CRHB + LN(NL3*) calculations at �x = 0.01 MeV.

5–7 eb on going from N = 142 to N = 140 [Fig. 30(a)]. This
change in equilibrium deformation of the second minimum as a
function of neutron number is clearly visible in the deformation
energy curves obtained in the RMF+BCS calculations with
monopole pairing and the NL3* parametrization (Fig. 7 in
Ref. [37]). It is caused by the changes in the underlying shell
structure; this is supported by the fact that the RMF+BCS
calculations of Ref. [37] with monopole pairing and the current
CRHB + LN(NL3*) calculations with the Brink-Booker part
of the Gogny D1S force in the pairing channel bring similar
values for equilibrium deformation in second minimum despite
different treatments of pairing.

The evolution of the kinematic moments of inertia J (1)

of the yrast SD bands at low spin as a function of proton
and neutron numbers closely resembles the one of charge
quadrupole moments Q (Fig. 30). This is mostly due to
the fact that the values of kinematic moments of inertia
of the SD bands in the limit of no pairing are typically
close to the rigid-body values [28] and, thus, are strongly
defined by the deformation properties. The pairing lowers the
calculated kinematic moments of inertia but does not remove
this connection.
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FIG. 31. (Color online) Kinematic moments of inertia [panel
(a)] of ground-state bands of superheavy nuclei calculated at �x =
0.02 MeV and their quadrupole deformations β2 [panel (b)] as a
function of neutron number N .
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VII. DEFORMATION AND ROTATIONAL
OF SUPERHEAVY NUCLEI

Figure 31 shows the calculated quadrupole deformations β2

and kinematic moments of inertia J (1) of even-even superheavy
nuclei with Z = 102, 104, 106, 108, and 110 as a function
of neutron number N . The nuclear region selected roughly
corresponds to the one where superheavy nuclei either have
already been measured or may be experimentally studied
(including rotational properties) within the next one or two
decades. We do not extend our studies to higher Z values since
in these nuclei the potential energy surfaces in the normal-
deformed minimum become very soft (see Refs. [55,112]), so
a description on the mean-field level may not be adequate
and the methods beyond mean field [113,114] may be
required.

The CRHB + LN calculations of Fig. 31 are performed with
the NL3* parametrization. However, earlier investigations of
the Fm (Z = 100) isotope and N = 152 isotone chains in
Ref. [1] show that the general trends of the evolution of the
J (1) and β2 quantities as a function of neutron and proton
numbers only weakly depend on the CDFT parametrization
(see Figs. 13 and 14 in Ref. [1]). Figure 31 shows that
calculated quadrupole deformation β2 stays more or less
constant for the neutron numbers N � 162. However, at higher
N it decreases gradually with increasing neutron number. The
evolution of calculated kinematic moments of inertia correlates
strongly with the one for the quadrupole deformations. Indeed,
with the exception of the lightest Z = 102 nuclei, the J (1)

values decrease very slowly with increasing neutron number,
but above N = 162 the rate of the decrease of J (1) becomes
substantially larger.

VIII. CONCLUSIONS

The cranked relativistic Hartree-Bogoliubov theory has
been applied for a study of actinides and light superheavy
nuclei. The systematic investigation of rotational properties
of even-even and odd-mass nuclei at normal deformation has
been performed for the first time in the density functional
theory framework. In addition, the pairing properties have
been systematically studied via the �(3) indicators for the first
time in the CDFT theory. The main results can be summarized
as follows:

(i) In order to reproduce the moments of inertia in
actinides and light superheavy nuclei, the strength of
the Brink-Booker part of the Gogny D1S force in
the particle-particle channel of the CRHB + LN theory
has to be attenuated by ≈10%. With this attenuation,
the moments of inertia below band crossings and the
�(3) indicators are well reproduced. In contrast, the
moments of inertia of lighter nuclei with A � 200 are
well described with the original strength of the Brink-
Booker part of the Gogny D1S force in the CRHB + LN
calculations.

(ii) The strengths of pairing defined by means of the mo-
ments of inertia and three-point �(3) indicators strongly
correlate. This is a known result in non-self-consistent
models based on phenomenological Woods-Saxon or

Nilsson potentials. However, this is a nontrivial result
in the DFT framework since time-odd mean fields
(absent in phenomenological potentials) strongly affect
the moments of inertia [28] and have an impact on
three-point �(3) indicators [26].

(iii) The definitions of pairing strength via these two
observables are complimentary. This is because (i) it is
difficult to disentangle proton and neutron contributions
to pairing when considering the moments of inertia and
(ii) the �(3) indicators are affected by particle-vibration
coupling and depend on correct reproduction of the
ground states in odd-mass nuclei (see Sec. III E for
details).

(iv) The calculations with approximate particle number
projection by means of the Lipkin-Nogami method
provide a better description of the absolute values
and particle number dependencies of the moments of
inertia as compared with the calculations which do
not include it. Similar improvement is observed for
the �(3) indicators. However, more systematic calcu-
lations of the �(3) indicators in the CRHB + LN and
CRHB frameworks are needed to make this observation
conclusive.

(v) Sharp upbendings observed in a number of rotational
bands of the A � 242 nuclei are well described in
the model calculations. The calculations also predict
similar upbendings in lighter nuclei but they have not
been seen in experiment. The analysis suggests that the
stabilization of octupole deformation at high spin, not
included in the present CRHB + LN calculations, can
be responsible for this discrepancy between theory and
experiment.

(vi) The proper description of the evolution of pairing
with deformation implies an accurate reproduction
of the moments of inertia of rotational structures in
normal- and superdeformed minima with the same
strength of pairing. This condition is satisfied only in
the CRHB + LN(NL3*) calculations. On the contrary,
the strength of pairing in the SD minimum has to
be increased by almost 10% as compared with the
ND minimum in order to reproduce the moments of
inertia of the SD bands in the CRHB + LN(NL1)
calculations. This clearly indicates that even the pairing
force carefully fitted to experimental data at normal
deformation does not always guarantee accurate de-
scription of pairing at SD (and, as a consequence, also
at the fission saddle). The origin of such behavior is
not completely clear but partially may be related to
the dependence of the shell structure at SD on the
parametrization.

(vii) It is well known that the present generation of
the density functional theories do not provide the
same accuracy of the description of the energies of
the single-particle states as the models based on the
phenomenological Woods-Saxon or Nilsson potentials
(see Ref. [41] and references therein). This is despite
the fact that many aspects of the single-particle motion,
such as deformation polarization effects due to parti-
cle(s)/hole(s) and the impact of the particle(s)/hole(s)
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on angular-momentum alignments/moments of inertia,
are well described in the DFT models in the regime
of no or weak pairing [49,115]. The current systematic
study of rotational bands in odd-mass nuclei confirms
for the first time this observation also for the pairing
regime. This is because, with few exceptions, the
impact of the particle on the rotational properties of
the bands in odd-mass nuclei is well described in
model calculations. As a consequence, the absolute and
relative properties of different configurations/bands in
odd-mass nucleus with respect to each other and/or with
respect to the ground-state band in the reference even-
even nucleus provide a reasonably reliable indication

of the underlying one-quasiparticle configuration of
rotational band in odd-mass nucleus.
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M. P. Carpenter, I. Ahmad, A. P. Byrne, P. Chowdhury, D.
Cline, A. N. Deacon, G. D. Dracoulis, S. J. Freeman, N. J.
Hammond, G. D. Jones, T. L. Khoo, F. G. Kondev, T. Lauritsen,
C. J. Lister, A. O. Macchiavelli, E. F. Moore, D. Seweryniak,
J. F. Smith, and C. Y. Wu, Phys. Lett. B 618, 51 (2005).

[97] R. K. Sheline and M. A. Riley, Phys. Rev. C 61, 057301
(2000).

[98] R. V. F. Janssens (private communication).
[99] K. Abu Saleem, R. V. F. Janssens, M. P. Carpenter, F. G.
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