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Role of neutrons and protons in entropy, spin cut off parameters, and moments of inertia
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The nuclear level densities, spin cut off parameters, and entropies have been extracted in 116−119Sn and 162,163Dy
nuclei using superconducting theory, which includes nuclear pairing interaction. The results agree well with the
recent data obtained from experimental level densities by the Oslo group for these nuclei. Also, the entropy
excess ratio proposed by Razavi et al. [R. Razavi, A.N. Behkami, S. Mohammadi, and M. Gholami, Phys. Rev.
C 86, 047303 (2012)] for a proton and neutron as a function of nuclear temperature have been evaluated and are
compared with the spin cut off excess ratio. The role of the neutron (proton) system is well determined by the
entropy excess ratio as well as the spin cut off excess ratio. The moment of inertia for even-odd and even-even
nuclei are also compared. The moment of inertia carried by a single hole is smaller than the single particle
moment of inertia.
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I. INTRODUCTION

The nuclear level density is a topic of current research
interest and plays a special role in many branches of nuclear
physics. Pairing correlations have a strong influence on nuclear
level densities and special importance for many fermion
systems [1,2]. Pairing correlations have been successfully
described by the Bardeen-Cooper-Schrieffer (BCS) theory [3]
of superconductivity.

The Oslo cyclotron group has developed a new method to
extract level densities from measured gamma ray spectra using
a 45 MeV 3He beam [4], which has provided new experimental
data in 116−119Sn [5,6] and 162,163Dy nuclei [7,8].

In this work, the nuclear level densities and entropies
have been computed for 116−119Sn and 162,163Dy nuclei using
the BCS Hamiltonian with the inclusion of pairing effects.
The results are compared to their corresponding experimental
values by the Oslo group. In our recent paper [9], we have
studied the neutron and proton entropy excess ratio in 121Sn
compared to 122Sn. We have shown that the proton system
at low temperatures plays a minor role in entropy excess.
In the present study, we have extended our investigation of
the neutron and proton systems’ role. A novel formula for
the spin cut off excess ratio has been introduced. Then the
ratio of proton as well as neutron spin cut off excess in 121Sn
compared to 122Sn has been determined and the results are
compared to the proton as well as neutron entropy excess
ratios, respectively. Then calculations of the entropy excess
ratio and spin cut off excess ratio are executed for 117Sn
compared to 118Sn, 117Sn compared to 116Sn, 119Sn compared
to 118Sn, and 163Dy compared to 162Dy.

II. SUMMARY OF THE THEORY

A brief review of the microscopic model to calculate the
level density, spin cut off, and thermodynamic quantities of
the system is presented in the following. The logarithm of the
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grand partition function of a paired system for one type of
fermion is [10]

�(α, β) = −β
∑

k

(εk − λ − Ek)

+ 2
∑

k

Ln[1 + exp(−βEk)] − β
�2

G
. (1)

In this expression Ek = [(εk − λ)2 + �2]1/2 is the quasiparti-
cle energy where εk is the fermion energy of single particle
k. The quantity β is the inverse of the statistical nuclear
temperature T , λ = α/β is related to the chemical potential,
and � is the gap parameter that is a measure of nuclear
pairing, while G is the pairing strength. The gap parameter
� is obtained by solving the gap equation [11]

2
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∑
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2
. (2)

The state density can be calculated by an inverse Laplace
transform of the grand partition function [12]

ω(N,E) = exp(S)

2π |D|1/2
, (3)

where D is a determinant of the second derivations of the grand
partition function taken at the saddle point and the entropy S
can be written as [9,13]

S = 2
∑

k

Ln[1 + exp(−βEk)] + 2β
∑

k

Ek

1 + exp(βEk)
.

(4)

The occupational probability of level k is given by the authors
of Ref. [13]

nk = 1 − εk − λ

Ek

tanh
βEk

2
(5)

and the saddle point conditions that must be satisfied are

N =
∑

k

nk, (6)
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E =
∑

k

nkEk − �2

G
. (7)

For a system of N neutrons and Z protons, the thermodynam-
ical quantities �, the total energy E, and the total entropy S
are additive. Therefore the solution is determined by

� = �n + �p,E = En + Ep, (8)

S = Sn + Sp. (9)

The total level density is given by

ρ(N,Z,U ) = ω(N,Z,U )

(2πσ 2)1/2
, (10)

where σ 2 is the spin cut off parameter defined as

σ 2 = σ 2
n + σ 2

p (11)

with [14]

σ 2
p = 1

2

∑
k

m2
ksech2

(
βEk

2

)
, (12)

and a similar equation for σ 2
n . mk is the magnetic momentum

spin quantum number of the state k.

III. CALCULATIONAL PROCEDURE

We assume Z protons and N neutrons as two noninteracting
systems. In performing calculations of level densities and
entropies the single particle spins and energies were first
extracted for a specified deformation. The calculations have
been based on the modified harmonic oscillator potential
according to the Nilsson potential [15]. The oscillator quantum
number h̄ω has been assigned the value of 41A−1/3 MeV.
The quantities κ and μ for the proton system and the neutron
system, which enter in the Nilsson potential, are taken from
Ref. [16]. We calculate the neutron and proton pairing gap
at zero temperature using the three point method [17] and
known nuclear masses [18]. Then the values of parameters
λ(T ) and �(T ) and a set of occupational probabilities are
estimated, and the saddle point conditions are checked for a
given nucleon number. The procedure is repeated until the
saddle point conditions are satisfied. The quantities Sp, Ep,
and σ 2

p are determined by applying Eqs. (4), (7), and (12),
respectively. The excitation energy Up can be determined by
subtracting the energy at T = 0. A similar set of calculations
is used to compute Sn, En, σ 2

n , and Un for neutrons. The total
spin cut off parameter σ 2 and total entropy S, at excitation
energy U = Un + Up, are obtained using Eqs. (11) and (9),
respectively. For more information on calculational procedures
see Refs. [9,10,19].

IV. SUMMARY AND RESULTS

Numerical calculations of the level densities are performed
for deformed nuclei 116−119Sn and 162,163Dy with Eq. (10).
However, the single particle spins and energies were first
obtained for a specified deformation. The results of level
densities as a function of excitation energy for 116,117Sn

FIG. 1. (Color online) The experimental [6] and the calculated
level density as a function of the excitation energy in 116Sn nucleus.
The open triangles are data from the (3He, 4He) reaction. The filled
stars denote the BCS calculations.

and 163Dy are shown in Figs. 1 to 3. Their corresponding
experimental [5–8] values are also plotted for comparison. As
can be seen from Figs. 1 to 3, the overall agreement between the
experimental level densities and the microscopic theoretical
with pairing correlations is satisfactory. Similar results were
observed for 118,119Sn and 162Dy. We have also obtained
entropies for 116−119Sn and 162,163Dy nuclei with microscopic
theory using known values of the single particle energy and
magnetic spin quantum numbers. The evaluated entropies for
118,119Sn nuclei as a function of nuclear temperature T , up to
1.0 MeV are plotted in Fig. 4. Our results show the entropy does
not increase as smoothly as was explained in the macroscopic
theory [20]. The step-like structures are interpreted as a
signature of neutron pair breaking and, at higher energies, the
possible quenching of pair correlations [21,22]. This structure

FIG. 2. (Color online) The experimental [6] and the calculated
level density as a function of the excitation energy in 117Sn nucleus.
The open triangles are data from the (3He, 3He) reaction. The filled
stars denote the BCS calculations.

014316-2



ROLE OF NEUTRONS AND PROTONS IN ENTROPY, SPIN . . . PHYSICAL REVIEW C 88, 014316 (2013)

FIG. 3. (Color online) The experimental [8] and the calculated
level density as a function of the excitation energy in 163Dy nucleus.
The open triangles are data from the (3He, 4He) reaction. The filled
stars denote the BCS calculations.

is reflected in both the entropies and level densities. Similar
behavior for 121,122Sn has recently been described within the
BCS theory in our previous publication [9]. The entropy of
the odd A system follows closely the entropy for its even-even
neighbors’ nuclei, although there is an almost constant value
between the entropy of the odd A nucleus and its even-even
neighbors’ nuclei. The entropy excess interpreted as the single
hole and single particle entropy [19]

�S(hole) = S(oddA) − S(A + 1),
(13)

�S(particle) = S(oddA) − S(A − 1).

Figure 5 shows the calculated entropy excess between 163Dy
and 162Dy. The entropy of the 163Dy is about two units higher
than for 162Dy at temperatures below the critical temperature
Tc. �S ∼ 2 is observed in several experiments of the rare
earth nuclei [23–25]. The critical temperature in the combined

FIG. 4. (Color online) Relation between the entropy and nuclear
temperature for 118,119Sn.

FIG. 5. (Color online) Calculated entropy excess between 163Dy
and 162Dy.

system of both protons and neutrons is [26]

Tc = T n
c + T

p
c

2
. (14)

The role of neutron and proton systems in entropy excess were
investigated by using the neutron and proton entropy excess
ratio Ri(i = p, n) [9]

Ri = �Si

�S
(15)

with

�Si = Si(oddA) − Si(A ± 1). (16)

We have examined this finding in more detail by a novel
formula for the neutron and proton spin cut off excess ratio
Rsi

Rsi = �σ 2
i

�σ 2
(17)

with

�σ 2
i = σ 2

i (oddA) − σ 2
i (A ± 1) (18)

and �σ 2 is the total spin cut off excess. In Fig. 6 we have shown
the evaluated spin cut off excess ratio for proton and neutron
systems in 121Sn compared to 122Sn. It is seen that the spin
cut off excess ratio Rsi corresponds well with the calculated
entropy excess ratio Ri [9]. The role of the neutron (proton)
system is well described by the spin cut off excess ratio, as
well as by the entropy excess ratio. The obtained results are
also very similar for 119Sn compared to 118Sn, 117Sn compared
to 118Sn, and 117Sn compared to 116Sn. The spin cut off excess
ratio for 163Dy compared to 162Dy is shown in Fig. 7. The
result shows that the protons make rather small contributions
to the entropy excess and spin cut off excess, as expected. An
examination of Figs. 6 and 7 reveals that the role of the proton
system is slightly different in Dy isotopes compared to the
magic tin isotopes and negative ratio in Fig. 7 is apparent. We
have investigated in more detail as follows: The spin cut off
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FIG. 6. (Color online) Spin cut off excess ratio for proton and
neutron systems as a function of nuclear temperature in 121Sn
compared to 122Sn.

σ 2 is related to an effective moment of inertia [27,28]

σ 2 = IeffT

h̄2 . (19)

We introduce the neutron and proton moment of inertia ratio
Rmi as

Rmi = Ii

I
. (20)

Figure 8 shows the extracted moment of inertia ratio for
121,122Sn nuclei. The values of Rmn for 121Sn are higher than
those for 122Sn at intermediate energies and odd neutrons play
a greater role in the moment of inertia. The obtained results
for 116−119Sn are also very similar to the observed results in
Fig. 8. If we denote the neutron and proton moment of inertia

FIG. 7. (Color online) Spin cut off excess ratio for proton and
neutron systems as a function of nuclear temperature in 163Dy
compared to 162Dy.

FIG. 8. (Color online) Proton and neutron moment of inertia ratio
for 121,122Sn nuclei.

excess

�Ii = Ii(oddA) − Ii(A ± 1) (21)

and the moment of inertia carried by single-particle or hole
moment of inertia �I as

�I = I (oddA) − I (A ± 1). (22)

The moment of inertia excess ratio Rdmi is given by

Rdmi = �Ii

�I
(23)

and equal to the values of spin cut off excess ratio Rsi (see
Figs. 6 and 7).

An examination of these figures reveals that the major
contribution to the total moment of inertia at low temperatures
come mainly from the neutrons. The real nucleon-nucleon

FIG. 9. (Color online) The total moment of inertia in odd mass
nuclei compared to even mass nuclei for tin isotopes.
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interaction is much more complicated than a short-range attrac-
tive effective interaction between identical valence nucleons
that are defined by a δ-function potential. The negative values
of the proton moment of inertia excess ratio Rdmp (or Rsp)
are apparent from Fig. 7. We interpret the negative values at
intermediate energies as a proton system deformation against
the increase of the total moment of inertia. The total moment
of inertia in odd mass nuclei compared to even mass nuclei for
tin isotopes is shown in Fig. 9. Similar results are obtained for
Dy isotopes. Our results show that the moment of inertia of
the odd A nucleus is much larger than the even A nucleus at
low energy.

In summary, we have shown that the superconducting
theory, which includes the nuclear pairing interaction based

on the modified harmonic oscillator according to the Nilsson
potential, describes well the observed level densities and
entropies for 116−119Sn and 162,163Dy nuclei. The role of
neutrons and protons in entropy, spin cut off, and moment
of inertia have been investigated. The entropy excess ratio
as well as the spin cut off excess ratio is a suitable factor
for calculating the role of the neutron or proton system in
nuclei.

We have shown a clear evidence of a phase transition from
the superfluid state to the normal state and breaking of Cooper
pairs. On the other hand, the total moment of inertia in odd
mass nuclei has been compared to even mass nuclei. It is found
that the single particle moment of inertia is much larger than
the single hole moment of inertia.
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