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Quantum fluctuations in the collective 0+ states of deformed nuclei
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The occurrence of low-energy collective motion is a widespread phenomenon in quantum systems. To describe
fluctuations about the equilibrium deformation and to understand the nature of excited 0+ states in deformed
nuclei, we improve the many-body wave functions by superimposing angular-momentum-projected states
constructed with different quadrupole deformations. We take deformed rare-earth nuclei as examples, compare
quantitatively the calculated low-lying 0+ bands and the associated electric monopole transition matrix elements
with experimental data. The analysis of the resulting wave functions for the excited 0+ states indicates clear
features of quantum oscillations, with large fluctuations in deformation for soft nuclei and strong anharmonicities
in the oscillations for rigidly deformed nuclei.
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I. INTRODUCTION

In many examples of quantum many-body systems, one de-
scribes the low-lying spectra in terms of elementary excitation
modes corresponding to fluctuations about the equilibrium of
the system. The nature of the fluctuations depend on intrinsic
properties of the system. A well-known example is molecular
physics where the atoms form a relatively rigid structure in the
molecule, and the low-energy internal excitations correspond
to vibrational modes. In nuclear systems, the modes of interest
are collective vibrations of nuclear shape that characterizes the
equilibrium configuration. Bohr and Mottelson [1] associated
low-lying Iπ = 0+ and 2+ excitations with (one-phonon)
β- and γ -vibrational modes, where the quantum numbers I
and π denote angular momentum and parity of the states.
These collective shape oscillations occur in nuclei having
in the equilibrium nonspherical quadrupole shapes with the
deformation parameters β and γ . In the algebraic models,
these vibrational modes are classified so as to belong to
the lowest collective excitations of the ground state [2].
Whereas γ vibrations are found systematically across entire
regions of deformed nuclei, the experimental identification of
β vibrations remains elusive [3]. In particular, the real nature
of the second 0+ states, 0+

2 , has not been fully understood [4,5].
On the theoretical side there is a large number of phe-

nomenological nuclear models, many of which are based on
the group theory (for a recent review, see Ref. [3]). There
is a lack of microscopic descriptions, mainly because it is
difficult to take fully into account all possible microscopic
degrees of freedom for heavy, deformed nuclei. A proper
microscopic description of collective vibrations in deformation
space requires wave functions to be superpositions of states
with different deformation conserving the quantum numbers
of angular momentum and parity.

The projected shell model (PSM) [6] has been successful in
the microscopic description of the yrast properties of rotational
nuclei and high-spin bands with multi-quasiparticle (qp)
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structures. For these studies one usually starts with a fixed
deformation of the mean field (with either axial or triaxial
symmetry), and the dynamics is obtained through mixing
various qp configurations preserving the symmetries. The
mixing can be significant for cases of sudden changes in
the structure, as for example in regions of band crossings.
However, the mixing is often insufficient to produce enough
collectivity for states having vibrational character. Concep-
tually, one might hope that, within the shell-model concept,
inclusion of a large amount of 2-qp states with the same
deformation could introduce a collective contribution that
would produce the desired low-lying vibrational states. But
such attempts have failed in practice [7]. Because of the large
pairing gap, the energy of the lowest 2-qp state is, in a typical
deformed nucleus of the rare-earth region, above 1.5 MeV
and is much higher than the actual vibrational band-head
energy, which typically lies between 0.5 and 1 MeV. The
quadrupole force in the Hamiltonian is apparently too weak to
lower the vibrational energy by such a large amount. In fact,
calculations including thousands of 2-qp and 4-qp states do
not lead to low-lying excited states that look like the low-lying
collective states found in experiment [7]. One has to conclude
that for a description of β vibrations, the original PSM has not
been successful. Therefore, alternative approaches have to be
developed [8,9].

II. THE METHOD

The results reported in this paper are obtained by an
extension of the original PSM that allows the mixing of product
states with different deformation to construct better wave
functions. It employs the fully quantum-mechanical generate
coordinate method (GCM) [10] based on a very general ansatz
for a trial wave function, i.e., a linear superposition of product
states |�(a)〉 depending on a set of (real or complex) parame-
ters {a} = a1, a2, . . . , ai (the so-called generator coordinates):

|�〉 =
∫

daf (a)|�(a)〉. (1)
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The generating functions |�(a)〉 in Eq. (1) can be chosen,
for example, as Nilsson wave functions [11] with different
deformations a of the potential. f (a) in Eq. (1) is the weight
function, which is determined by the variational principle, or
equivalently, by solving the Hill-Wheeler equation [12]

Hf = ENf, (2)

with the overlap functions

H(a, a′) = 〈�(a)|Ĥ |�(a′)〉,
(3)

N (a, a′) = 〈�(a)|�(a′)〉
as integral kernels.

As in the PSM one superimposes qp states with good
symmetries, we use projected states associated with different
axial deformation ε2, and write Eq. (1) as

|�I,N 〉 =
∫

dε2f
I,N (ε2)P̂ I P̂ N |�0(ε2)〉, (4)

where P̂ I and P̂ N are projection operators on good angular-
momentum and particle number [10] restoring the rotational
symmetry violated in the deformed mean field and the gauge
symmetry violated in the BCS approximation. |�0(ε)〉 is a
Nilsson + BCS state, the qp vacuum with deformation ε2.

This method has been used for the investigations of
0+ excitations also in the context of nonrelativistic [13,14]
and relativistic [15] density functional theory (DFT). These
are extremely time-consuming calculations, and therefore in
many cases additional approximations are used to derive the
parameters of a Bohr-Hamiltonian, as for instance the Gaussian
overlap approximation (GOA) or adiabatic time-dependent
Hartree-Fock (ATDHF) theory [15,16]. Because of the small
effective mass in many density functional theories [17] the
corresponding single particle spectra deviate considerably
from experimental values. The advantage of the present
method is its simplicity together with the realistic single
particle spectra of the Nilsson model [11] used here.

The Hamiltonian in Eq. (3) is identical to that used in the
original PSM [6]

Ĥ = Ĥ0 − χ

2

∑
μ

Q̂+
μQ̂μ − GMP̂ +P̂ − GQ

∑
μ

P̂ +
μ P̂μ, (5)

where the residual interaction consists of separable forces of
the quadrupole-quadrupole + pairing type, with inclusion of
a quadrupole-pairing term. In PSM [6], the strength for the
quadrupole-quadrupole interaction χ is usually determined
by enforcing the condition that such a force would result in
a correct quadrupole deformation in variational calculations.
As there are now different deformation points, we take the
χ value corresponding to a fixed ε2 = 0.305. The monopole
pairing strengths parameters in Eq. (5) are taken to be GM =
(G1 ∓ G2(N − Z)/A)/A, with the minus sign for neutrons
and plus sign for protons. Here we use G1 = 21.24 MeV
and G2 = 13.86 MeV for the present mass region as in the
original PSM [6]. The strength of quadrupole pairing is, as
usual, assumed to be GQ = 0.16GM . We stress that all the
results presented below are obtained by using the same set of
parameters. None of them is adjusted to the results shown in
the present investigation.

The central task for the numerical calculation is to evaluate
the matrix element

OI,N = 〈�0(ε2)|ÔP̂ I P̂ N |�0(ε′
2)〉, (6)

where Ô is Ĥ [Eq. (5)] or 1. A description for the computation
of OI,N can be found in Ref. [18]. In the actual calculation we
consider the deformation range from ε2 ≈ 0.055 to 0.455, and
take in Eq. (4) discrete values for ε2 in steps of 
ε2 = 0.05.
The number of mesh points is from 7 to 10, depending on
convergence of the results.

III. RESULTS AND DISCUSSIONS

In Fig. 1, we show the results of a systematic calculation
for the first excited 0+

2 state in Gd, Dy, and Er isotopes,
and compare them with experimental data. The energy levels
2+

1 , 4+
1 , and 6+

1 of the ground state rotational band are also
shown. We find that with a single set of parameters in the
Hamiltonian, the characteristic behavior of the shell evolution
is well reproduced. This certainly benefits from the improved
GCM wave function of Eq. (4). It is seen that starting from the
neutron number N = 90 on the left-hand side of Fig. 1 and

FIG. 1. (Color online) Comparison of calculated 0+
2 state with

experimental data for Gd, Dy, and Er isotopes. The energy levels 2+
1 ,

4+
1 , and 6+

1 of ground-state rotational band are also shown. Calculated
results (open circles) are compared with data (filled squares).
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FIG. 2. Calculated energy levels for low-lying states of the
ground-state band and second 0+ band are compared with data.

going to heavier isotopes the ground state bands becomes more
and more compressed, eventually following the rotational rule
of E ∼ I (I + 1) at N = 98. On the other hand, the 0+

2 state is
found low for the isotopes with neutron number 90, which
are thought to be soft nuclei with low-energy vibrational
states. Without any adjustable parameter, the increase of the
energy of the 0+

2 state with increasing neutron number is
correctly reproduced for all three isotopic chains, thus clearly
distinguishing the spectral differences of softness in lighter
isotopes and stiffness in heavier isotopes, with regard to
deformation. The case with the largest discrepancy between
calculation and data is 158Er, which is known to be relatively
soft in triaxiality, a shape phenomenon that is not a focus of
the present work.

To show the description of collectivity, we take in Fig. 2
156Dy as an example. The present calculation reproduces
nearly perfectly the ground band up to spin 10, thus correctly
giving the moment of inertia of this nucleus. For the band
built on the second 0+ state, the calculated level separation
becomes larger than data with increasing spin. The reason
for this discrepancy can be easily speculated. It may possibly
be due to the mixing with further qp excitations which may
become important for the energy region higher than 1.5 MeV
but omitted here. Without the inclusion of this qp mixing,
calculations for the third, forth, etc. 0+ states, as those
experimentally found in Ref. [19], may not be realistic.

The results in Figs. 1 and 2 suggest that the GCM approach,
with integration of states of different deformations expressed
in Eq. (4), has improved the quality of the wave functions
considerably. Particularly for soft nuclei, the present results
differ qualitatively from those obtained by constructing wave
functions with a fixed deformation at the potential minimum,
as assumed in the original PSM [6]. This proves that GCM is
an efficient way to approach a quantum many-body problem
of the current interest. Hara et al. [20], by comparing the
results of PSM and GCM in a study of high-spin states,
concluded that both PSM and GCM are reasonable shell model
truncation schemes. The PSM carries out the configuration
mixing in terms of qp excitations while GCM in terms of
Slater determinants that belong to different nuclear shapes.
However, for particular physics problems, the two methods

FIG. 3. (Color online) Calculated distribution function of defor-
mation for the first three 0+ states in 154Gd and 160Gd.

may not to be equally efficient. As we have shown, mixing
of 2-qp states, as done in the original PSM, may not be an
efficient way to describe the rapid evolution of shape changes
studied here.

Because of the general properties of the Hill-Wheeler equa-
tion that diagonalizes the Hamiltonian in the nonorthogonal
basis of generator states |�(a)〉 [21], the weight function
f (a) in Eq. (1) is not the proper quantity to analyze the
GCM wave functions. However, it can be shown [10] that the
function

g(ε2) =
∫

N 1/2(ε2, ε
′
2)f (ε′

2)dε′
2, (7)

corresponds to a transformation of f (ε′
2) to an orthogonal ba-

sis, and therefore, is a proper representation for the distribution
of generator coordinates in the GCM wave functions.

Calculated g(ε2) values for 154,160Gd are shown in Fig. 3. It
is seen that the curve for the first 0+ state is Gaussian-like,
while the functions g(ε2) for the second and the third 0+
state oscillate. The second 0+ state has one and the third
0+ state has two nodes. These forms remind us to a one-
dimensional harmonic oscillator given in textbooks [22], with
some anharmonicities as discussed below. The first three 0+
states shown here correspond to the ground state and the lowest
two vibrational excitations (one phonon and two phonon
states) in a one-dimensional harmonic oscillator potential
characterized by the coordinate ε2.

Normalized probability distribution function g2(ε2) for
the ground state 0+

1 and the excited 0+
2 state are shown in

Fig. 4. For the 0+
1 state, it exhibits, as expected, a beautiful

Gaussian shape centered at the minimum of the energy
surface, where the ground-state deformation may be defined.
The deformation can be directly read from the figure as
ε2 = 0.25 for 154Gd and ε2 = 0.30 for 160Gd, respectively.
The distribution is wider for 154Gd, reflecting the softness
of this nucleus. Quite differently, g2(ε2) for the 0+

2 state are
much extended, with a distribution minimum, instead of a
maximum, at the ground-state deformation. The dip in the
0+

2 state corresponds to a node in the corresponding wave
function (see Fig. 3). There is not one, but two separate peaks in
the g2(ε2) curve corresponding to the enhanced probability at
the turning points of the oscillation. Obviously, the distribution
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FIG. 4. (Color online) Calculated probability function of defor-
mation for the ground state 0+

1 and the excited 0+
2 state in 154Gd and

160Gd. Symbols correspond to the discrete deformations used for the
integration in Eq. (4).

in deformation for the 0+
2 states is much more fragmented,

reflecting a vibrational nature of these states.
The distribution function g2(ε2) describes the probability

that the nucleus has the deformation ε2. The picture shown in
Fig. 4 clearly distinguishes the two 0+ states. While for the
0+

1 ground state, the system stays mainly at system’s deforma-
tion with the largest probability, such a probability for the 0+

2
state is very small. For the 0+

2 state, that the two peaks having
different heights lie separately at both sides of the equilibrium
indicates an anharmonic oscillation. Our calculation suggests a
stronger anharmonicity for the excited 0+

2 state in the strongly
deformed 160Gd. The anharmonicity increases with neutron
number because of the increasing excitation energy, where
the potential deviates more from an ideal quadratic shape.
Interestingly, the system prefers to have a larger probability in
the site of larger deformation, as the peak height at ε2 ≈ 0.38
is obviously higher. Moreover, the distance from a peak to
the equilibrium measures the average deviation from the
equilibrium. The fact that the distance is larger for 154Gd
indicates again the softness of this isotope.

Another observable that probes the structure of these
states is the matrix element of electric monopole transition,
〈�I

f |T̂ (E0)|�I
i 〉, from the members of the excited 0+ band

(labeled as i) to those of the ground-state band (labeled as f )
and connected by the E0 operator defined as

T̂ (E0) = eπ

∑
π

r2
π + eν

∑
ν

r2
ν . (8)

In Eq. (8), π and ν run over single protons and neutrons,
respectively, and eπ = 1.5e and eν = 0.5e are the effective
charges in the model. These effective charges are introduced as
the model has a core of 40 neutrons and 20 protons. We employ
the ‘standard’ values for the effective charges that describe
B(E2) transitions properly [6]. However, we are aware that
these values may not be the best ones for E0 transitions.

In Table I, we compare the calculated E0-matrix elements
for isotopes for which experimental data are available. The
data are converted from the ρ2(E0) values in Refs. [23,24]. It
can be seen that our calculation describes the data reasonably

TABLE I. Comparison of the calculated E0-matrix elements
(in e fm2) with experimental data [23,24].

Isotope I+
i → I+

f Cal. Exp.

154Gd 0+
2 → 0+

1 8.40 12(2)
2+

2 → 2+
1 8.41 11(1)

156Gd 0+
2 → 0+

1 6.73 8.6(21)
2+

2 → 2+
1 6.64 9.8(5)

158Gd 2+
2 → 2+

1 5.27 <2
158Dy 2+

2 → 2+
1 5.82 6.9(16)

160Dy 2+
2 → 2+

1 4.67 5.5(7)
164Er 2+

2 → 2+
1 4.55 3.1(8)

166Er 0+
2 → 0+

1 3.82 2.0(5)

well. In particular, with increasing masses, the decreasing
trend in E0 transition for the isotopes studied here is correctly
reproduced. Our numerical results indicate that the calculated
difference of these matrix elements for the spin states with
I = 0 and 2 (see 154,156Gd) is very small, consistent with the
general understanding that the electric monopole transition
is in principle independent of angular momentum [1,23]. The
small differences found in our calculations are possibly caused
by variations in the wave functions due to rotation. We note
that the calculations within the interacting boson model [25]
gave a large difference between the spin states with I = 0
and 2. The most recent calculation within the CHFB + 5DCH
theory [16] globally overestimated the E0 strengths by an
order of magnitude. The authors in Ref. [16] pointed out that
the disagreement with data is not uncommon but occurs also
in other models of nuclear structure. For example, enforcing
realistic model descriptions of M1 and E2 transitions or charge
radii, it is a usual consequence that calculated E0 strengths are
up to 10 times stronger than the experimental values [25–27].

IV. CONCLUSION

In order to describe shape fluctuations around the de-
formation equilibrium in deformed nuclei, we improved the
nuclear many-body wave functions by superimposing angular-
momentum- and number-projected states constructed with
different quadrupole deformation parameters. We calculate the
low-lying collective 0+ states in deformed rare-earth nuclei
and analyze the obtained wave functions in detail. It has
been found that these states exhibit clear features of quantum
oscillations, with large fluctuations in deformation found for
soft nuclei and strong anharmonicities for rigidly deformed
nuclei. Associated electric monopole matrix elements have
also been calculated. The results compare reasonably well with
available experimental data. With a single set of parameters,
the characteristic features of qualitatively different systems can
be distinguished by the resulting distribution functions, thus
providing new microscopic insight for the traditional collective
states in nuclei.

The present calculations are restricted to axial symmetry.
The inclusion of triaxial deformations is in principle possible,
but it goes beyond the scope of this investigation. Therefore,
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so far, γ -vibrations are not included and the open question of
admixtures of 2γ configurations in the 0+

2 state (see Ref. [28])
cannot be answered yet. Work in this direction is in progress.

Finally, we stress that although our discussion has been
restricted to nuclear systems, the same many-body technique
employed here is applicable to many other fields of physics
where quantum fluctuations are important.

ACKNOWLEDGMENT

Valuable discussions with G. Bertsch are acknowledged.
This work was supported by the National Natural Science
Foundation of China (Nos. 11135005 and 11075103), by the
973 Program of China (No. 2013CB834401), and by the DFG
Cluster of Excellence “Origin and Structure of the Universe”
(www.universe-cluster.de).

[1] A. Bohr and B. R. Mottelson, Nuclear Structure (W. A.
Benjamin, Inc., New York, 1975).

[2] F. Iachello, Phys. Rev. Lett. 53, 1427 (1984).
[3] J. L. Wood, J. Phys. Conf. Ser. 403, 012011 (2012).
[4] P. E. Garrett, J. Phys. G: Nucl. Part. Phys. 27, R1 (2001).
[5] J. Terasaki and J. Engel, Phys. Rev. C 84, 014332 (2011).
[6] K. Hara and Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995).
[7] Y. Sun (unpublished).
[8] J. L. Egido, H. J. Mang, and P. Ring, Nucl. Phys. A 339, 390

(1980).
[9] Y. Sun and C.-L. Wu, Phys. Rev. C 68, 024315 (2003).

[10] P. Ring and P. Schuck, The Nuclear Many-body Problem
(Springer-Verlag, New York, 1980).

[11] S. G. Nilsson, Mat. Fys. Medd. Dan. Vidensk. Selsk 29, 16
(1955).

[12] D. J. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).
[13] T. R. Rodrı́guez and J. L. Egido, Phys. Lett. B 705, 255 (2011).
[14] J. M. Yao, M. Bender, and P.-H. Heenen, Phys. Rev. C 87,

034322 (2013).
[15] Y. Fu, H. Mei, J. Xiang, Z. P. Li, J. M. Yao, and J. Meng, Phys.

Rev. C 87, 054305 (2013).
[16] J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire,
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