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The coupled dynamics of low-lying modes and various giant resonances are studied with the help of the
Wigner function moments method on the basis of time-dependent Hartree-Fock equations in the harmonic
oscillator model including spin-orbit potential plus quadrupole-quadrupole and spin-spin residual interactions.
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I. INTRODUCTION

The idea of the possible existence of the collective motion
in deformed nuclei similar to the scissors motion continues to
attract the attention of physicists who extend it to various kinds
of objects, not necessarily nuclei (e.g., magnetic traps, see the
review by Heyde et al. [1]) and invent new sorts of scissors,
for example, the rotational oscillations of neutron skin against
a proton-neutron core [2].

The nuclear scissors mode was predicted [3–6] as a counter-
rotation of protons against neutrons in deformed nuclei.
However, its collectivity turned out to be small. From random-
phase approximation (RPA) results which were in qualitative
agreement with experiment, it was even questioned whether
this mode is collective at all [7,8]. Purely phenomenological
models (such as, e.g., the two rotors model [9]) and the
sum rule approach [10] did not clear up the situation in this
respect. Finally in a very recent review [1] it is concluded
that the scissors mode is “weakly collective, but strong
on the single-particle scale” and, further [1], “The weakly
collective scissors mode excitation has become an ideal
test of models—especially microscopic models—of nuclear
vibrations. Most models are usually calibrated to reproduce
properties of strongly collective excitations (e.g., of Jπ =
2+ or 3− states, giant resonances, . . .). Weakly-collective
phenomena, however, force the models to make genuine
predictions and the fact that the transitions in question are
strong on the single-particle scale makes it impossible to
dismiss failures as a mere detail, especially in the light of
the overwhelming experimental evidence for them in many
nuclei [11,12].”

The Wigner function moments (WFM) or phase space
moments method turns out to be very useful in this situation.
On the one hand it is a purely microscopic method, because it is
based on the time-dependent Hartree-Fock (TDHF) equation.
On the other hand the method works with average values
(moments) of operators which have a direct relation to the
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considered phenomenon and, thus, make a natural bridge
with the macroscopic description. This makes it an ideal
instrument to describe the basic characteristics (energies and
excitation probabilities) of collective excitations such as, in
particular, the scissors mode. Our investigations have shown
that already the minimal set of collective variables, i.e.,
phase space moments up to quadratic order, is sufficient to
reproduce the most important property of the scissors mode: its
inevitable coexistence with the isovector giant quadrupole
resonance implying a deformation of the Fermi surface.

Further developments of the WFM method, namely, the
switch from TDHF to time-dependent Hartree-Fock Bogoli-
ubov equations, i.e., taking into account pair correlations,
allowed us to improve considerably the quantitative descrip-
tion of the scissors mode [13,14]: for rare-earth nuclei the
energies are reproduced with ∼10% accuracy and B(M1)
values are reduced by about a factor of 2 with respect to
their non-superfluid values. However, they remain about two
times too high with respect to experiment. We suspect that the
reason for this last discrepancy is hidden in the spin degrees of
freedom, which have so far been ignored by the WFM method.
One cannot exclude, that due to spin-dependent interactions
some part of the force of M1 transitions is shifted to the energy
region of 5–10 MeV, where a 1+ resonance of spin nature is
observed [7].

In a recent paper [15] the WFM method was applied for
the first time to solve the TDHF equations including spin
dynamics. As a first step, only the spin-orbit interaction was
included in the consideration, being the most important one
among all possible spin-dependent interactions because it
enters into the mean field. This allows one to understand the
structure of necessary modifications of the method avoiding
cumbersome calculations. The most remarkable result was
the discovery of a new type of nuclear collective motion:
rotational oscillations of “spin-up” nucleons with respect to
“spin-down” nucleons (the spin scissors mode). It turns out
that the experimentally observed group of peaks in the energy
interval 2–4 MeV corresponds very likely to two different
types of motion: the conventional (orbital) scissors mode and
this new kind of mode, i.e., the spin scissors mode.
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Three low-lying excitations of a new nature were found:
isovector and isoscalar spin scissors and the excitation gener-
ated by the relative motion of the orbital angular momentum
and the spin of the nucleus (they can change their absolute
values and directions keeping the total spin unchanged). In
the frame of the same approach ten high-lying excitations
were also obtained: well-known isoscalar and isovector giant
quadrupole resonances (GQR), two resonances of a new nature
describing isoscalar and isovector quadrupole vibrations of
“spin-up” nucleons with respect to “spin-down” nucleons, and
six resonances which can be interpreted as spin-flip modes of
various kinds and multipolarity.

The obtained results are very interesting; however, they are
only intermediate in our investigation of M1 modes. Our finite
goal is to get reasonable agreement with experimental data
for the conventional scissors mode, especially for its B(M1)
factors which remain about two times too strong. We should
keep in mind that only the standard spin-orbit potential was
taken into account in the paper [15]; spin-dependent residual
interactions were completely neglected.

The aim of this work is to get a qualitative understanding
of the influence of the spin-spin force on the new states
analyzed in Ref. [15], for instance, the spin scissors mode.
As a matter of fact we find that the spin-spin interaction does
not change the general picture of the positions of excitations
described in Ref. [15]. It pushes all levels up proportionally to
its strength without changing their order. The most interesting
result concerns the B(M1) values of both scissors modes—the
spin-spin interaction strongly redistributes M1 strength in
favor of the spin scissors mode. This is a very promising fact,
because it shows that after taking into account in addition
pairing [16] one may achieve agreement with experiment.

One of the main points of the present work is, indeed, be
that we are able to give a tentative explanation of a recent
experimental finding [17] where the B(M1) values in 232Th
of the two low-lying magnetic states are inverted in strength
in favor of the lowest, i.e., the spin scissors mode, when
cranking up the spin-spin interaction. Indeed, the explanation
with respect to a triaxial deformation given in Ref. [17] yields
a stronger B(M1) value for the higher-lying state, contrary to
observation, as remarked by the authors themselves.

The paper is organized as follows. In Sec. II the TDHF
equations for the 2 × 2 density matrix are formulated and their
Wigner transform is found. In Sec. III the model Hamiltonian
is analyzed and the mean field generated by the spin-spin
interaction is derived. In Sec. IV the collective variables are
defined and the respective dynamical equations are given.
In Sec. V the results of our calculations of energies and
B(M1) and B(E2) values are discussed. Last, remarks and
the outlook are presented in Sec. VI. The mathematical details
are concentrated in Appendices A and B.

II. WIGNER TRANSFORMATION OF TDHF
EQUATION WITH SPIN

The TDHF equation in operator form reads [16]

ih̄ ˙̂ρ = [ĥ, ρ̂]. (1)

Let us consider its matrix form in coordinate space keeping all
spin indices:

ih̄〈r, s| ˙̂ρ|r′′, s ′′〉 =
∑
s ′

∫
d3r ′[〈r, s|ĥ|r′, s ′〉〈r′, s ′|ρ̂|r′′, s ′′〉

−〈r, s|ρ̂|r′, s ′〉〈r′, s ′|ĥ|r′′, s ′′〉]. (2)

We do not specify the isospin indices to make the
formulas more transparent. They are reintroduced at
the end.

These equations are solved by the method of moments. The
idea of the method is illustrated in the section “Conservation
of expectation values of symmetry operators” in Ref [16].
For an arbitrary, time-independent, single-particle operator
Ĝ =∑ glmĉ

†
l ĉm, from Eq. (1) we obtain for the expectation

values in the state |�(t)〉 (Slater determinant) the following
equation:

ih̄
d

dt
〈�|Ĝ|�〉 = ih̄ Tr (gρ̇) = Tr (g[h, ρ]) = Tr([g, h]ρ)

= 〈�|[Ĝ, Ĥ ]|�〉. (3)

The last equality is fulfilled only in the case of full self-
consistency of the Hartree-Fock Hamiltonian ĥ. Equation (3)
is the essence of the WFM method. It is seen, that in the case
when Ĝ is the symmetry operator of the original many-body
Hamiltonian Ĥ , i.e., [Ĝ, Ĥ ] = 0, its expectation value is
conserved also in the HF approach (due to self-consistency,
even if [g, h] �= 0) generating the zero energy spurious mode.
From the point of view of the WFM method such expectation
values are just the integrals of motion. On the other hand, when
[Ĝ, Ĥ ] �= 0, Eq. (3) represents the dynamical equation for the
average value 〈Ĝ〉. It is natural to expect that it will be coupled
with dynamical equations for average values of some other
operators [18,19].

From the technical point of view it is more convenient to
work with the Wigner function f (r, p) instead of the density
matrix 〈r|ρ̂|r′〉, which allows us to consider its moments in
the phase space (r, p). To this end we rewrite Eq. (2) with
the help of the Wigner transformation [16]. To make the
formulas more readable we do not write out the coordinate
dependence (r, p) of the functions. With the conventional
notation

↑ for s = 1
2 and ↓ for s = − 1

2

the Wigner transform of Eq. (2) can be written as

ih̄ḟ ↑↑ = ih̄{h↑↑, f ↑↑} + h↑↓f ↓↑ − f ↑↓h↓↑ + ih̄

2
{h↑↓, f ↓↑} − ih̄

2
{f ↑↓, h↓↑} − h̄2

8
{{h↑↓, f ↓↑}} + h̄2

8
{{f ↑↓, h↓↑}} + · · ·,

ih̄ḟ ↑↓ = f ↑↓(h↑↑ − h↓↓) + ih̄

2
{(h↑↑ + h↓↓), f ↑↓} − h̄2

8
{{(h↑↑ − h↓↓), f ↑↓}} − h↑↓(f ↑↑ − f ↓↓)

+ ih̄

2
{h↑↓, (f ↑↑ + f ↓↓)} + h̄2

8
{{h↑↓, (f ↑↑ − f ↓↓)}} + · · ·, (4)
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where the functions h and f are the Wigner transforms of ĥ and ρ̂ respectively, {f, h} is the Poisson bracket of the
functions f and h, and {{f, h}} is their double Poisson bracket; the dots stand for terms proportional to higher powers of h̄. The
remaining two equations are obtained by the obvious change of arrows ↑↔↓.

It is useful to rewrite the above equations in terms of functions f + = f ↑↑ + f ↓↓ and f − = f ↑↑ − f ↓↓. By analogy with
isoscalar f n + f p and isovector f n − f p functions one can name the functions f + and f − as spin-scalar and spin-vector ones,
respectively. We have

ih̄ḟ + = ih̄

2
{h+, f +} + ih̄

2
{h−, f −} + ih̄{h↑↓, f ↓↑} + ih̄{h↓↑, f ↑↓} + · · · ,

ih̄ḟ − = ih̄

2
{h+, f −} + ih̄

2
{h−, f +} − 2h↓↑f ↑↓ + 2h↑↓f ↓↑ + h̄2

4
{{h↓↑, f ↑↓}} − h̄2

4
{{h↑↓, f ↓↑}} + · · · ,

(5)

ih̄ḟ ↑↓ = −h↑↓f − + h−f ↑↓ + ih̄

2
{h↑↓, f +} + ih̄

2
{h+, f ↑↓} + h̄2

8
{{h↑↓, f −}} − h̄2

8
{{h−, f ↑↓}} + · · · ,

ih̄ḟ ↓↑ = h↓↑f − − h−f ↓↑ + ih̄

2
{h↓↑, f +} + ih̄

2
{h+, f ↓↑} − h̄2

8
{{h↓↑, f −}} + h̄2

8
{{h−, f ↓↑}} + · · · ,

where h± = h↑↑ ± h↓↓.

III. MODEL HAMILTONIAN

The microscopic Hamiltonian of the model, harmonic
oscillator with spin-orbit potential plus separable quadrupole-
quadrupole and spin-spin residual interactions is given by

Ĥ =
A∑

i=1

[
p̂2

i

2m
+ 1

2
mω2r2

i − ηl̂i Ŝi

]
+ Ĥqq + Ĥss, (6)

with

Ĥqq =
2∑

μ=−2

(−1)μ

⎧⎨
⎩κ̄

Z∑
i

N∑
j

+κ

2

⎡
⎣ Z∑

i,j (i �=j )

+
N∑

i,j (i �=j )

⎤
⎦
⎫⎬
⎭

× q2−μ(ri)q2μ(rj ), (7)

Ĥss =
1∑

μ=−1

(−1)μ

⎧⎨
⎩χ̄

Z∑
i

N∑
j

+χ

2

⎡
⎣ Z∑

i,j (i �=j )

+
N∑

i,j (i �=j )

⎤
⎦
⎫⎬
⎭

× Ŝ−μ(i)Ŝμ(j ) δ(ri − rj ), (8)

where N and Z are the numbers of neutrons and protons and
Ŝμ are spin matrices [20]:

Ŝ1 = − h̄√
2

(
0 1

0 0

)
, Ŝ0 = h̄

2

(
1 0

0 −1

)
,

Ŝ−1 = h̄√
2

(
0 0

1 0

)
. (9)

The quadrupole operator q2μ(r) = √16π/5 r2Y2μ(θ, φ) can be
written as the tensor product:

q2μ(r) =
√

6{r ⊗ r}2μ,

where {r ⊗ r}λμ =∑σ,ν C
λμ
1σ,1νrσ rν ; cyclic coordinates r−1,

r0, and r1 are defined in Ref. [20]; and C
λμ
1σ,1ν is a Clebsch-

Gordan coefficient.

A. Mean field

Let us analyze the mean field generated by this Hamiltonian.

1. Spin-orbit potential

Written in cyclic coordinates, the spin-orbit part of the
Hamiltonian reads

ĥls = −η

1∑
μ=−1

(−)μl̂μŜ−μ = −η

(
l̂0

h̄
2 l̂−1

h̄√
2

−l̂1
h̄√
2

−l̂0
h̄
2

)
,

where [20]

l̂μ = −h̄
√

2
∑
ν,α

C
1μ
1ν,1αrν∇α (10)

and

l̂1 = h̄(r0∇1 − r1∇0) = − 1√
2

(l̂x + il̂y),

l̂0 = h̄(r−1∇1 − r1∇−1) = l̂z,

l̂−1 = h̄(r−1∇0 − r0∇−1) = 1√
2

(l̂x − il̂y), (11)

l̂x = −ih̄(y∇z − z∇y), l̂y = −ih̄(z∇x − x∇z),

l̂z = −ih̄(x∇y − y∇x).

Matrix elements of ĥls in coordinate space can be obviously
written [15] as

〈r1, s1|ĥls |r2, s2〉

= − h̄√
2
η

[
l̂0(r1)√

2
(δs1↑δs2↑ − δs1↓δs2↓)

+ l̂−1(r1)δs1↑δs2↓ − l̂1(r1)δs1↓δs2↑

]
δ(r1 − r2). (12)

The Wigner transform of Eq. (12) reads [15]

h
s1s2
ls (r, p) = −h̄

2
η[l0(r, p)(δs1↑δs2↑ − δs1↓δs2↓)

+
√

2l−1(r, p)δs1↑δs2↓ −
√

2l1(r, p)δs1↓δs2↑],

(13)

where lμ = −i
√

2
∑

ν,α C
1μ
1ν,1αrνpα .
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2. Quadrupole-quadrupole interaction

The contribution of Ĥqq to the mean-field potential is easily
found by replacing one of the q2μ operators by the average
value. We have

V τ
qq = 6

∑
μ

(−1)μZτ+
2−μ{r ⊗ r}2μ. (14)

Here

Zn+
2μ = κRn+

2μ + κ̄R
p+
2μ , Z

p+
2μ = κR

p+
2μ + κ̄Rn+

2μ ,
(15)

Rτ+
λμ (t) =

∫
d(p, r){r ⊗ r}λμf τ+(r, p, t),

with
∫

d(p, r) ≡ (2πh̄)−3
∫

d3p
∫

d3r and τ being the isospin
index.

3. Spin-spin interaction

The analogous expression for Ĥss is found in the standard
way, with the Hartree-Fock contribution given [16] by

�kk′(t) =
∑
ll′

v̄kl′k′lρll′ (t), (16)

where v̄kl′k′l is the antisymmetrized matrix element of the
two-body interaction v(1, 2). Identifying the indices k, k′, l,
and l′ with the set of coordinates (r, s, τ ), i.e. (position, spin,
isospin), one rewrites Eq. (16) as

V HF(r1, s1, τ1; r′
1, s

′
1, τ

′
1; t) =

∫
d3r2

∫
d3r ′

2

∑
s2,s

′
2

∑
τ2,τ

′
2

〈r1, s1, τ1; r2, s2, τ2|v̂|r′
1, s

′
1, τ

′
1; r′

2, s
′
2, τ

′
2〉a.s.ρ(r′

2, s
′
2, τ

′
2; r2, s2, τ2; t).

Let us consider the neutron-proton part of the spin-spin interaction. In this case

v̂ = v(r̂1 − r̂2)
1∑

μ=−1

(−1)μŜ−μ(1)Ŝμ(2)δτ1pδτ2n,

where r̂1 is the position operator: r̂1|r1〉 = r1|r1〉, 〈r1|r̂1|r′
1〉 = 〈r1|r′

1〉r′
1 = δ(r1 − r′

1)r′
1.

For the Hartree term one finds

〈r1, s1, τ1; r2, s2, τ2|v̂|r′
1, s

′
1, τ

′
1; r′

2, s
′
2, τ

′
2〉

= δ(r1 − r′
1)δ(r2 − r′

2)v(r′
1 − r′

2)
1∑

μ=−1

(−1)μ〈s1, τ1; s2, τ2|Ŝ−μ(1)Ŝμ(2)δτ1pδτ2n|s ′
1, τ

′
1; s ′

2, τ
′
2〉,

V H (r1, s1, τ1; r′
1, s

′
1, τ

′
1; t) =

∫
d3r2

∫
d3r ′

2

∑
s2,s

′
2

∑
τ2,τ

′
2

〈r1, s1, τ1; r2, s2, τ2|v̂|r′
1, s

′
1, τ

′
1; r′

2, s
′
2, τ

′
2〉ρ(r′

2, s
′
2, τ

′
2; r2, s2, τ2; t)

= δτ1pδτ ′
1p

∑
s2,s

′
2

1∑
μ=−1

(−1)μ〈s1|Ŝ−μ(1)|s ′
1〉〈s2|Ŝμ(2)|s ′

2〉δ(r1 − r′
1)
∫

d3r2v(r1 − r2)ρ(r2, s
′
2, n; r2, s2, n; t).

The Fock term reads

〈r1, s1, τ1; r2, s2, τ2|v̂|r′
2, s

′
2, τ

′
2; r′

1, s
′
1, τ

′
1〉

= δ(r1 − r′
2)δ(r2 − r′

1)v(r′
2 − r′

1)
1∑

μ=−1

(−1)μ〈s1, τ1; s2, τ2|Ŝ−μ(1)Ŝμ(2)δτ1pδτ2n|s ′
2, τ

′
2; s ′

1, τ
′
1〉,

V F (r1, s1, τ1; r′
1, s

′
1, τ

′
1; t) = −

∫
d3r2

∫
d3r ′

2

∑
s2,s

′
2

∑
τ2,τ

′
2

〈r1, s1, τ1; r2, s2, τ2|v̂|r′
2, s

′
2, τ

′
2; r′

1, s
′
1, τ

′
1〉ρ(r′

2, s
′
2, τ

′
2; r2, s2, τ2; t)

= −δτ1pδτ ′
1n

∑
s2,s

′
2

1∑
μ=−1

(−1)μ〈s1|Ŝ−μ(1)|s ′
2〉〈s2|Ŝμ(2)|s ′

1〉v(r1 − r′
1)ρ(r1, s

′
2, p; r′

1, s2, n; t).

Taking into account the relations

〈s|Ŝ−1|s ′〉 = h̄√
2
δs↓δs ′↑, 〈s|Ŝ0|s ′〉 = h̄

2
δs,s ′ (δs↑ − δs↓), 〈s|Ŝ1|s ′〉 = − h̄√

2
δs↑δs ′↓,
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and v(r − r′) = χ̄δ(r − r′), one finds the following for the mean field generated by the proton-neutron part of Ĥss:

�pn(r, s, τ ; r′, s ′, τ ′; t) = χ̄
h̄2

4
{δτpδτ ′p[δs↓δs ′↑ρ(r,↓, n; r′,↑, n; t) + δs↑δs ′↓ρ(r,↑, n; r′,↓, n; t)]

− δτpδτ ′n[δs↓δs ′↓ρ(r,↑, p; r′,↑, n; t) + δs↑δs ′↑ρ(r,↓, p; r′,↓, n; t)]

+ 1

2
δτpδτ ′p(δs↑δs ′↑ − δs↓δs ′↓)[ρ(r,↑, n; r′,↑, n; t) − ρ(r,↓, n; r′,↓, n; t)]

+ 1

2
δτpδτ ′n[δs↑δs ′↓ρ(r,↑, p; r′,↓, n; t) + δs↓δs ′↑ρ(r,↓, p; r′,↑, n; t)

− δs↑δs ′↑ρ(r,↑, p; r′,↑, n; t) − δs↓δs ′↓ρ(r,↓, p; r′,↓, n; t)]}δ(r − r′) + χ̄
h̄2

4
{p ↔ n}δ(r − r′).

(17)

The expression for the mean field �pp(r, s, τ ; r′, s ′, τ ′; t) generated by the proton-proton part of Ĥss can be obtained from Eq. (17)
by replacing index n by p and the strength constant χ̄ by χ . The proton mean field is defined as the sum of these two terms
�pp(r, s, p; r′, s ′, p; t) + �pn(r, s, p; r′, s ′, p; t). Its Wigner transform can be written as

V ss ′
p (r, t) = 3χ

h̄2

8
{δs↓δs ′↑n↓↑

p + δs↑δs ′↓n↑↓
p − δs↓δs ′↓n↑↑

p − δs↑δs ′↑n↓↓
p }

+ χ̄
h̄2

8
{2δs↓δs ′↑n↓↑

n + 2δs↑δs ′↓n↑↓
n + (δs↑δs ′↑ − δs↓δs ′↓)(n↑↑

n − n↓↓
n )}, (18)

where nss ′
τ (r, t) = ∫ d3p

(2πh̄)3 f
ss ′
τ (r, p, t). The Wigner transform of the neutron mean field V ss ′

n is obtained from Eq. (18) by
the obvious change of indices p ↔ n. The Wigner function f and the density matrix ρ are connected by the relation
f ss ′

ττ ′ (r, p, t) = ∫ d3q e−ipq/h̄ρ(r1, s, τ ; r2, s
′, τ ′; t), with q = r1 − r2 and r = 1

2 (r1 + r2). Integrating this relation over p with
τ ′ = τ one finds

nss ′
τ (r, t) = ρ(r, s, τ ; r, s ′, τ ; t).

By definition the diagonal elements of the density matrix describe the proper densities. Therefore nss
τ (r, t) is the density of

spin-up nucleons (if s =↑) or spin-down nucleons (if s =↓). Off diagonal in spin elements of the density matrix nss ′
τ (r, t) are

spin-flip characteristics and can be called spin-flip densities.

IV. EQUATIONS OF MOTION

Integrating the set of Eqs. (5) over phase space with the weights

W = {r ⊗ p}λμ, {r ⊗ r}λμ, {p ⊗ p}λμ, and 1, (19)

one gets dynamic equations for the following collective variables:

L
τς
λμ(t) =

∫
d(p, r){r ⊗ p}λμf τς (r, p, t), R

τς
λμ(t) =

∫
d(p, r){r ⊗ r}λμf τς (r, p, t),

(20)
P

τς
λμ (t) =

∫
d(p, r){p ⊗ p}λμf τς (r, p, t), F τς (t) =

∫
d(p, r)f τς (r, p, t),

where ς = +, −, ↑↓, ↓↑ . We already called the functions f + = f ↑↑ + f ↓↓ and f − = f ↑↑ − f ↓↓ spin-scalar and spin-vector
ones, respectively. It is, therefore, natural to call the corresponding collective variables X+

λμ(t) and X−
λμ(t) spin-scalar and

spin-vector variables. The required expressions for h±, h↑↓, and h↓↑ are

h+
τ = p2

m
+ m ω2r2 + 12

∑
μ

(−1)μZτ+
2μ (t){r ⊗ r}2−μ + V +

τ (r, t),

h−
τ = −h̄ηl0 + V −

τ (r, t), h↑↓
τ = − h̄√

2
ηl−1 + V ↑↓

τ (r, t), h↓↑
τ = h̄√

2
ηl1 + V ↓↑

τ (r, t),

where according to Eq. (18)

V +
p (r, t) = −3

h̄2

8
χn+

p (r, t), V −
p (r, t) = 3

h̄2

8
χn−

p (r, t) + h̄2

4
χ̄n−

n (r, t),
(21)

V ↑↓
p (r, t) = 3

h̄2

8
χn↑↓

p (r, t) + h̄2

4
χ̄n↑↓

n (r, t), V ↓↑
p (r, t) = 3

h̄2

8
χn↓↑

p (r, t) + h̄2

4
χ̄n↓↑

n (r, t),

and the neutron potentials V
ς
n are obtained by the obvious change of indices p ↔ n.
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The integration yields

L̇+
λμ = 1

m
P +

λμ − m ω2R+
λμ + 12

√
5

2∑
j=0

√
2j + 1

{11j

2λ1

}{Z+
2 ⊗ R+

j }λμ

− ih̄
η

2
[μL−

λμ +
√

(λ − μ)(λ + μ + 1)L↑↓
λμ+1 +

√
(λ + μ)(λ − μ + 1)L↓↑

λμ−1]

−
∫

d3r

[
1

2
n+{r ⊗ ∇}λμV + + 1

2
n−{r ⊗ ∇}λμV − + n↓↑{r ⊗ ∇}λμV ↑↓ + n↑↓{r ⊗ ∇}λμV ↓↑

]
,

L̇−
λμ = 1

m
P −

λμ − m ω2R−
λμ + 12

√
5

2∑
j=0

√
2j + 1

{11j

2λ1

}{Z+
2 ⊗ R−

j }λμ − ih̄
η

2
μL+

λμ − h̄2

2
ηδλ,1[δμ,−1F

↑↓ + δμ,1F
↓↑]

− 1

2

∫
d3r[n−{r ⊗ ∇}λμV + + n+{r ⊗ ∇}λμV −] − 2

i

h̄

∫
d(p, r){r ⊗ p}λμ[h↑↓f ↓↑ − h↓↑f ↑↓],

L̇
↑↓
λμ+1 = 1

m
P

↑↓
λμ+1 − m ω2R

↑↓
λμ+1 + 12

√
5

2∑
j=0

√
2j + 1

{11j

2λ1

}{Z+
2 ⊗ R

↑↓
j }λμ+1

− ih̄
η

4

√
(λ − μ)(λ + μ + 1)L+

λμ + h̄2

4
ηδλ,1[δμ,0F

− +
√

2δμ,−1F
↑↓]

− 1

2

∫
d3r[n↑↓{r ⊗ ∇}λμ+1V

+ + n+{r ⊗ ∇}λμ+1V
↑↓] − i

h̄

∫
d(p, r){r ⊗ p}λμ+1[h−f ↑↓ − h↑↓f −],

L̇
↓↑
λμ−1 = 1

m
P

↓↑
λμ−1 − m ω2R

↓↑
λμ−1 + 12

√
5

2∑
j=0

√
2j + 1{11j

2λ1}{Z+
2 ⊗ R

↓↑
j }λμ−1

− ih̄
η

4

√
(λ + μ)(λ − μ + 1)L+

λμ + h̄2

4
ηδλ,1[δμ,0F

− −
√

2δμ,1F
↓↑]

− 1

2

∫
d3r[n↓↑{r ⊗ ∇}λμ−1V

+ + n+{r ⊗ ∇}λμ−1V
↓↑] − i

h̄

∫
d(p, r){r ⊗ p}λμ−1[h↓↑f − − h−f ↓↑],

Ḟ− = 2η[L↓↑
1−1 + L

↑↓
11 ], Ḟ ↑↓ = −η[L−

1−1 −
√

2L
↑↓
10 ], Ḟ ↓↑ = −η[L−

11 +
√

2L
↓↑
10 ],

Ṙ+
λμ = 2

m
L+

λμ − ih̄
η

2
[μR−

λμ +
√

(λ − μ)(λ + μ + 1)R↑↓
λμ+1 +

√
(λ + μ)(λ − μ + 1)R↓↑

λμ−1],

Ṙ−
λμ = 2

m
L−

λμ − ih̄
η

2
μR+

λμ − 2
i

h̄

∫
d(p, r){r ⊗ r}λμ[h↑↓f ↓↑ − h↓↑f ↑↓],

Ṙ
↑↓
λμ+1 = 2

m
L

↑↓
λμ+1 − ih̄

η

4

√
(λ − μ)(λ + μ + 1)R+

λμ − i

h̄

∫
d(p, r){r ⊗ r}λμ+1[h−f ↑↓ − h↑↓f −],

Ṙ
↓↑
λμ−1 = 2

m
L

↓↑
λμ−1 − ih̄

η

4

√
(λ + μ)(λ − μ + 1)R+

λμ − i

h̄

∫
d(p, r){r ⊗ r}λμ−1[h↓↑f − − h−f ↓↑],

Ṗ +
λμ = −2m ω2L+

λμ + 24
√

5
2∑

j=0

√
2j + 1

{11j

2λ1

}{Z+
2 ⊗ L+

j }λμ

− ih̄
η

2
[μP −

λμ +
√

(λ − μ)(λ + μ + 1)P ↑↓
λμ+1 +

√
(λ + μ)(λ − μ + 1)P ↓↑

λμ−1]

−
∫

d3r[{J+ ⊗ ∇}λμV + + {J− ⊗ ∇}λμV − + 2{J ↓↑ ⊗ ∇}λμV ↑↓ + 2{J ↑↓ ⊗ ∇}λμV ↓↑],

Ṗ −
λμ = −2m ω2L−

λμ + 24
√

5
2∑

j=0

√
2j + 1

{11j

2λ1

}{Z+
2 ⊗ L−

j }λμ − ih̄
η

2
μP +

λμ

−
∫

d3r[{J− ⊗ ∇}λμV + + {J+ ⊗ ∇}λμV −] − 2
i

h̄

∫
d(p, r){p ⊗ p}λμ[h↑↓f ↓↑ − h↓↑f ↑↓],

Ṗ
↑↓
λμ+1 = −2m ω2L

↑↓
λμ+1 + 24

√
5

2∑
j=0

√
2j + 1

{11j

2λ1

}{Z+
2 ⊗ L

↑↓
j }λμ+1 − ih̄

η

4

√
(λ − μ)(λ + μ + 1)P +

λμ

−
∫

d3r[{J ↑↓ ⊗ ∇}λμ+1V
+ + {J+ ⊗ ∇}λμ+1V

↑↓] − i

h̄

∫
d(p, r){p ⊗ p}λμ+1[h−f ↑↓ − h↑↓f −],
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Ṗ
↓↑
λμ−1 = −2m ω2L

↓↑
λμ−1 + 24

√
5

2∑
j=0

√
2j + 1

{11j

2λ1

}{Z+
2 ⊗ L

↓↑
j }λμ−1 − ih̄

η

4

√
(λ + μ)(λ − μ + 1)P +

λμ

−
∫

d3r[{J ↓↑ ⊗ ∇}λμ−1V
+ + {J+ ⊗ ∇}λμ−1V

↓↑] − i

h̄

∫
d(p, r){p ⊗ p}λμ−1[h↓↑f − − h−f ↓↑], (22)

where {11j
2λ1} is the Wigner 6j -symbol and J ς

ν (r, t) =∫
d3p

(2πh̄)3 pνf
ς (r, p, t) is the current. For the sake of simplicity

the isospin and the time dependence of tensors is not written
out. It is easy to see that Eqs. (22) are nonlinear due to
quadrupole-quadrupole and spin-spin interactions. We solve
them in the small amplitude approximation, by linearizing
the equations. This procedure helps also to solve another
problem: to represent the integral terms in Eqs. (22) as the
linear combination of collective variables (20), which allows
one to close the whole set of Eqs. (22). The detailed analysis
of the integral terms is given in Appendix A.

We are interested in the scissors mode with quantum
number Kπ = 1+. Therefore, we only need the part of the
dynamic equations with μ = 1.

A. Linearized equations (μ = 1): Isovector and isoscalar

Writing all variables as a sum of their equilibrium value
plus a small deviation,

Rλμ(t) = Rλμ(eq) + Rλμ(t), Pλμ(t) = Pλμ(eq) + Pλμ(t),

Lλμ(t) = Lλμ(eq) + Lλμ(t), F (t) = F (eq) + F(t),

and neglecting quadratic deviations, one obtains the linearized
equations. Naturally one needs to know the equilibrium values
of all variables. Evident equilibrium conditions for an axially
symmetric nucleus are

R+
2±1(eq) = R+

2±2(eq) = 0, R+
20(eq) �= 0. (23)

It is obvious that all ground-state properties of the system of
spin-up nucleons are identical to the ones of the system of

nucleons with spin down. Therefore

R−
λμ(eq) = P −

λμ(eq) = L−
λμ(eq) = 0. (24)

We also suppose

L+
λμ(eq) = L

↑↓
λμ(eq) = L

↓↑
λμ(eq) = 0 and

(25)
R

↑↓
λμ(eq) = R

↓↑
λμ(eq) = 0.

Let us recall that all variables and equilibrium quantities
R+

λ0(eq) and Z+
20(eq) in Eqs. (22) have isospin indices τ =

n, p. All the difference between neutron and proton systems is
contained in the mean-field quantities Zτ+

20 (eq) and V ς
τ , which

are different for neutrons and protons [see Eqs. (15) and (21)].
It is convenient to rewrite the dynamical equations in terms

of isovector and isoscalar variables:

Rλμ = Rn
λμ + R

p
λμ, Pλμ = P n

λμ + P
p
λμ, Lλμ = Ln

λμ + L
p
λμ,

R̄λμ = Rn
λμ−R

p
λμ, P̄λμ = P n

λμ − P
p
λμ, L̄λμ = Ln

λμ − L
p
λμ.

(26)

It also is natural to define isovector and isoscalar strength
constants κ1 = 1

2 (κ − κ̄) and κ0 = 1
2 (κ + κ̄) connected by the

relation κ1 = ακ0 [18]. Then the equations for the neutron and
proton systems are transformed into isovector and isoscalar
ones. Supposing that all equilibrium characteristics of the
proton system are equal to those of the neutron system, one
decouples isovector and isoscalar equations. This approxima-
tions looks rather crude; nevertheless the possible corrections
to it are very small, being of the order (N−Z

A
)2. With the help

of the above equilibrium relations one arrives at the following
final set of equations for the isovector system:

˙̄L+
21 = 1

m
P̄+

21 − [m ω2 − 4
√

3ακ0R
eq
00 +

√
6(1 + α)κ0R

eq
20

]R̄+
21 − ih̄

η

2
[L̄−

21 + 2L̄↑↓
22 +

√
6L̄↓↑

20 ],

˙̄L−
21 = 1

m
P̄−

21 −
[
m ω2 +

√
6κ0R

eq
20 −

√
3

20
h̄2

(
χ − χ̄

3

)(
I1

a2
0

+ I1

a2
1

)(
a2

1

A2
− a2

0

A1

)]
R̄−

21 − ih̄
η

2
L̄+

21,

˙̄L↑↓
22 = 1

m
P̄↑↓

22 −
[
m ω2 − 2

√
6κ0R

eq
20 −

√
3

5
h̄2

(
χ − χ̄

3

)
I1

A2

]
R̄↑↓

22 − ih̄
η

2
L̄+

21,

˙̄L↓↑
20 = 1

m
P̄↓↑

20 − [m ω2 + 2
√

6κ0R
eq
20

]R̄↓↑
20 + 4

√
3κ0R

eq
20 R̄↓↑

00 − ih̄
η

2

√
3

2
L̄+

21

+
√

3

15
h̄2

(
χ − χ̄

3

)
I1

[(
1

A2
− 2

A1

)
R̄↓↑

20 +
√

2

(
1

A2
+ 1

A1

)
R̄↓↑

00

]
,

˙̄L+
11 = −3

√
6(1 − α)κ0R

eq
20 R̄+

21 − ih̄
η

2
[L̄−

11 +
√

2L̄↓↑
10 ],

˙̄L−
11 = −

[
3
√

6κ0R
eq
20 −

√
3

20
h̄2

(
χ − χ̄

3

)(
I1

a2
0

− I1

a2
1

)(
a2

1

A2
− a2

0

A1

)]
R̄−

21 − h̄
η

2
[iL̄+

11 + h̄F̄↓↑],
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˙̄L↓↑
10 = −h̄

η

2
√

2
[iL̄+

11 + h̄F̄↓↑], ˙̄F↓↑ = −η[L̄−
11 +

√
2L̄↓↑

10 ], ˙̄R+
21 = 2

m
L̄+

21 − ih̄
η

2
[R̄−

21 + 2R̄↑↓
22 +

√
6R̄↓↑

20 ],

˙̄R−
21 = 2

m
L̄−

21 − ih̄
η

2
R̄+

21,
˙̄R↑↓

22 = 2

m
L̄↑↓

22 − ih̄
η

2
R̄+

21,
˙̄R↓↑

20 = 2

m
L̄↓↑

20 − ih̄
η

2

√
3

2
R̄+

21,

˙̄P+
21 = −2

[
m ω2 +

√
6κ0R

eq
20

]L̄+
21 + 6

√
6κ0R

eq
20L̄+

11 − ih̄
η

2
[P̄−

21 + 2P̄↑↓
22 +

√
6P̄↓↑

20 ]

+3
√

3

4
h̄2χ

I2

A1A2
[(A1 − A2)L̄+

21 + (A1 + A2)L̄+
11],

˙̄P−
21 = −2

[
m ω2 +

√
6κ0R

eq
20

]L̄−
21 + 6

√
6κ0R

eq
20L̄−

11 − ih̄
η

2
P̄+

21 + 3
√

3

4
h̄2χ

I2

A1A2
[(A1 − A2) L̄−

21 + (A1 + A2) L̄−
11],

˙̄P↑↓
22 = −

[
2m ω2 − 4

√
6κ0R

eq
20−

3
√

3

2
h̄2χ

I2

A2

]
L̄↑↓

22 −ih̄
η

2
P̄+

21,

˙̄P↓↑
20 = −[2m ω2 + 4

√
6κ0R

eq
20

]L̄↓↑
20 + 8

√
3κ0R

eq
20L̄↓↑

00 − ih̄
η

2

√
3

2
P̄+

21 +
√

3

2
h̄2χ

I2

A1A2
[(A1 − 2A2)L̄↓↑

20 +
√

2(A1 + A2)L̄↓↑
00 ],

˙̄L↓↑
00 = 1

m
P̄↓↑

00 − mω2R̄↓↑
00 +4

√
3κ0R

eq
20 R̄↓↑

20 + 1

2
√

3
h̄2

[(
χ − χ̄

3

)
I1 − 9

4
χI2

] [(
2

A2
− 1

A1

)
R̄↓↑

00 +
√

2

(
1

A2
+ 1

A1

)
R̄↓↑

20

]
,

˙̄R↓↑
00 = 2

m
L̄↓↑

00 ,

˙̄P↓↑
00 = −2m ω2L̄↓↑

00 + 8
√

3κ0R
eq
20 L̄↓↑

20 +
√

3

2
h̄2χI2

[(
2

A2
− 1

A1

)
L̄↓↑

00 +
√

2

(
1

A2
+ 1

A1

)
L̄↓↑

20

]
, (27)

where A1 and A2 are defined in Appendix B; κ0 = −mω̄2/(4Q00) [21] with ω̄2 = ω2/(1 + 2
3δ) and Q00 = A 3

5R2
0; and a−1 =

a1 = R0( 1−(2/3)δ
1+(4/3)δ )1/6 and a0 = R0( 1−(2/3)δ

1+(4/3)δ )−1/3 are semiaxes of ellipsoid by which the shape of nucleus is approximated, where

δ is the deformation parameter and R0 = 1.2A1/3 fm;

I1 = π

4

∫ ∞

0
dr r4

(
∂n(r)

∂r

)2

, I2 = π

4

∫ ∞

0
dr r2n(r)2, n(r) = n+

p + n+
n = n0

1 + e(r−R0)/a
.

The isoscalar set of equations is easily obtained from Eqs. (27) by taking α = 1, replacing χ̄ → −χ̄ , and removing the overbar
from all the variables.

B. Integrals of motion and the angular momentum conservation

Imposing the time evolution via eiEt/h̄ for all variables one transforms Eqs. (27) into a set of algebraic equations. It contains
19 equations. To find the eigenvalues we construct the 19 × 19 determinant and seek (numerically) for its zeros. We find three
roots with exactly E = 0 and 16 roots that are nonzero: eight positive ones (shown in the tables) and eight negative ones (not
shown, the situation is exactly same as with RPA; see Ref. [19] for connection of the WFM and the RPA).

The integrals of motion corresponding to Goldstone modes (zero roots) can be found analytically. In the isovector case we
have

h̄
η

2
(2iL̄+

11 + h̄ F̄↓↑) + (1 − α)

(
2mω̄2δC↓↑ − 9

√
3 χI2

16
(
1 − 2

3δ
)
Q00

�

m
P̄↓↑

00

)
= const, (28)

√
3

2
R̄↑↓

22 − R̄↓↑
20 −

√
2R̄↓↑

00 + �

m

(√
3

2
P̄↑↓

22 − P̄↓↑
20 −

√
2P̄↓↑

00

)
= const, (29)

ih̄
η

2
�L+

21 + �

m
P̄↑↓

22 +
(

1 − �

4
mh̄2η2

)
R̄↑↓

22 − �

8
mh̄2η2(R̄−

21 +
√

6R̄↓↑
20 )

−
√

3

2δ

{
mh̄2�

[
3

4
η2 − (1 − α)

(
1 + δ

3

)
ω̄2

]
− 1

}
C↓↑ = const, (30)

where

C↓↑ ≡ 2

3

√
2 δR̄↓↑

20 +
(

1 + 2

3
δ

)
R̄↓↑

00 + �

m

(
1 + 4

3
δ

)
P̄↓↑

00 , � ≡
[
mω̄2

(
1 + 4

3
δ

)
+ 9χI2

16
(
1 − 2

3δ
)
Q00

]−1

.
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Isoscalar integrals of motion are easily obtained from
isovector ones by taking α = 1 and removing bars above all
variables. In the case of harmonic oscillations all constants are
obviously equal to zero.

The physical sense of variables entering into the above
integrals of motion can be understood with the help of
their definitions (20). The variables (or matrix elements)
Rss ′

λμ(t) describe the quadrupole (λ = 2) and monopole (λ = 0)
deformation of the density of nucleons with spin s, if s = s ′;
otherwise they describe the simultaneous deformation and spin
flip. The variables P ss ′

λμ(t) describe the analogous situation in
the momentum space, i.e., the Fermi surface deformation, if
s = s ′, or the deformation accompanied by spin flip, if s �= s ′.
The variables Lss ′

λμ(t) with λ = 2, 0 describe the same situation

in the phase space (r, p). The variables Lss ′
1μ(t) describe the

dynamics of the orbital angular momentum of nucleons with
spin s, if s = s ′; otherwise they describe the dynamics of
the orbital angular momentum together with spin flip. The
variables F ss ′

(t) describe the dynamics of the number of
nucleons with spin s, if s = s ′, or dynamics of spin, i.e., the
spin flip, if s �= s ′.

Having this information we can give the physical interpre-
tation of some integrals of motion. The first isoscalar integral
is the most simple one,

2iL+
11(t) + h̄F↓↑(t) = const,

and has a clear physical interpretation—the conservation of
the total angular momentum 〈Ĵ1〉 = 〈l̂1〉 + 〈Ŝ1〉. Really, by
definition

〈l̂1〉 = Tr(l̂1ρ̂) =
∑

s

∫
d3r

∫
d3r ′〈r|l̂1|r′〉〈r′, s|ρ̂|r, s〉

=
∑

s

∫
d3r

∫
d3r ′ l̂1(r)δ(r − r′)〈r′, s|ρ̂|r, s〉

=
∫

d3r l̂1(r)[〈r|ρ̂|r〉↑↑ + 〈r|ρ̂|r〉↓↓]

=
∫

d(p, r)l1(r, p)f +(r, p, t)

= −i
√

2
∫

d(p, r){r ⊗ p}11f
+(r, p, t) = −i

√
2L+

11(t).

(31)

The average value of the spin operator Ŝ1 reads

〈Ŝ1〉 = Tr(Ŝ1ρ̂) =
∑
s,s ′

∫
d3r〈s|Ŝ1|s ′〉〈r, s ′|ρ̂|r, s〉

=
∑
s,s ′

〈s|Ŝ1|s ′〉
∫

d(p, r)f s ′s(r, p, t)

= − h̄√
2

∑
s,s ′

δs↑δs ′↓F s ′s(t) = − h̄√
2
F ↓↑(t). (32)

As a result 〈Ĵ1〉 = − 1√
2
(2iL+

11 + h̄F ↓↑). It is easy to see that
such a combination of the respective equations of motion
in Eqs. (27) is equal to zero in the isoscalar case (α = 1);
i.e., the total angular momentum is conserved. The isovector
counterpart of this integral of motion implies that the relative

(neutrons with respect of protons) total angular momentum
oscillates in phase with the linear combination of three
variables, R̄↓↑

20 , P̄↓↑
00 , and R̄↓↑

00 .
The second integral of motion can be interpreted saying

that the definite combination of variables (
√

3
2 P̄↑↓

22 − P̄↓↑
20 −√

2P̄↓↑
00 ), describing the quadrupole and monopole deforma-

tions of the Fermi surface together with the spin flip, oscillates
out of phase with the exactly the same combination of variables

(
√

3
2R̄↑↓

22 − R̄↓↑
20 − √

2R̄↓↑
00 ), describing the quadrupole and

monopole deformations of the density distribution together
with the spin flip. It is interesting to note that in the analogous
problem without spin [18] there is the similar integral, saying
that the nuclear density and the Fermi surface oscillate out of
phase. The physical interpretation of the last integral seems
not to be obvious.

Let us prove that the conservation of the total angular
momentum follows from the set of Eqs. (22), which describe
the motion without any restrictions on the values (small or
large) of amplitudes. It is necessary to consider the first
equation of Eqs. (22) in the isoscalar case for λ = μ = 1.
Having in mind that R+

11 = P +
11 = 0 we find

L̇τ+
11 = 60

{112
211

}{
Zτ+

2 ⊗ Rτ+
2

}
11 − ih̄

η

2

[
Lτ−

11 +
√

2L
τ↓↑
10

]
−
∫

d3r

[
1

2
nτ+{r ⊗ ∇}11V

+
τ + 1

2
nτ−{r ⊗ ∇}11V

−
τ

+ nτ↓↑{r ⊗ ∇}11V
↑↓
τ + nτ↑↓{r ⊗ ∇}11V

↓↑
τ

]
. (33)

Let us analyze the first term. We have the following for protons:{
Z

p+
2 ⊗ R

p+
2

}
11 =

∑
νσ

C11
2ν,2σ Z

p+
2ν R

p+
2σ

=
∑
νσ

C11
2ν,2σ

(
κR

p+
2ν + κ̄Rn+

2ν

)
R

p+
2σ

= κ̄
∑
νσ

C11
2ν,2σRn+

2ν R
p+
2σ . (34)

We have used here the definition (15) of Zτ+
2μ and the equality

C11
2ν,2σ = −C11

2σ,2ν . Analogously one finds the following for
neutrons:{

Zn+
2 ⊗ Rn+

2

}
11 =

∑
νσ

C11
2ν,2σ

(
κRn+

2ν + κ̄R
p+
2ν

)
Rn+

2σ

= κ̄
∑
νσ

C11
2ν,2σR

p+
2ν Rn+

2σ . (35)

The sum of Eqs. (34) and (35) is obviously equal to zero.
The integral in Eq. (33) consists of four terms. The first one

is [see the definition of V +
τ in Eqs. (21)]

− 3

16
h̄2χ

∫
d3r n+

τ C11
11,10 [r1∇0 − r0∇1] n+

τ

= − 3

32
h̄2χ

∫
d3r C11

11,10 [r1∇0 − r0∇1] (n+
τ )2. (36)

Integrating by parts we find that this integral is equal to zero
because ∇1r0 = ∇0r1 = 0. The second term of the integral in
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Eq. (33) can be written (for protons) as

h̄2

8

∫
d3r n−

p C11
11,10 [r1∇0 − r0∇1]

(
3

2
χn−

p + χ̄n−
n

)
= h̄2

8
χ̄

∫
d3r C11

11,10n
−
p [r1∇0 − r0∇1] n−

n . (37)

Changing here the indices p ↔ n we obtain the analogous integral for neutrons. Their sum is obviously equal to zero.
The third and fourth terms of the integral in Eq. (33) must be analyzed together. We have the following for protons:

h̄2

4
C11

11,10

∫
d3r

[
n↓↑

p (r1∇0 − r0∇1)

(
3

2
χn↑↓

p + χ̄n↑↓
n

)
+ n↑↓

p (r1∇0 − r0∇1)

(
3

2
χn↓↑

p + χ̄n↓↑
n

)]

= h̄2

4
C11

11,10 χ̄

∫
d3r[n↓↑

p (r1∇0 − r0∇1) n↑↓
n + n↑↓

p (r1∇0 − r0∇1) n↓↑
n ]. (38)

The sum of this integral with the analogous one for neutrons (which is obtained by changing indices p ↔ n) is obviously equal
to zero.

So, finally we have found that the isoscalar variant of
Eq. (33) can be written [in variables defined in Eq. (26)] as

L̇
p+
11 (t) + L̇n+

11 (t) ≡ L̇+
11(t) = −ih̄

η

2
[L−

11(t) +
√

2L
↓↑
10 (t)].

(39)

It is easy to see that the proper combination of this equation
with the seventh equation in Eqs. (22) gives the required result:

− 1√
2

(2iL̇+
11 + h̄Ḟ ↓↑) = d

dt
〈Ĵ1〉 = 0;

i.e., the total angular momentum is conserved for arbitrary
amplitudes, not only in a small amplitude approximation. One
must note that this result is not influenced by the approximate
treatment of integral terms in Eqs. (22).

V. RESULTS AND THEIR INTERPRETATION:
DISCUSSIONS

The energies and excitation probabilities obtained by the
solution of the isovector set of Eqs. (27) are given in Table I.
The used spin-spin interaction is repulsive, the values of its
strength constants being taken from Ref. [22], where the nota-
tion χ = Ks/A, χ̄ = qχ was introduced. The results without
spin-spin interaction (variant I) are compared with those
performed with two sets of constants: Ks and q (variants II
and III). The first set of constants (variant II) was extracted
by the authors of Ref. [22] from Skyrme forces following the
standard procedure, the residual interaction being defined in
terms of second derivatives of the Hamiltonian density H (ρ)
with respect to the one-body densities ρ. Different variants
of Skyrme forces produce different strength constants of
spin-spin interaction. The most consistent results are obtained
with SG1, SG2 [23], and Sk3 [24] forces. We use here the
spin-spin constants extracted from the Sk3 force. Another set
of constants (variant III) was found by the authors of Ref. [22]
phenomenologically in the calculations with a Woods-Saxon
potential, when there is not any self-consistency between the
mean field and the residual interaction. Our model is partially
self-consistent; nevertheless we tentatively use this set just to
have an idea about the dependence of the results on the values

of strength constants. The strength of the spin-orbit interaction
is taken from Ref. [25].

To avoid misunderstanding we want to recall here that
quantum numbers of all levels are Kπ = 1+ (the projection
of the total angular momentum and parity). The first column
of Tables I and II demonstrates just the labels (λ,μ and spin
projections ↑,↓) of variables that are responsible (approxi-
mately, because all equations are coupled) for the generation
of the corresponding eigenvalue.

One can see from Table I that the spin-spin interaction
does not change the qualitative picture of the positions of
the excitations described in Ref. [15]. It pushes all levels
up proportionally to its strength (20–30% in the case II and
40–60% in the case III) without changing their order. The
most interesting result concerns the relative B(M1) values
of the two low-lying scissors modes, namely, the spin scissors
(1, 1)− and the conventional (orbital) scissors (1, 1)+ mode. As
can be noticed, the spin-spin interaction strongly redistributes
M1 strength in favor of the spin scissors mode. We tentatively
want to link this fact to the recent experimental finding in
isotopes of Th and Pa [17]. Guttormsen et al. [17] have studied
deuteron and 3He-induced reactions on 232Th and found in the
residual nuclei 231,232,233Th and 232,233Pa “an unexpectedly
strong integrated strength of B(M1) = 11 − 15μ2

N in the
Eγ = 1.0–3.5 MeV region.” The B(M1) force in most nuclei
shows evident splitting into two Lorentzians. “Typically, the
experimental splitting is �ωM1 ∼ 0.7 MeV, and the ratio of the
strengths between the lower and upper resonance components
is BL/BU ∼ 2.” (Note a misprint in that paper: it is written
erroneously B2/B1 ∼ 2 whereas it should be B1/B2 ∼ 2. To
avoid misunderstanding, we write here BL instead of B1 and
BU instead of B2.) The authors have tried to explain the
splitting by a γ deformation. To describe the observed value
of �ωM1 the deformation γ ∼ 15◦ is required, which leads
to the ratio BL/BU ∼ 0.7 in an obvious contradiction with
experiment. The authors conclude that “the splitting may be
due to other mechanisms.” In this sense, we tentatively may
argue as follows. On one side, theory [26] and experiment
[27] give zero value of γ deformation for 232Th. On the
other side, it is easy to see that our theory suggests the
required mechanism. The calculations performed for 232Th
give �ωM1 ∼ 0.32 MeV and BL/BU ∼ 1.6 for the first variant

014306-10



NEW TYPE OF NUCLEAR COLLECTIVE MOTION: THE . . . PHYSICAL REVIEW C 88, 014306 (2013)

TABLE I. Isovector energies and excitation probabilities of 164Er. Deformation parameter δ = 0.25; spin-orbit constant η = 0.36 MeV.
Spin-spin interaction constants are as follows: I, Ks = 0 MeV; II, Ks = 92 MeV, q = −0.8; and III, Ks = 200 MeV, q = −0.5. Quantum
numbers (including indices ς = +, −, ↑↓, ↓↑) of variables responsible for the generation of the present level are shown in the first column.
For example, (1, 1)−, spin scissors; (1, 1)+, conventional scissors; etc. The numbers in the last line are imaginary, so they are marked by the
letter i.

(λ, μ)ς Eiv (MeV) B(M1)
(
μ2

N

)
B(E2) (BW )

I II III I II III I II III

(1,1)− 1.61 2.02 2.34 3.54 5.44 7.91 0.12 0.36 0.82
(1,1)+ 2.18 2.45 2.76 5.33 4.48 2.98 1.02 1.23 1.26
(0,0)↓↑ 12.80 16.81 20.02 0.01 0.01 0.04 0.04 0.13 0.52
(2,1)− 14.50 18.52 21.90 0.01 0.02 0.34 0.03 0.13 4.29
(2,0)↓↑ 16.18 20.61 24.56 0.02 0.23 0.03 0.18 3.09 0.44
(2,2)↑↓ 16.20 22.65 27.67 0 0.03 0 0 0.39 0.02
(2,1)+ 20.59 21.49 22.42 2.78 2.19 1.77 35.45 30.47 27.43
(1,0)↓↑ i0.26 i0.26 i0.26 −i5.4 −i5.4 −i5.4 i0 i0 i0

of the spin-spin interaction and �ωM1 ∼ 0.28 MeV and
BL/BU ∼ 4.1 for second one in reasonable agreement with
experimental values. The inclusion of pair correlations will
affect our results, but one may speculate that the agreement
between the theory and experiment will be conserved at least
qualitatively.

The energies and excitation probabilities obtained by the
solution of the isoscalar set of Eqs. (27) are displayed in
Table II. The general picture of the influence of the spin-spin
interaction here is quite close to that observed in the isovector
case. The only difference is the low-lying mode marked
by (1, 1)+ which is practically insensitive to the spin-spin
interaction. In Ref. [17] the assignment of the resonances to be
of isovector type is only tentative based on the assumption that
at such low energies there is no collective mode other than the
isovector scissors mode. However, from Ref. [17] one cannot
exclude that also an isoscalar spin scissors mode is mixed
in. From our analysis we see that the isoscalar spin scissors
where all nucleons with spin up counter-rotate with respect to
the ones of spin down come more or less at the same energy
as the isovector scissors. So it would be very important for
the future to pin down precisely the quantum numbers of the
resonances.

Let us discuss in more detail the nature of the predicted
excitations. As one can see, the generalization of the WFM
method by including spin dynamics allows one to reveal a

variety of new types of nuclear collective motion involving
spin degrees of freedom. Two isovector and two isoscalar low-
lying eigenfrequencies and five isovector and five isoscalar
high-lying eigenfrequencies have been found.

Three low-lying levels correspond to the excitation of new
types of modes. For example, the isovector level marked by
(1, 1)− describes rotational oscillations of nucleons with the
spin projection “up” with respect to nucleons with the spin
projection “down”; i.e., one can talk of a nuclear spin scissors
mode. Having in mind that this excitation is an isovector one,
we can see that the resulting motion looks rather complex—
proton spin scissors counter-rotate with respect to the neutron
spin scissors. Thus the experimentally observed group of 1+
peaks in the interval 2–4 MeV, associated usually with the
nuclear scissors mode, in reality consists of the excitations of
the “spin” scissors mode together with the conventional [1]
scissors mode [the level (1, 1)+ in our case]. The isoscalar
level (1, 1)− describes the real spin scissors mode: all spin-up
nucleons (protons together with neutrons) oscillate rotationally
out of phase with all spin-down nucleons.

Such excitations were, undoubtedly, produced implicitly
by other methods (e.g., RPA [1,2,22,28]), but they never
were analyzed in such terms. It is interesting to note, for
example, that in Ref. [2] the scissors mode was analyzed in
so-called spin and orbital components. Roughly speaking there
are two groups of states corresponding to these two types of

TABLE II. The same as in Table I, but for isoscalar excitations.

(λ, μ)ς Eis (MeV) B(M1)
(
μ2

N

)
B(E2) (BW )

I II III I II III I II III

(1,1)− 1.71 2.04 2.40 0.07 0.05 0 1.12 0.65 0.39
(1,1)+ 0.37 0.37 0.37 −0.24 −0.24 −0.24 117.2 117.9 118.3
(0,0)↓↑ 12.83 15.59 18.72 0 0 0 0.66 0.31 0.15
(2,1)− 14.51 17.40 20.65 0 0 0 0.12 0.06 0.03
(2,0)↓↑ 16.22 20.09 24.80 0 0 0 0.20 0.02 0.01
(2,2)↑↓ 16.20 19.43 23.09 0 0 0 0 0.07 0.04
(2,1)+ 10.28 11.92 13.60 0 0 0 66.50 57.78 50.87
(1,0)↓↑ i0.20 i0.20 i0.20 i0.12 i0.12 i0.12 i30.0 i29.8 i30.3
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components, not completely dissimilar to our finding. Whereas
the nature of the orbital, i.e., conventional scissors, is quite
clear, the authors did not analyze the character of their states
which consist of the spin component. It can be speculated that
those spin components just correspond to the isovector spin
scissors mode discussed in our work here. It would be inter-
esting to study whether our suggestion is correct or not. This
could, for example, be done by analyzing the current patterns.

One more new low-lying mode [isoscalar at 0.37 MeV,
marked by (1, 1)+] is generated by the relative motion of the
orbital angular momentum and spin of the nucleus. They can
change their absolute values and directions keeping the total
spin unchanged. If there were not the spin-orbit coupling,
orbital angular momentum and spin would be constants of
motion separately, see dynamical equations forL+

11 (the orbital
angular momentum variable) and F↓↑ (the spin variable)
in the isoscalar variant of the set of Eqs. (27). Apparently
spin-orbit force is too weak to lift up this zero mode strongly.
Physically it is quite understandable that such a mode can
exist. We want to call it the “collective spin-orbit mode.”
Another question is whether such a collective spin-orbit mode
can be excited experimentally. In any case, to our knowledge
a low-lying mode of this type with a strong B(E2) has so
far not been identified experimentally. On the other hand the
negligibly small negative B(M1) value probably has to do
with the approximate treatment of integrals in the equations
of motion (22) (especially the neglect by the terms generating
fourth-order moments, see Appendix A). It would be very
interesting to invent some method to search for such a
collective state which is predicted by our model.

To complete the picture of the low-lying states, it is
important to discuss the state which is slightly imaginary.
Let us first state that the nature of this state has nothing
to do with either spin scissors or conventional scissors. It
can be seen from the structure of our equations that this
state corresponds to a spin flip induced by the spin-orbit
potential. Such a state is of purely quantal character and it
cannot be hoped that we can accurately describe it with our
WFM approach restricting the consideration by second-order
moments only. For its correct treatment, we certainly should
consider higher moments like fourth-order moments. The
spin-orbit potential is the only term in our theory which
couples the second-order moments to the fourth-order ones.
As mentioned, we decoupled the system by neglecting the
fourth-order moments. Therefore, it is no surprise that this
particular spin-flip mode is not well described. Nevertheless,
one may try to better understand the origin of this mode almost
at zero energy. For this, we make the following approximation
of our diagonalization procedure to get the eight eigenvalues
listed in Table I. We neglect in Eqs. (27) all couplings between
the set of variables X+

λμ,X−
λμ and the set of variables X

↑↓
λμ,X

↓↑
λμ

(X ≡ L,R,P,F). To this end in the dynamical equations
for X+

λμ,X−
λμ we omit all terms containing X

↑↓
λμ,X

↓↑
λμ and

in the dynamical equations for X
↑↓
λμ,X

↓↑
λμ we omit all terms

containing X+
λμ,X−

λμ. In such a way we get two independent
sets of dynamical equations. The first one (for X+

λμ,X−
λμ)

was already studied in Ref. [15], where we have found that
such approximation gives satisfactory (in comparison with the

exact solution) results but must be used cautiously because
of the problems with the angular momentum conservation.
The second set of equations (for X

↑↓
λμ,X

↓↑
λμ) splits into three

independent subsets. Two of them were already analyzed in
Ref. [15] (it turns out that these subsets can be obtained also
in the limit η → 0, which was studied there), where it was
shown that the results of approximate calculations are very
close to those of exact calculations; i.e., the coupling between
the respective variables X

↑↓
λμ,X

↓↑
λμ and X+

λμ,X−
λμ is very weak.

The only new subset of equations reads

˙̄L↓↑
10 = −h̄2 η

2
√

2
F̄↓↑, ˙̄F↓↑ = −η

√
2L̄↓↑

10 . (40)

The solution of these equations is E = i h̄√
2
η = i0.255, which

practically coincides with the number of the full diagonaliza-
tion. So the nonzero (purely imaginary) value of this root
only comes from the fact that the z component of orbital
angular momentum is not conserved (only total spin J is
conserved). However, the violation of the conservation of the
orbital angular momentum is very small as can be seen from
the numbers. In any case, we see that this spin-flip state has
nothing to do with either the spin scissors or the conventional
scissors.

Two high-lying excitations of a new nature are found. They
are marked by (2, 1)− and following Ref. [28] can be called
spin-vector giant quadrupole resonances. The isovector one
corresponds to the following quadrupole motion: the proton
system oscillates out of phase with the neutron system, whereas
inside of each system spin-up nucleons oscillate out of phase
with spin-down nucleons. The respective isoscalar resonance
describes out of phase oscillations of all spin-up nucleons
(protons together with neutrons) with respect to all spin-down
nucleons.

Six high-lying modes can be interpreted as spin-flip giant
monopole [marked by (0, 0)↓↑] and quadrupole [marked by
(2, 0)↓↑ and (2, 2)↑↓] resonances.

This is a pertinent place to make the following citation from
the review by Osterfeld [28]: “Similar oscillations to those in
isospin space are also possible in spin space. Nucleons with
spin up and spin down may move either in phase (spin-scalar
S = 0 modes) or out of phase (spin-vector S = 1 modes). The
latter class of states is also referred to as spin excitations or
spin-flip transitions.” On account of our results in this work, the
latter statement that all spin excitations are of a spin-flip nature
should be modified. We predict in this paper the existence of
spin excitations of a non-spin-flip nature—the isovector and
isoscalar spin scissors and the isovector and isoscalar spin-
vector GQR.

VI. CONCLUDING REMARKS

In this work, we continued the investigation of spin modes
[15] using the WFM to study the influence of spin-spin forces.
The WFM, when pushed to high-order moments, is equivalent
to the RPA [19]. For lower-rank moments, it yields a coarse-
grained spectrum. It has the advantage that the moments allow
for a direct physical interpretation and, thus, the spin or orbital
structure of the found states comes directly to hand.
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The inclusion of spin-spin interaction does not change
qualitatively the picture concerning the spectrum of the spin
modes found in Ref. [15]. It pushes all levels up without
changing their order. However, it strongly redistributes M1
strength between the conventional and spin scissors mode in
favor of the last one. Our calculations did not fully confirm
the expectations mentioned in the Introduction, namely, that
essentially only the low-lying part of the spectrum will be
strongly influenced by the spin-spin force. Nevertheless our
results turned out to be very useful, because they demonstrate
that the spin-spin interaction together with pair correlations
are able to push a substantial part of the M1 force out of the
area of the conventional scissors mode, which is required for
reasonable agreement with the experimental data.

In this respect, we should mention that we did not include
pairing in this work. Inclusion of pairing would have compli-
cated the formalism quite a bit. This shall be worked out in the
future. We here wanted to study the features of spin dynamics
in a most transparent way, staying, however, somewhat on the
qualitative side. That is why we did not try to discuss in detail
possible relations with experiment or to compare with the
results of other theories. Nevertheless we mentioned the quite
recent experimental work of Guttormsen et al. [17], where for
the two low-lying magnetic states a stronger B(M1) transition
for the lower state with respect to the higher one was found. A
tentative explanation in terms of a slight triaxial deformation
in Ref. [17] failed. However, our theory can naturally predict
such a scenario with a nonvanishing spin-spin force. It would
indeed be very exciting, if the results of Ref. [17] had already
revealed the isovector spin scissors mode. However, much
deeper experimental and theoretical results must be obtained
before a firm conclusion on this point is possible.

In light of the above results, the study of spin excitations
with pairing included will be the natural continuation of this
work. Pairing is important for a quantitative description of
the conventional scissors mode. The same is expected for the
novel spin scissors mode discussed here. The effect of pairing
generally is to push up the spectrum in energy. Therefore, as
just mentioned, it can be expected that the results will come
into better agreement with experiment.
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APPENDIX A

All derivations of this section are done in the approximation
of spherical symmetry. The inclusion of deformation makes
the calculations more cumbersome without changing the final
conclusions. Let us consider, as an example, the integral

Ih =
∫

d(p, r){r ⊗ p}λμ[h↑↓f ↓↑ − h↓↑f ↑↓].

It can be divided into two parts corresponding to the contribu-
tions of spin-orbital and spin-spin potentials: Ih = Iso + Iss,

where

Iso = − h̄√
2
η

∫
d(p, r){r ⊗ p}λμ[l−1f

↓↑ + l1f
↑↓],

Iss =
∫

d(p, r){r ⊗ p}λμ[V ↑↓
τ f ↓↑ − V ↓↑

τ f ↑↓],

V ss ′
τ being defined in Eqs. (21). It is easy to see that the integral

Iso generates moments of the fourth order. According to the
rules of the WFM method [29] this integral is neglected.

Let us analyze the integral Iss (to be definite, for protons).
In this case

V ↑↓
p (r) = 3

h̄2

8
χn↑↓

p (r) + h̄2

4
χ̄n↑↓

n (r),

V ↓↑
p (r) = 3

h̄2

8
χn↓↑

p (r) + h̄2

4
χ̄n↓↑

n (r).

It can be seen that Iss is split into four terms of identical
structure, so it is sufficient to analyze in detail only one part.
For example

Iss4 =
∫

d(p, r){r ⊗ p}λμn↓↑f ↑↓

=
∫

d3r{r ⊗ J ↑↓}λμn↓↑

=
∑
ν,α

C
λμ
1ν,1α

∫
d3rrνJ

↑↓
α n↓↑, (A1)

where J ↑↓
α (r, t) = ∫ d3p

(2πh̄)3 pαf ↑↓(r, p, t). The variation of this
integral reads

δIss4 =
∑
ν,α

C
λμ
1ν,1α

∫
d 3rrν[n↓↑(eq)δJ ↑↓

α + J ↑↓
α (eq)δn↓↑].

(A2)

It is necessary to represent this integral in terms of the
collective variables (20). This problem cannot be solved
exactly, so we use the approximation suggested in Ref. [29]
and expand the density and current variations as a series (see
Appendix B).

Let us consider the second part of integral (A2). With the
help of formula (B4) we find

I2 ≡
∑
ν,α

C
λμ
1ν,1α

∫
d3r rνJ

↑↓
α (eq)δn↓↑

= −
∑
ν,α

C
λμ
1ν,1α

∫
d3r rνJ

↑↓
α (eq)

∑
β

(−1)β

×
{

N
↓↑
β,−β (t)n+ +

∑
γ

(−1)γ N
↓↑
β,γ (t)

1

r

∂n+

∂r
r−βr−γ

}
.

(A3)

Let us analyze at first the more simple part of this expression:

I2,1 ≡ −
∑

β

(−1)βN
↓↑
β,−β (t)

∫
d3r

∑
ν,α

C
λμ
1ν,1αrνJ

↑↓
α (eq)n+

= −
∑

β

(−1)βN
↓↑
β,−βXλμ. (A4)
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We are interested in the value of μ = 1; therefore it is necessary to analyze two possibilities: λ = 1 and λ = 2.
In the case λ = 1 and μ = 1 we have

X11 ≡
∫

d3r n+∑
ν,α

C11
1ν,1αrνJ

↑↓
α (eq) =

∫
d3r n+ 1√

2
[r1J

↑↓
0 (eq) − r0J

↑↓
1 (eq)]. (A5)

By definition

J ss′
ν =

∫
d3p

(2πh̄)3
pνf

ss′
(r, p) = − ih̄

2
[(∇ν − ∇′

ν)ρ(r, s; r′s ′)]r′=r = ih̄

2

∑
k

v2
k [φk(r, s)∇νφ

∗
k (r, s ′) − φ∗

k (r, s ′)∇νφk(r, s)], (A6)

where k ≡ n, l, j,m is a set of oscillator quantum numbers, v2
k are occupation numbers, and

φnljm(r, s) = Rnl(r)
∑
�,σ

C
jm

l�, 1
2 σ

Yl�(θ, φ)χ 1
2 σ (s) = Rnlj (r)Cjm

lm−s, 1
2 s

Ylm−s(θ, φ) (A7)

are single-particle wave functions, χ 1
2 σ (s) = δσ,s being spin functions. Inserting Eq. (A6) into Eq. (A5) one finds

X11 = ih̄

2

1√
2

∑
nljm

v2
nljm

∫
d3r n+(r)R2

nlj (r)Cjm

l�, 1
2

1
2
C

jm

l�′, 1
2 − 1

2
[Yl�(r1∇0 − r0∇1)Y ∗

l�′ − Y ∗
l�′(r1∇0 − r0∇1)Yl�], (A8)

with � = m − 1
2 and �′ = m + 1

2 . Remembering the definition (11) of the angular momentum l̂1 = h̄(r0∇1 − r1∇0) and using
the relation [20] l̂±1Yl� = ∓ 1√

2

√
(l ∓ �)(l ± � + 1)Yl�±1 one transforms Eq. (A8) into

X11 = − ih̄

2

1√
2

∑
nljm

v2
nljm

∫
drn+(r)r2R2

nlj (r)Cjm

l�, 1
2

1
2
C

jm

l�′, 1
2 − 1

2

2√
2

√
(l − �)(l + � + 1)

= −ih̄
∑
nl

|l− 1
2 |∑

m= 1
2

[(
l + 1

2

)2 − m2
]

2l + 1

∫
drn+(r)r2

[
v2

nll+ 1
2 m
R2

nll+ 1
2
(r) − v2

nl|l− 1
2 |mR2

nl|l− 1
2 |(r)

]
. (A9)

As can be seen, the value of this integral is determined by the difference of the wave functions of spin-orbital partners
(vR)2

nll+ 1
2 m

− (vR)2
nl|l− 1

2 |m, which is usually very small, so we neglect it. The only remarkable contribution can appear in the

vicinity of the Fermi surface, where some spin-orbital partners with j = l + 1
2 and j = |l − 1

2 | can be disposed on different sides
of the Fermi surface. In reality such a situation happens very frequently; nevertheless we do not take into account this effect,
because the values of the corresponding integrals are considerably smaller than R20(eq), the typical input parameter of our model.

Let us consider now the integral I2,1 [formula (A4)] for the case λ = 2 and μ = 1. We have

X21 ≡
∫

d3rn+∑
ν,α

C21
1ν,1αrνJ

↑↓
α (eq) =

∫
d3rn+C21

11,10[r1J
↑↓
0 (eq) + r0J

↑↓
1 (eq)]. (A10)

With the help of formulas (A6) and (A7) one can show by simple algebraic transformations that∫
d� r1J

↑↓
0 (eq) = −

∫
d� r0J

↑↓
1 (eq), (A11)

where
∫

d� means the integration over angles. As a result X21 = 0.
Let us consider the second, more complicated, part of integral I2:

I2,2 = −
∑
β,γ

(−1)β+γ N
↓↑
−β,−γ (t)

∑
ν,α

C
λμ
1ν,1α

∫
d 3rrνJ

↑↓
α (eq)

1

r

∂n+

∂r
rβrγ = −

∑
β,γ

(−1)β+γ N
↓↑
−β,−γ (t)X′

λμ(β, γ ). (A12)

For the case λ = 1 and μ = 1,

X′
11(β, γ ) = 1√

2

∫
d3r

1

r

∂n+

∂r
[r1J

↑↓
0 (eq) − r0J

↑↓
1 (eq)]rβrγ

= y − ih̄

4

∑
nljm

v2
nljm

∫
d3r

1

r

∂n+

∂r
R2

nlj (r)Cjm

l�, 1
2

1
2
C

jm

l�′, 1
2 − 1

2

√
(l − �)(l + � + 1)[Yl�Y ∗

l� + Y ∗
l�′Yl�′]rβrγ . (A13)
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The angular part of this integral is∫
d�[Yl�Y ∗

l� + Y ∗
l�′Yl�′]rβrγ =

∑
L,M

CLM
1β,1γ

∫
d�[Yl�Y ∗

l� + Y ∗
l�′Yl�′]{r ⊗ r}LM

= − 2√
3

r2C00
1β,1γ +

√
8π

15
r2
∑
M

C2M
1β,1γ

∫
d�[Yl�Y ∗

l� + Y ∗
l�′Yl�′]Y2M

= 2

3
r2δγ,−β

{
1 −

√
5

2
Cl0

l0,20C
1β
1β,20

[
Cl�

l�,2M + Cl�′
l�′,2M

]}
. (A14)

Therefore

X′
11(β, γ ) = − ih̄

6
δγ,−β

∫
dr

∂n+(r)

∂r
r3
∑
nljm

{
1 −

√
5

2
C

1β
1β,20C

l0
l0,20

[
Cl�

l�,20 + Cl�′
l�′,20

]}

× v2
nljmR2

nlj (r)Cjm

l�, 1
2

1
2
C

jm

l�′, 1
2 − 1

2

√
(l − �)(l + � + 1)

= − ih̄

3
δγ,−β

∑
nl

{
1 −

√
5

2
C

1β
1β,20C

l0
l0,20

[
Cl�

l�,20 + Cl�′
l�′,20

]}

×
|l− 1

2 |∑
m= 1

2

[(
l + 1

2

)2 − m2
]

2l + 1

∫
dr

∂n+(r)

∂r
r3
[
v2

nll+ 1
2 m
R2

nll+ 1
2
(r) − v2

nl|l− 1
2 |mR2

nl|l− 1
2 |(r)

]
. (A15)

One sees that, exactly as in formula (A9), the value of this integral is determined by the difference of the wave functions of
spin-orbital partners (vR)2

nll+ 1
2 m

− (vR)2
nl|l− 1

2 |m near the Fermi surface, so it can be omitted together with X11 following the same
arguments.

The case λ = 2 and μ = 1 can be analyzed in full analogy with formulas (A10) and (A11), which allows us to take X′
21 = 0.

So, we have shown that the integral I2 can be approximated by zero. Let us consider now the first part of the integral (A2):

I1 =
∑
ν,α

C
λμ
1ν,1α

∫
d3rrνn

↓↑(eq)δJ ↑↓
α =

∑
ν,α

C
λμ
1ν,1α

∫
d3rrνn

↓↑(eq)n+(r)
∑

γ

(−1)γ K
↑↓
α,−γ (t)rγ

=
∑
ν,α

C
λμ
1ν,1α

∑
γ

(−1)γ K
↑↓
α,−γ (t)

∫
d3rn↓↑(eq)n+(r)

∑
L,M

CLM
1ν,1γ {r ⊗ r}LM. (A16)

This integral can be estimated in the approximation of constant density n+(r) = n0. Then

I1 = n0

∑
ν,α

C
λμ
1ν,1α

∑
γ

(−1)γ K
↑↓
α,−γ (t)

∑
L,M

CLM
1ν,1γ R

↓↑
LM (eq) = 0. (A17)

It is easy to show that R
↓↑
LM (eq) = 0. Let us consider, for example, the case with L = 2:

R
↓↑
2M =

∫
d(p, r){r ⊗ r}2Mf ↓↑(r, p) =

∫
d3r{r ⊗ r}2Mn↓↑(r) =

√
8π

15

∫
d3rr2Y2Mn↓↑(r). (A18)

By definition

nss′
(r) =

∫
d3p

(2πh̄)3
f ss′

(r, p) =
∑

k

v2
kφk(r, s)φ∗

k (r, s ′), (A19)

with φk defined in Eq. (A7). Therefore

R
↓↑
2M =

√
8π

15

∫
d3rr2Y2M

∑
nljm

v2
nljmR2

nlj (r)Cjm

l�′, 1
2 − 1

2
C

jm

l�, 1
2

1
2
Yl�′Y ∗

l�

=
√

2

3

∑
nljm

v2
nljm

∫
drr4R2

nlj (r)Cjm

l�, 1
2

1
2
C

jm

l�′, 1
2 − 1

2
Cl0

20,l0C
l�
2M,l�′ = 0, (A20)

where � = m − 1
2 and �′ = m + 1

2 . The zero is obtained due to summation over m. Really, the product C
jm

l�, 1
2

1
2
C

jm

l�′, 1
2 − 1

2
=

±
√

(l+ 1
2 )2−m2

2l+1 (for j = l ± 1
2 ) does not depend on the sign of m, whereas the Clebsh-Gordan coefficient Cl�

2M,l�′ changes its sign
together with m.
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Summarizing, we have demonstrated that I1 + I2 � 0; hence one can neglect the contribution of the integrals Ih in the equations
of motion.

It is necessary to analyze also the integrals with the weight {p ⊗ p}λμ:

I ′
h =

∫
d(p, r){p ⊗ p}λμ[h↑↓f ↓↑ − h↓↑f ↑↓] = I ′

so + I ′
ss.

Again we neglect the contribution of the spin-orbital part I ′
so, which generates fourth-order moments. For the spin-spin

contribution, we have

I ′
ss4 =

∫
d(p, r){p ⊗ p}λμn↓↑(r, t)f ↑↓(r, p, t) =

∫
d3r�

↑↓
λμ(r, t)n↓↑(r, t), (A21)

where �
↑↓
λμ(r, t) = ∫ d3p

(2πh̄)3 {p ⊗ p}λμf ↑↓(r, p, t) is the pressure tensor. The variation of this integral reads

δI ′
ss4 =

∫
d3r[n↓↑(eq)δ�↑↓

λμ(r, t) + �
↑↓
λμ(eq)δn↓↑(r, t)]. (A22)

The pressure tensor variation is defined in Appendix B. With formula (B6) one finds the following for the first part of Eq. (A22):

I ′
1 =

∫
d3rn↓↑(eq)δ�↑↓

λμ(r, t) � T
↑↓
λμ (t)

∫
d3rn↓↑(eq)n+(r) � T

↑↓
λμ (t)n0

∫
d3rn↓↑(eq) = 0. (A23)

The last equality follows obviously from the definition of n↓↑ (A19).
The second part of Eq. (A22) reads

I ′
2 =

∫
d3r�

↑↓
λμ(eq)δn↓↑(r, t) = −

∑
β

(−1)β
∫

d3r�
↑↓
λμ(eq)

{
N

↓↑
β,−β (t)n+ +

∑
γ

(−1)γ N
↓↑
β,γ (t)

1

r

∂n+

∂r
r−βr−γ

}
. (A24)

Let us consider at first the simpler part of this integral

−
∑

β

(−1)βN
↓↑
β,−β (t)

∫
d3r�

↑↓
λμ(eq)n+(r). (A25)

The value of the last integral is determined by the angular structure of the function �
↑↓
λμ(r). We are interested in λ = 2 and μ = 1.

By definition

�
↑↓
21 (r) =

∫
d3p

(2πh̄)3
{p ⊗ p}21f

↑↓(r, p) =
∑
ν,σ

C21
1ν,1σ

∫
d3p

(2πh̄)3
pνpσf ↑↓(r, p)

= 2C21
11,10

∫
d3p

(2πh̄)3
p1p0f

↑↓(r, p) = − h̄2

2
√

2
[(∇′

1 − ∇1)(∇′
0 − ∇0)ρ(r′ ↑, r ↓)]r′=r

= − h̄2

2
√

2

∑
k

v2
k

{
[∇1∇0φk(r,↑)]φ∗

k (r,↓) − [∇1φk(r,↑)][∇0φ
∗
k (r,↓)]

− [∇0φk(r,↑)][∇1φ
∗
k (r,↓)] + φk(r,↑)[∇1∇0φ

∗
k (r,↓)]

}
, (A26)

with φk being defined by Eq. (A7). Taking into account formulas [20]

∇±1Ylλ = −
√

(l ± � + 1)(l ± � + 2)

2(2l + 1)(2l + 3)

l

r
Yl+1,�±1 −

√
(l ∓ � − 1)(l ∓ �)

2(2l − 1)(2l + 1)

l + 1

r
Yl−1,�±1,

∇0Ylλ = −
√

(l + 1)2 − �2

(2l + 1)(2l + 3)

l

r
Yl+1,� +

√
l2 − �2

(2l − 1)(2l + 1)

l + 1

r
Yl−1,�,

one finds that∫
d3r�

↑↓
λμ(eq)n+(r) = h̄2

∑
nljm

v2
nljm

∫
drn+(r)R2

nlj (r)
(
δj,l+ 1

2
− δj,l− 1

2

) l(l + 1)
[(

l + 1
2

)2 − m2
]

(2l + 3)(2l + 1)(2l − 1)
m = 0 (A27)

due to summation over m. The more complicated part of the integral (A24) is calculated in a similar way with the same result;
hence I ′

2 = 0.
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So, we have shown that I ′
1 + I ′

2 � 0; therefore one can neglect by the contribution of integrals I ′
h (together with Ih) into

equations of motion.
And finally, just a few words about the integrals with the weight {r ⊗ r}λμ:

I ′′
h =

∫
d(p, r){r ⊗ r}λμ[h↑↓f ↓↑ − h↓↑f ↑↓] = I ′′

so + I ′′
ss.

The spin-orbital part I ′′
so is neglected and for the spin-spin part we have

I ′′
ss4 =

∫
d(p, r){r ⊗ r}λμn↓↑(r, t)f ↑↓(r, p, t) =

∫
d3r{r ⊗ r}λμn↓↑(r, t)n↑↓(r, t). (A28)

The variation of this integral reads

δI ′′
ss4 =

∫
d3r{r ⊗ r}λμ[n↓↑(eq)δn↑↓(r, t) + n↑↓(eq)δn↓↑(r, t)]. (A29)

With the help of formulas (A19) and (B4) the subsequent analysis becomes quite similar to that of the integral (A16) with the
same result, i.e., I ′′

h � 0.
The integrals

∫
d(p, r)Wλμ[h−f ↓↑ − h↓↑f −] and

∫
d(p, r)Wλμ[h−f ↑↓ − h↑↓f −], where Wλμ is any of the abovementioned

weights, can be analyzed in an analogous way with the same result.

APPENDIX B

According to the approximation suggested in Ref. [29], the variations of density, current, and pressure tensor are expanded as
the following series:

δnς (r, t) = −
∑

β

(−1)β∇−β

⎧⎨
⎩n+(r)

⎡
⎣N

ς
β (t) +

∑
γ

(−1)γ N
ς
β,γ (t)r−γ +

∑
λ′,μ′

(−1)μ
′
N

ς
β,λ′μ′(t){r ⊗ r}λ′−μ′ + · · ·

⎤
⎦
⎫⎬
⎭ , (B1)

δJ
ς
β (r, t) = n+(r)

⎡
⎣K

ς
β (t) +

∑
γ

(−1)γ K
ς
β,−γ (t)rγ +

∑
λ′,μ′

(−1)μ
′
K

ς
β,λ′−μ′(t){r ⊗ r}λ′μ′ + · · ·

⎤
⎦ , (B2)

δ�
ς
λμ(r, t) = n+(r)

⎡
⎣T

ς
λμ(t) +

∑
γ

(−1)γ T
ς
λμ,−γ (t)rγ +

∑
λ′,μ′

(−1)μ
′
T

ς
λμ,λ′−μ′(t){r ⊗ r}λ′μ′ + · · ·

⎤
⎦ . (B3)

Putting these series into the integrals (A2) and (A22), one discovers immediately that all terms containing expansion coefficients
N , K , and T with odd numbers of indices disappear due to axial symmetry. Furthermore, we truncate these series omitting all
terms generating higher (than second) order moments. So, finally the following expressions are used:

δnς (r, t) � −
∑

β

(−1)β∇−β

{
n+(r)

∑
γ

(−1)γ N
ς
β,γ (t)r−γ

}
= −

∑
β

(−1)β
{

N
ς
β,−β (t)n+ +

∑
γ

(−1)γ N
ς
β,γ (t)

1

r

∂n+

∂r
r−βr−γ

}
,

(B4)

δJ
ς
β (r, t) � n+(r)

∑
γ

(−1)γ K
ς
β,−γ (t)rγ , (B5)

and

δ�
ς
λμ(r, t) � n+(r)T ς

λμ(t). (B6)

The coefficients N
ς
β,γ (t) and K

ς
β,−γ (t) are connected by the linear relations with the collective variables Rς

λμ(t) and Lς
λμ(t),

respectively:

Rς
λμ =

∫
d3r{r ⊗ r}λμδnς (r) = 2√

3

[A1C
λμ
1μ,10N

ς
μ,0 − A2

(
C

λμ
1μ+1,1−1N

ς
μ+1,−1 + C

λμ
1μ−1,11N

ς
μ−1,1

)]
, (B7)
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where

A1 =
√

2 R
eq
20 − R

eq
00 = Q00√

3

(
1 + 4

3
δ

)
, A2 = R

eq
20/

√
2 + R

eq
00 = −Q00√

3

(
1 − 2

3
δ

)
,

(B8)

R
eq
20 = Q20/

√
6, R

eq
00 = −Q00/

√
3, Q20 = 4

3
δQ00, Q00 = A〈r2〉 = 3

5
AR2

0;

N
ς
−1,−1 = −

√
3Rς

2−2

2A2
, N

ς
−1,0 =

√
6Rς

2−1

4A1
, N

ς
−1,1 = −Rς

00 + Rς
20/

√
2

2A2
,

N
ς
0,−1 = −

√
6Rς

2−1

4A2
, N

ς
0,0 =

√
2Rς

2,0 − Rς
0,0

2A1
, N

ς
0,1 = −

√
6Rς

21

4A2
, (B9)

N
ς
1,−1 = N

ς
−1,1, N

ς
1,0 =

√
6Rς

21

4A1
, N

ς
1,1 = −

√
3Rς

22

2A2
;

Lς
λ,μ =

∫
d3r{r ⊗ δJ ς }λμ = 1√

3
(−1)λ

[A1C
λμ
1μ,10K

ς
μ,0 − A2

(
C

λμ
1μ+1,1−1K

ς
μ+1,−1 + C

λμ
1μ−1,11K

ς
μ−1,1

)]
; (B10)

K
ς
−1,−1 = −

√
3Lς

2−2

A2
, K

ς
−1,0 =

√
3
(Lς

1−1 + Lς
2−1

)
√

2A1

, K
ς
−1,1 = −

√
3Lς

10 + Lς
20 + √

2Lς
00√

2A2

,

K
ς
0,−1 =

√
3
(Lς

1−1 − Lς
2−1

)
√

2A2

, K
ς
0,0 =

√
2Lς

2,0 − Lς
0,0

A1
, K

ς
0,1 = −

√
3
(Lς

11 + Lς
21

)
√

2A2

, (B11)

K
ς
1,−1 =

√
3Lς

10 − Lς
20 − √

2Lς
00√

2A2

, K
ς
1,0 =

√
3
(Lς

21 − Lς
11

)
√

2A1

, K
ς
1,1 = −

√
3Lς

22

A2
.

The coefficient T
ς
λμ(t) is connected with Pς

λμ(t) by the relation Pς
λμ(t) = AT

ς
λμ(t), with A being the number of nucleons.
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