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Shape phase transition and phase coexistence in odd Sm nuclei
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The shape phase transition and the associated phase coexistence in the odd Sm isotopes are investigated.
Through analyzing two-neutron separation energies and the low-lying spectra of the odd Sm isotopes, it is
found that the spherical to axially deformed shape phase transition does occur in the odd Sm nuclei just as their
neighboring even Sm nuclei. The phase coexistence in 151Sm, which lies close to the critical point, is revealed.

DOI: 10.1103/PhysRevC.88.014304 PACS number(s): 21.60.Fw, 21.60.Ev, 21.10.Re, 64.70.Tg

I. INTRODUCTION

Quantum phase transition is an interesting and important
subject for many subfields. Atomic nuclei are good examples
exhibiting quantum phase transitions in their isotope and
isotone chains. The quantum phase transition is not of the
usual thermodynamic type, but related to the equilibrium shape
change in the ground state of nuclei at zero temperature, which
is thus called shape phase transition (SPT). In the last ten years,
a number of theoretical developments have provided new
insights on understanding the evolution of nuclear structure
in transitional regions through the SPT analysis [1–3].

For even-even nuclei, it is easy to identify the SPT by
observing some typical quantities, such as the energy ratio
R4/2 = E4+

1
/E2+

1
, the E2 transition rate B(E2; 4+

1 → 2+
1 ), the

two-neutron separation energies, and so on, with variation of
the mass number. An excellent example is provided by the even
Sm isotopes, in which the structural evolution can be identified
as the spherical to axially deformed SPT in experiment [4].
It is shown that the equilibrium shapes of 146,148Sm may
approximately be identified as spherical associated with the
harmonic spectrum shown in their ground bands, and the
shapes of 150,152Sm seem relatively soft from their spectra,
while the shapes of 154,156Sm approach to axially deformed
type associated with rotational spectra. The shape evolution
with increasing of neutrons in Sm isotopes is thus identified
as the first-order SPT, in which 150,152Sm lie close to the
critical point [5–8]. On the other hand, odd-A nuclei can be
approximately considered as systems with an even-even core
coupled to a single valence nucleon. Low-lying properties of
odd-A nuclei should be impacted by the SPT emerging along
the related odd isotope or isotone chains.

It is the purpose of this work to reveal whether the characters
of the SPT in the adjacent even-even partners also emerge in
odd Sm nuclei and how the SPT affect the properties of them.
In Sec. II, the concept of the spherical to axially deformed
SPT and the associated phase coexistence are introduced in
the frame of the interacting boson model. Several analytically
solvable collective modes within the Bohr-Mottelson model
are also used to illustrate the structural evolution in the
spherical to axially deformed SPT in even-even nuclei or that
in the adjacent odd-A nuclei through the particle-core coupling

scheme. In Sec. III, a parallel analysis of the SPT in the even
and odd Sm nuclei is carried out. In Sec. IV, the phenomenon
of phase coexistence in the odd Sm isotopes is revealed by
comparison with the corresponding situation in the even Sm
isotopes. A summary is given in Sec. V.

II. MODELS

A. Models of even-even nuclei

The interacting boson model (IBM) [4] and the Bohr-
Mottelson model (BMM) [9] are two convenient models in
analyzing SPT in nuclei. As an algebraic model, the IBM
involves three dynamical symmetry limits, U(5), O(6), and
SU(3) corresponding to a spherical vibrator, a γ -soft rotor, and
an axially deformed rotor, respectively. Not only typical nuclei
in these dynamical symmetry limit situations, but also those
in the U(5)-SU(3) and the U(5)-O(6) transitional regions are
observed experimentally [4]. In contrast to the IBM, the BMM
is the geometric description of the above collective motions in
nuclei. The IBM may be directly related to the BMM through
the coherent state analysis [4,10].

In the IBM, to investigate the U(5)-SU(3) (the spherical
to axially deformed) SPT, a schematic Hamiltonian may be
written as [11]

Ĥ = ε

[
(1 − ξ )n̂d − ξ

4N
Q̂ · Q̂

]
, (1)

where ε is a scale parameter, n̂d = ∑
u d

†
udu is the number

operator of d bosons, and

Q̂μ = (s† × d̃ + d† × s̃)(2)
u −

√
7

2
(d† × d̃)(2)

u (2)

is the quadrupole operator. Equation (1) can also be written as

Ĥ = ε

{
(1 − ξ )Ĉ1[U(5)] − ξ

8N

[
Ĉ2[SU(3)]

− 3

4
Ĉ2[SO(3)]

]}
, (3)

where Ĉk[G] denotes the rank-k Casimir operator of group
G [3,12]. It is clear that Eq. (3) is just the Hamiltonian in
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FIG. 1. (Color online) (a) The potential surfaces as functions of
β with different ξ ; (b) those at (ξ ∗, ξc, ξ

∗∗) on an expanded scale with
the infinite well as approximation to the potential at ξc, where the γ

variable has been frozen as γ = 0.

the U(5) limit when ξ = 0 and becomes that in the SU(3)
limit when ξ = 1. For ξ ∈ [0, 1], Eq. (3) can then be used to
describe the U(5)-SU(3) (the spherical to axially deformed)
transitional dynamics. Moreover, one may use the coherent
state (also called the intrinsic state) defined as [4]

|β, γ,N〉 = 1√
N !(1 + β2)N

[s† + βcosγ d
†
0

+ 1√
2
βsinγ (d†

2 + d
†
−2)]N |0〉 (4)

to obtain the scaled potential surface corresponding to the
Hamiltonian (1) or (3) in the large-N limit, which is

Vs(β, γ ) = 1

εN
〈β, γ,N |H |β, γ,N〉|N→∞

= (1 − ξ )
β2

1 + β2
− ξ

(1 + β2)2

×
[
β2 +

√
2

2
β3cos3γ + 1

8
β4

]
. (5)

One can prove that the system experiences the first-order
transition in the large-N limit as a function of ξ with the critical
point ξc = 8/17, at which Vmin [the minimum of Vs(β, γ )] is
continuous, but ∂Vmin

∂ξ
is discontinuous [4,11]. To understand the

phase structure and the phase transition, we show the potential
at different values of ξ in Fig. 1, where γ = 0 representing
axially deformed situation is assumed since Vmin(β) is always
at γ = 0. As shown in panel (b) of Fig. 1, there are three
important points in Vs(β), the so-called spinodal point [11]
ξ ∗ = 0.47, at which the second minimum of Vs(β) appears,
the critical point ξc = 8/17, at which the two minima of Vs(β)
are equivalent, and the antispinodal point ξ ∗∗ = 0.5, at which
the first minimum of Vs(β) disappears. Furthermore, one can
find Vmin = 0 representing the spherical phase for ξ < ξ ∗
and Vmin < 0 representing the deformed phase for ξ > ξc.
Particularly, the narrow region with ξ ∈ [ξ ∗, ξ ∗∗] shown in
Fig. 1 is theoretically recognized as the phase coexistence
region, in which the spherical and the axially deformed
phases may coexist. The phase coexistence may be observed

experimentally from quantities related to low-lying states of
a nucleus [13]. Since the phase coexistence region defined
above is just the narrow region involving the critical point as
show in panel (a) of Fig. 1, it is also referred to as the critical
region. Accordingly, the phase coexistence may be taken as an
important signal to identify the critical nuclei along the related
isotope or isotone chains with the first-order SPT.

In the BMM, on the other hand, the potential shown in
Fig. 1 may be used to find a proper potential to describe the
SPT in the model. With the shape variables β and γ , the BMM
Hamiltonian is generally written as [9]

HB = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

− 1

4β2

∑
k

L̂2
k

sin2
(
γ − 2

3πk
)
]

+ V (β, γ ) , (6)

where B is the the mass parameter, and L̂k is the angular
momentum operator expressed in the body-fixed frame. In
the following, we will simply introduce several analytically
solvable situations, from which the results may be taken as
benchmarks for identifying typical structures appearing in the
spherical-axially deformed SPT.

For a general form of V (β, γ ), one can only solve
the corresponding BMM Hamiltonian numerically. However,
there are some specific forms of V (β, γ ), for which one can
find analytical solutions suitable to characterize the dynamical
structure around the critical point resulting in the critical point
symmetry (CPS) [14–16]. Specifically, the infinite square well
was employed to simulate the flat potential at the critical point
as shown in the right panel of Fig. 1, which results in the X(5)
CPS [14] if assuming the potential V (β, γ ) = V (β) + V (γ )
with V (γ ) ∝ γ 2, or the X(3) CPS [16] if assuming the γ degree
of freedom frozen at γ = 0, while V (β) was taken as

V (β) =
{

0, β � βW ,
∞, β > βW ,

(7)

for both the X(5) and X(3) cases. The levels of the yrast and
yrare states in the X(5) and X(3) cases are mainly determined
by the the radial part of the eigenequation:

ϕ′′(z) + ϕ′(z)

z
+

[
1 − v2

z2

]
ϕ(z) = 0, ϕ(kβW ) = 0, (8)

with v =
√

L(L+1)
3 + 9

4 for the X(5) CPS and v =
√

L(L+1)
3 + 1

4

for the X(3) CPS, where z = kβ with k =
√

2BE/h̄2. The ra-
dial wave function ϕ ∝ Jv(ks,vβ) with ks,v = xs,v/βW , where
xs,v is the sth zero of the Bessel function Jv(ks,vβ). The
corresponding eigenenergy is E = h̄2

2B
(ks,v)2. The two CPS

models can all be applied to describe even-even nuclei around
the critical point of the spherical-axially deformed SPT. More
discussions on the analytical solutions of the BMM with some
other potentials may be found in [17].

In Table I, we list the normalized energy levels of the yrast
states calculated from several collective modes corresponding
to different deformed situations or shape phases in the SPT. As
we know, the results of the IBM U(5) limit and the BMM with
β2 potential as well as those of the IBM SU(3) limit and the
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TABLE I. The normalized low-lying yrast energy levels as
functions of L produced by several typical collective models, where
the ground state energy has been set to zero.

EL Vibrator X(3) [16] X(5) [14] Rotor

E2 1.00 1.00 1.00 1.00
E4 2.00 2.44 2.91 3.33
E6 3.00 4.23 5.43 7.00
E8 4.00 6.35 8.48 12.00
E10 5.00 8.78 12.03 18.33
E12 6.00 11.52 16.04 26.00
E14 7.00 14.57 20.51 35.00
E16 8.00 17.91 25.44 45.33

BMM with β fixed as a nonzero value and γ frozen at γ = 0
representing axial symmetry [18], which just corresponds to
the axial-symmetry rotor, are the same for the yrast states.
For the case around the critical point, however, there is no
simple correspondence between the IBM and the BMM. But
the X(3) [16] or X(5) [14] CPS is effective for the description
of the criticality of the spherical-axially deformed SPT. As
shown in Table I, the spherical vibrator [or the IBM U(5) limit]
produces equidistant yrast levels with EL = L/2, and the
axially deformed rotor [or the IBM SU(3) limit] provides yrast
levels following the L(L + 1) law with EL = L(L + 1)/6,
while, for given L, the X(5) or the X(3) model produces yrast
level in between that of the vibrator and of the rotor following
the relation L/2 < E

X(3)
L < E

X(5)
L < L(L + 1)/6, which may

be used to characterize the shape (phase) of a nucleus in this
transitional region. Namely, a nucleus in this region with yrast
levels obeying EL = L/2 or EL = L(L + 1)/6 should be in
the spherical vibrational or axially deformed phase, while that
obeying E

X(3)
L or E

X(5)
L should be within the critical region of

the spherical to axially deformed transition.

B. Particle-core coupling scheme for odd-A nuclei

As discussed previously, both the IBM and the BMM are
suitable to describe the SPT in even-even nuclei. In contrast,
there is lack of approach to describing structure of odd-A
nuclei in a global way [19] due to diversity in their level
structure. Even in the simplest model by considering the odd-A
system as an even-even core plus a single particle [20], it is
still difficult to find a way to describe low-lying structural
evolution in the odd-A nuclei in a global way as done for the
neighboring even-even nuclei. Nevertheless, one may figure
out the main characters of the SPT in odd-A nuclei from some
simple considerations. As is observed, spectrum in an odd-A
nucleus in this region is mainly composed of 	J = 1 and
	J = 2 rotational-like bands, where J represents the quantum
number of the total spin of each state in the band. If the coupling
between the core and the single particle is not too strong, the
intraband structure in the odd-A nuclei may be dominated
by the collective motion of the core, while the single-particle
excitation may only affect positions of band heads [20]. In
this case, the 	J = 2 collective bands, of which the spectrum
behaves similar to that of the even-even core, are favored in the

low-lying part of the spectrum. This situation usually occurs
to weakly or intermediately deformed nuclei [20,21]. When
the coupling between the core and the particle is expected to
be strong in a well-deformed situation, the 	J = 1 strong-
coupling bands, which often follow the regular J (J + 1) rule,
are favored in the low-lying part of the spectrum. For the
spherical-axially deformed SPT, the weakly or intermediately
deformed region just lies in between the spherical phase and
the critical point. The well-deformed region is expected from
the critical point to the axially deformed phase. In short, the
results shown in Table I together with the J (J + 1) law may
also be applicable to characterize the band structure and to
identify the shape phase of odd-A nuclei in this region. The
	J = 2 and 	J = 1 collective bands in odd-A nuclei may be
simply illustrated within the BMM in the weak-coupling limit,
the decoupling limit, and the strong-coupling limit [20].

1. Weak-coupling limit

In the weak coupling limit, odd-A system may be approxi-
mately realized with the Hamiltonian

Hodd = Hcoll + Hsp, (9)

where Hcoll is the Hamiltonian of the collective core, and Hsp

is that of the single particle. For simplicity, it is assumed that
there is no additional interaction between the collective core
and the particle in Eq. (9). For spherical or small deformation
case, the collective part of the Hamiltonian Hcoll may be chosen
as Eq. (6), while the Hamiltonian for the single particle Hsp

may be taken as that of the spherical shell model with

Hsp = − h̄2

2m
∇2 + mω2

2
r2 + Cl̂ · ŝ + Dl̂2 . (10)

By solving the eigenequation Hodd� = Eodd�, it follows that
the eigenfunction in the weak-coupling limit [20] can be
constructed by coupling wave function of the collective-core
with that of the single-particle in the spherical form as

� =
∑

ML,mj

< L,ML; j,mj |J,MJ > �L,ML
(β, γ, θ )χj,mj

(η),

(11)

where χj,mj
(η) is the single particle wave function satisfying

Hspχj,mj
(η) = ejχj,mj

(η) (12)

with η representing generically the coordinates of the single
particle [22–25], and �L,ML

(β, γ, θ ) is the wave function
describing the collective core satisfying

Hcoll�L,ML
(β, γ, θ ) = Ecoll�L,ML

(β, γ, θ ) . (13)

Then the total energy is given as

Eodd = Ecoll + ej . (14)

It is clear that the Ecoll describes the collective excitations,
and ej describes the single-particle excitations. In this case,
the collective bandheads are determined by the single-particle
excitations, and the intraband level spacings are determined
by the collective excitations. Therefore, the single-particle
energy ej in Eq. (14) is simply adjusted to align with the
bandhead with J = j determined from experiment. In this
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scheme, the states with the total spin given as J = |L −
j |, |L − j | + 1, . . . , L + j are degenerate and show the same
spectral structure as that of the core with the same orbit
angular momentum quantum number L. Especially, the levels
in the 	J = 2 collective band with the spin sequence J =
j, j + 2, j + 4, . . . , described by Hodd may behave the same
as those in the ground band of the even-even system described
by Hcoll. As a result, the quantities listed in Table I can be used
to characterize either the yrast levels with angular momentum
L of the even-even nuclei or those with J = j + L in the
neighboring odd-A nuclei.

In odd-A nuclei, spins of bandheads in some 	J = 2
collective bands may be not J = j , but J = j − n with
n = 1, 2, . . . , j − 1/2, which may be explained by taking into
account the additional interactions between the core and the
odd particle. This bandhead spin assignment is assumed in the
weak-coupling limit in this work by considering j ′ = j − n
as the effective spin of the single particle. Thus, the spectral
characters of the collective bands in odd-A nuclei with spin
J = j − n + L and n = 0, 1, 2, . . . , j − 1/2 described by
Hodd in the weak-coupling limit are almost the same as
those of the ground band of the even-even nuclei described
by Hcoll. It should be emphasized that some model features
may be unrealistic, such as degeneracy in states with the
same L in the weak-coupling limit mentioned previously.
The weak-coupling limit of the BMM is just used to illustrate
the structural evolution of the 	J = 2 band and the SPT in in
the odd-A nuclei.

2. Decoupling limit

As shown in [26], the 	J = 2 collective bands in an
intermediately deformed odd-A nucleus with an even-even
core around the critical point may be described within the de-
coupling scheme, in which the Hamiltonian and wave function
of the single particle should be expressed in the intrinsic frame
of the deformed core described by the corresponding CPS.
Then the Hamiltonian of the odd-A nucleus in the decoupling
limit can be written as the same form given in Eq. (9) but with

Hcoll = HCPS (15)

and

Hsp = Hsph + kβ0Y20(θ ′, φ′) , (16)

where HCPS is the corresponding CPS Hamiltonian describing
the collective core, and Hsp is the single-particle Hamiltonian,
in which the first term Hsph is the part in the spherical shell
model the same as that given in Eq. (10) and the second term
represents a quadrupole field oriented along the core symmetry
axis z [20,21,26]. For a given �, which is the projection of j
on the z axis, eigenvalue of Hsp under the single-particle wave
function | χ

j
�(η)〉 is given by

Esp ≈ ej + kβ0

(
3�2 − j (j + 1)

4j (j + 1)

)

= e′
j + 3kβ0

4j (j + 1)
�2 . (17)

It is realized [20,21] that the core may decouple from the
single particle if the angular momentum of the particle is
aligned along the rotational axis, which may occur due to
the fact that there is a cancellation of the � dependent term
coming from the intrinsic part as described by the second term
in Eq. (17) and that coming from the so called recoil term
− 1

�
Ĵzĵz involved in 1

�
L̂2 = 1

�
(Ĵ − ĵ )2 included in the CPS

Hamiltonian for the axially symmetric system, where � is a
model-dependent inertial parameter. A detailed derivation on
the decoupling conditions for the X(3) CPS is given in [26].
It is shown in [26] that the resulting levels in each collective
band should be characterized with 	J = 2 in the decoupling
limit due to the reflection symmetry in the plane perpendicular
to the symmetry axis [20,21]. These levels behave the same
as those in the ground band of the even-even core described
by the X(3) CPS. Actually, the same spectral characters also
emerge in energy levels of the so called favorite states with
J = j, j + 2, j + 4, . . . , in the weak-coupling scheme [20].
Anyway, the results of the decoupling limit further confirm
that the low-lying level scheme of a weakly or intermediately
deformed odd-A nucleus is indeed dominated by the 	J = 2
collective bands with level structure similar to that of the core.
In addition, the similar results can also be obtained from the
coupling scheme shown in [26] with the X(5) CPS core.

3. Strong-coupling limit

In the well-deformed situation, the particle-rotor model in
the strong-coupling limit [20] is a suitable scheme to describe
the low-lying dynamics of odd-A nuclei. In this case, the
collective part in Eq. (9) may be taken as the Hamiltonian
of the symmetric rotor,

Hcoll = Hrot = h̄2

2�
L̂2 + h̄2

2�z′
L̂2

z′ (18)

with L̂ = Ĵ − ĵ , while the single-particle part may be taken
as that of the deformed shell model with

Hsp = HK =
∑

i

Ei
Ki

f
†
iKi

fiKi
, (19)

where f
†
iKi

(fiKi
) is the creation (annihilation) operator of

the valence particle in the ith Nilsson orbit [20], and Ei
Ki

is the corresponding single-particle energy. By ignoring the
rotor-particle coupling term, the total wave function in the
strong-coupling limit after symmetrization can be analytically
written as

� ′
JMK =

√
2J + 1

16π2

[
DJ

M,K (θk)|φK〉
+ (−)J+KDJ

M,−K (θk)|φK̄〉] , (20)

where the DJ
M,K (θk) is the Wigner D function satisfying

HrotD
J
M,K (θk) =

[
E′

K + h̄2

2�
J (J + 1)

]
DJ

M,K (θk), (21)

where E′
K is related to the quantum number K , and J =

K,K + 1,K + 2,K + 3, . . .. In addition, |φK〉 in Eq. (20)
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is the single-particle wave function satisfying

HK |φK〉 = EK |φK〉 . (22)

Then the total energy of the system is given by

E = EK + E′
K + h̄2

2�
J (J + 1) . (23)

The first two terms in Eq. (23) are often adjusted to fit the
bandhead energy of each strong-coupling band according to
experimental data since K is a good quantum number in
an axial system, while the last term describes the intraband
rotational excitations, which clearly falls into the J (J + 1)
rule.

III. THE SPT AND SPECTRAL EVOLUTION
IN SM NUCLEI

The two-neutron separation energy S2n may be considered
as a primary and direct signature of the emergence of SPT [1,4].
In the IBM [1,27], S2n with S2n = −[E0(N − 1) − E0(N )] is
related to the derivative ∂E0

∂ξ
of the relevant ground state energy

E0 with respect to the control parameter ξ . In the large-N
limit, using the result of the coherent state theory, one can find
∂E0
∂ξ

∝ ∂Vmin
∂ξ

, which can be directly calculated from Eq. (5). In
the finite-N case of the IBM, S2n may be written as a smooth
contribution linear with the boson number N plus contribution
from the deformation [4,27,28]

S2n = −A − BN + S(2n)def . (24)

Similar to the analysis shown in [27], we focus on the
deformation contribution, which is obtained from the data
by subtracting a term linear with the total number of va-
lence nucleon pairs. Accordingly, the experimental values of
S(2n)def for both the even and odd Sm nuclei as functions
of Nν are shown in Fig. 2, where Nν is the neutron boson
number taken as the number of valence neutron pairs since
the proton number is a constant with nπ = 62. The results are
obtained from the data [29–40] fitted with A = −19.768 and
−19.378 MeV for the even and odd Sm nuclei, respectively,
and B = 0.658 MeV according to Eq. (24). Concretely, we use
the linear function f (N ) = −A − BN to fit the experimental
values of S2n for the spherical-like nuclei 144,146,148Sm as well
as their odd-neutron partners to fix A and B since S2n in these
spherical-like nuclei indeed behaves as a linear function of the
number of valence nucleons [2]. Then, one can get S(2n)def

by subtracting the linear part calculated with f (N ) from the
experimental value of S2n according to (24). It should be noted
that S(2n)def of the even Sm nuclei and their odd-proton
partners, Eu, were discussed in [27], in which the linear
function f (Nv) = −A − BNv was used. As shown in Fig.
2, the evident SPT signal in S(2n)def can be observed around
Nν = 4 for both the even and odd Sm isotopes. Particularly, the
effect of the additional neutron seems to enhance the character
of SPT in the odd Sm nuclei, in which the amplitude of S(2n)def

increases about 1/4 near the critical point in comparison to that
in the even nuclei. According to the theoretical prediction in
the large-N limit of the IBM, which basically agrees with the
experimental results [27] as shown in the inset of Fig. 2, the

FIG. 2. (Color online) The contribution of deformation to the
two-neutron separation energies, S(2n)def (in MeV) for both the even
and odd Sm isotopes, plotted as a function of neutron boson number,
Nν . The contribution is enhanced about 330 keV at Nν = 5 in the odd
Sm nuclei. Also the increase of S(2n)def from Nν = 3 to Nν = 4 is
sharper in the odd Sm nuclei than that in the even Sm nuclei. In the
N → ∞ limit of the IBM [27], S(2n)def should be zero when ξ � ξc

and finite but large when ξ > ξc. The expected behavior of − ∂Vmin
∂ξ

is
shown in the inset. The experimental data are taken from [29–40].

spherical to axially deformed SPT emerging in ground state of
the Sm nuclei with the critical point around Nν = 4 is of the
first order.

The above analysis shows that the SPT indeed emerges
at the ground states of the odd Sm nuclei as that emerging
in the adjacent even Sm nuclei. It is expected that a parallel
description of the SPT for both the even and odd Sm isotopes
is possible. As shown in the previous section, the characters of
SPT are not only reflected in ground state of a nucleus, but also
in its low-lying spectrum, which has been widely confirmed in
even-even nuclei [1,2]. However, spectra of odd-A nuclei often
involve both collective and single-particle excitations, which
are much more complex than those of even-even nuclei. But
the low-lying spectral behaviors in the odd Sm nuclei seem
more “regular” than expected, which provide a rare chance to
probe the SPT in low-lying spectra of odd-A nuclei.

In the following, we consider the ground bands for both
the even and the odd Sm nuclei, of which the lowest excited
bands are also taken into account. In Fig. 3, the normalized
experimental energy levels of the Sm nuclei and the theoretical
results of several models provided in Table I as functions
of L in both the ground and first excited bands are shown
to illustrate the SPT. Since we only emphasize their band
structure, all bandhead energies have been set to zero, with
which other levels are normalized to the first excited level in
each band. In the even Sm nuclei, the results shown from Fig. 3
indicate that the ground band, as expected, evolve from the
vibrational type in 146,148Sm to the rotational type in 154,156Sm
with increasing of neutrons, which clearly reflects the SPT
from the spherical to the axially deformed shape with 150,152Sm
around the critical point [5,7,8], which is consistent with the
SPT prediction shown by the contribution of deformation to the
two-neutron separation energy S(2n)def related to their ground
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FIG. 3. (Color online) (a) The normalized experimental energy levels of the ground bands of the even Sm nuclei together with those
calculated by several typical collective models shown in Table I, in which Rot represents the results of the Rotor, Vib corresponds to the results
of the Vibrator, and X(3), and X(5) represent those given by the X(3) and the X(5) CPS [14,16]; (b) the same as (a) but for the ground band
of the odd Sm nuclei, where Vib, X(3), X(5), and Rot represent the results of the corresponding collective modes in the weak-coupling limit,
which are actually the same as those list in Table I according to the discussion in Sec. II, and the subpanel shows the spectra of 155,157Sm
together with those following the J (J + 1) law solved from the particle-rotor model in the strong-coupling limit; (c) the same as those in (b)
but for the first excited band of the odd Sm nuclei. It should be note that all the bandhead energies have been set to zero, and the levels in the
band with 	J = 2 are normalized to the levels with J = J0 + 2, while the levels in the band with 	J = 1 are normalized to the levels with
J = J0 + 1, where L = J − J0 with J being the total spin of the level and J0 being the spin of the band head. The experimental data are taken
from [29–40].

states. Moreover, it can be observed from panels (a) and (b) of
Fig. 3 that the structural evolution of the ground bands of the
odd Sm nuclei and that of the even Sm nuclei with variation
of neutron number are quite similar. Specifically, 147,149Sm
may correspond to the spherical shapes with the vibrational
character in their ground bands. 155,157Sm may be related to the
axially deformed shapes with their ground bands obeying the
J (J + 1) rotational rule in the strong-coupling limit. 151Sm
may be associated with a soft shape with its ground band
following the X(3)-like results. However, the ground band of
153Sm shows a rotational-like spectrum obeying the L(L + 1)
law as shown in Fig. 3, where L is the angular momentum
quantum number of the core, while its even partner 152Sm
presents a relatively softer ground band structure characterized
by the X(5) CPS. It seems that the dynamics around the
critical point are evidently impacted by the additional neutron,
which leads to the shape of the odd-A nucleus more rigid
than expected. In addition, the evolution pattern of the first
excited bands in the odd Sm isotopes is similar to that of the
ground bands as shown in panel (c) of Fig. 3. The levels in
the first excited band of 153Sm also obey the L(L + 1) law
as those in the ground band. It should be noted the the two
rotational-like bands with 	J = 2 in 153Sm shown in panels
(b) and (c) are often treated together as a single strong-coupling
rotational band [36] with 	J = 1. Further discussion about
this will be shown in Sec. IV. Generally, the strong-coupling
dynamics results in a more deformed situation. As a result, no
matter whether it is considered as the single strong-coupling
band or two rotational-like bands, the spectrum in 153Sm
shown in Fig. 3 reflects the fact that it is more rigid with
larger deformation than 151Sm. Therefore, with increasing of
neutrons, the low-lying band structures of the odd Sm isotopes
all evolve from the vibrational type with 	J = 2 to a soft
type with 	J = 2, then to a little rigid type with 	J = 2

or 	J = 1 undetermined, and finally to the strong-coupling
rotational type with 	J = 1. Thus, the spherical to axially
deformed SPT in the odd Sm nuclei is indeed reflected from
their low-lying spectra, in which both the collective mode and
the coupling of the collective core with the single neutron seem
subject to change during the SPT.

In addition, the properties of E2 transition may be also used
to indicate the occurrence of shape phase transition. However,
there is no sufficient experimental B(E2) data for the odd
Sm nuclei to show the actual evolution of the ground band.
Therefore, we may focus on discussing the properties of the
low-lying energies for the odd Sm nuclei in the present work.

IV. THE PHASE COEXISTENCE IN SM NUCLEI

Another important phenomenon closely related to the first-
order SPT is that the phase coexistence may occur to the low-
lying states of the nuclei around the critical point according
to the theoretical discussions shown in Sec. II. The analysis
shown in [13] indicate that the phase coexistence may occur to
the transitional nucleus 152Sm, which may be the best candidate
of the X(5) CPS [1,6].

To illustrate this phenomenon in the transitional region
of the even Sm isotopes, the energy levels in the ground
band and the β band of both 150Sm and 152Sm are shown in
Fig. 4. It can be seen from panel (a) of Fig. 4 that the levels
in both the ground band and the β band of 150Sm behave as
an anharmonic vibrator with R4/2 ≈ 2.3. There is no clear
sign of phase coexistence in its low-lying states though it
is near the critical point and expected to be the candidate
as analyzed in [7]. In contrast, the ground band of 152Sm
shows a rotational character with R4/2 = 3.00, while the β
band seems vibrational with R4/2 = 2.7 as shown in panel
(b) of Fig. 4. The signal of the spherical and the deformed
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FIG. 4. (Color online) The experimental energy levels in
the ground band and the β band of 150Sm and those of 152Sm.
The corresponding normalized results are shown in the insets,
where the theoretical results of rotor and vibrator are also given
to compare the experimental behaviors. The experimental data are
taken from [33,35].

phase coexisting in 152Sm highlighted by distinct R4/2 ratios
in the two bands was thus identified in the analysis [13]. In
addition, the vibrational character of the β band in 152Sm may
also be tracked by the fact that the 4+ level at 1023 keV in
the β band shown in panel (b) is approximately degenerated
with the 0+

3 level at 1083 keV and the 2+
3 level at 1086 keV,

which is consistent with the vibrational U(5)-like spectrum [4].
Moreover, the experimental B(E2) ratios of 152Sm, especially
B(E2; 2+

3 → 0+
2 )/B(E2; 2+

1 → 0+
1 ), also follow the phase

coexistence prediction according to the discussions shown
in [13,41,42], though different view also exists [43], in which
the author considered the ground state and 0+

2 state in 152Sm
as shape coexisting states. However, though the distinction
from such shape coexistence and the phase coexistence of the
X(5) description is subtle [1,44,45], more experimental and
theoretical study are needed [46] in order to make a conclusion.

It should be emphasized that one can discriminate in
principle between a region in which phase transitions occur
and a region that exhibits shape coexistence as discussed
in [44]. It is pointed out [44] that in the case of phase

transitions the two different types of motion can only develop
resembling the motion generated by H1 and H2, where
the Hamiltonian H1 and H2 describe two different types
of motion that are basically incompatible with one another
[e.g., the two terms given in Eq. (1)]. In such case, it is
clear that both Hamiltonian work in the same Hilbert space,
namely � = �1 = �2 [44]. On the other hand, when shape
coexistence appears, complete sets of states can be generated
in each space, and the dynamical structure is determined
by the direct product of the Hilbert spaces describing the
various phases like �1 ⊗ �2 ⊗ �3 . . . [44]. Here, we do not
emphasize the difference of the phase coexistence from the
shape coexistence, but follow the phase coexistence concept
to illustrate the phenomenon that several collective bands with
different intraband structures may coexist in the low-lying
spectrum of the critical point nucleus. It will be shown that
the coexistence of several collective bands of different types
in the low-lying spectrum may be the unique phenomenon
emerging only around the critical point in the odd Sm nuclei,
which indicates that this character can indeed be manifested by
the SPT.

To reveal the phase coexistence in the odd Sm nuclei,
several low-lying bands of both 151Sm and 153Sm are shown
in Fig. 5, where the low-lying band is the band with its
bandhead energy less than 0.5 MeV for odd-A nuclei. It can
be clearly seen from panel (a) of Fig. 5 that the levels in the
ground band labeled with A and those in the first excited
band labeled with B behave more or less soft in between
the vibrational and rotational, and the levels in the second
excited band labeled with C follow vibrational pattern, while
those in the band labeled with D follow the strong-coupling
J (J + 1) rotational rule. Thus, the vibrational and rotational
phases clearly coexist in the low-lying spectrum of 151Sm. In
addition, one can see that the spin and parity of the bandhead
of band C is Jπ = 7/2−, which shows that the final valence
neutron in 151Sm may occupy the 2f7/2 orbit [34] in the first
single-j shell after the magic number N = 82. In fact, the
spins and parities of the bandheads of the ground band in
both 147Sm [30] and 149Sm [32] are also Jπ = 7/2−. It is
a common character that all these bands are of vibrational
type. Therefore, these vibrational bands may all built on the
same single-particle orbit 2f7/2 no matter whether they are
ground or excited bands. It is shown in panel (b) of Fig. 5
for 153Sm that the parities of band A and B are all positive,
in which the levels approximately follow the L(L + 1) law,
while band C and D with negative parity obviously follow
the strong-coupling J (J + 1) law. Therefore, all the low-lying
bands in 153Sm are almost rotational. It should be noted the two
	J = 2 positive parity band A and B in 153Sm are often treated
as the single 	J = 1 strong-coupling rotational band [36] built
on the mixed 3/2+[651] + 3/2+[402] single-particle state
with the strong Coriolis coupling between the ground state
and the excited positive-parity orbits in the i13/2 shell [47].
Nevertheless, the strong-coupling perspective seems difficult
to explain the two rotational-like bands shown in Fig. 5,
especially the excited band B shown in panel (b), in which
the energy levels follow the L(L + 1) law from Jπ = 5/2+
to Jπ = 37/2+ with deviation less than 7%. Besides, the first
Jπ = 5/2+ level with E5/2+ = 7.535keV [36] is too close to
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FIG. 5. (Color online) (a) The experimental energy levels of the
lowest three 	J = 2 collective bands and the lowest 	J = 1 negative
parity band in 151Sm and the subpanels showing the normalized results
with L = J − J0 and J0 being the spin of bandhead as in Fig. 3. (b)
Similar to those in (a) but for the experimental energy levels of the
lowest four collective bands in 153Sm. The 	J = 2 band denoted by
A (short solid lines) and the one denoted by B (short dash lines) are
often explained as the single 	J = 1 strong-coupling band with the
levels signified by the short solid and dash lines together under A.
The experimental data shown (a) and (b) are taken from [34,36].

the ground level to be considered as the first excited rotational
level in the ground band. Moreover, the increasing ordering
of spin of the states in the ground band will no longer be
valid after Jπ = 13/2+ if these levels are treated as those in
the single 	J = 1 rotational band shown by the short dashed
and solid lines under the label A. Therefore, it seems more
reasonable that these positive parity levels come from two
regular rotational-like bands rather than the highly irregular
single 	J = 1 band, which may further be verified by E2
transition from the Jπ = 5/2+ state to the ground state, but
there has been no experimental result available.

On the other hand, the strong-coupling rotational band
with spin and parity of the bandhead Jπ

0 = 3/2− built on
3/2−[521] is favored in Sm isotopes for A > 151. Specifically,
this band appears as the first excited negative parity band of
153Sm, but as the ground band of both 155Sm and 157Sm. In
addition, another strong-coupling rotational band with spin

and parity of the bandhead Jπ
0 = 11/2− built on 11/2−[505]

appears in both 151Sm and 153Sm, which indicates that the
deformation becomes energetically favored around the critical
point. It should be noted that the strong coupling band built
on 11/2−[505] also appears in 149Sm but with the bandhead
energy higher than 1.3 MeV. Therefore, the low-lying structure
of 149Sm is still dominated by the vibrational modes. Based
on the discussions shown in Sec. II, it is easy to explain
the 	J = 1 strong-coupling bands built on the corresponding
Nilsson single-particle orbit in the particle-rotor model [20],
of which the physical picture seems valid in the well-deformed
situation. In contrast, the 	J = 2 bands are often related to
the spherical or weakly deformed situation, which results from
the corresponding single-particle excitations of the spherical
shell model. Thus, one can conclude for the odd Sm nuclei
that the spherical vibrational phase built on 2f7/2 orbit may
dominate in the ground state when A < 151; the vibrational
and the rotational phases coexist in the low-lying spectrum
at A = 151; the rotational phase built on several deformed
single-particle orbits begin to dominate in the low-lying
spectrum of 153Sm; and the rotational phase built on 3/2−[521]
dominate in the ground state when A > 153.

Comparatively speaking, the characters of the phase co-
existence shown in 151Sm are much clearer and richer than
those shown in 152Sm. The origination of the phase coexistence
due to the competition between the spherical vibrational and
the deformed rotational phase is also more explicitly shown
in the former. On the other hand, it was recognized [1,2]
that collective phenomena in nuclei may be due to compe-
tition between the spherical-driving pairing interaction and
the deformation-driving valence proton-neutron interaction.
Though the neutron-proton interaction is not considered
explicitly in our analysis, it is certainly included in both the
IBM-1 and the collective model shown in Sec. II as justified
in [48]. The difference of the phase coexistence in the odd
Sm nuclei from that in the even Sm nuclei is also shown.
The bandheads of the collective bands in the former are
determined by single-particle excitations, but those in the latter
may originate from the collective excitations.

V. SUMMARY AND CONCLUSION

In summary, the SPT in the odd Sm nuclei has been
investigated through the parallel analysis of the even Sm
nuclei. It is found that the SPT indeed occurs in the odd
Sm isotopes. The signals of the SPT are even enhanced by
the effects due to the additional single particle of the odd Sm
nuclei in comparison to the even Sm isotopes. Our analysis on
the spectral evolution shows that the SPT in odd Sm nuclei is
the spherical to the axially deformed shape phase transition, of
which the basic characters are quite similar to those appearing
in the even Sm nuclei. More importantly, it is shown that
the phenomenon of the phase coexistence also emerges in the
critical region of odd Sm nuclei, especially in 151Sm, just as that
emerging in the even Sm isotopes [13], but with more signals.
Concretely, it is clearly shown that the regular vibrational
bands and strong-coupling rotational bands together with the
anharmonic vibrational or softly rotational bands in between
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them may coexist in the low-lying spectrum of 151Sm, which is
explained in terms of the vibrational phase and rotational phase
coexistence around the critical point caused by the SPT. Our
present analysis not only shows the clear evidence of the SPT,
but also reveals that the phenomenon of phase coexistence
and the low-lying structural evolution due to the SPT may
be related in these odd-A nuclei. It seems that the low-lying
dynamical evolution in the odd Sm nuclei can be qualitatively
illustrated with the help of several simple collective models.
However, since the models of odd-A nuclei presented in
Sec. II are quite simple, some features predicted may be
unrealistic. For example, the degeneracy of several states
with the same L appearing in the weak-coupling limit should
be removed. Therefore, further improvement by considering
interactions between the core and the particle is necessary in
order to describe energy levels and electromagnetic properties
of these nuclei in quantity. Recently, some attempts [27,49,50]
in elucidating the SPT in odd-A nuclei have also been made in
the interacting boson-fermion model (IBFM) [51]. In contrast
to the previous theoretical analysis on the SPT in odd-A nuclei
[52–56], the evolution of deformation and spectra based on the

unique parity configuration h11/2 in some odd-proton nuclei
were studied [27,49,50]. Especially, the recent studies [57]
show that the low-lying spectrum of the odd Pm isotopes can
be well described within the framework of the neutron-proton
IBFM. It is expected that the IBFM after some reformulation
may be suitable to describe low-lying spectra and structural
evolution of these odd-A nuclei quantitatively in a global way
just as done by the IBM for even-even nuclei. Related work is
in progress.
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